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We present a semiclassical solution for a Zeeman-split, optically pumped, spin-1/2 system interacting with a
strong radio-frequency field. The method of solution presented here is based upon a matrix continued-fraction

expansion, and can explain any resonance phenomena which occur for arbitrary geometrical configurations of
the pumping beam or the rf field polarization axis. Theoretical predictions of line shapes for some cases are

reported and discussed. The solution can also explain some deviations of the observed Bloch-Siegert shift at

high rf power from the behavior predicted by a previous semiclassical theory, which can account for simple

geometrical configurations only.

I. INTRODUCTION

Much work has been devoted to investigating the
phenomena occurring in a spin- —', system (a two-
level system), whose levels are split by a static
magnetic field, and connected through a magnetic-
dipole interaction with a radio-frequency mag-
netic field. Experiments have been performed on
the ground state of several atomic species, in
optically pumped atomic vapors. In these experi-
ments, the static field is usually perpendicular to
the rf polarization axis, while the pumping light
beam is directed along the static field (longitudinal
pumping) or perpendicular to it (transverse pump-
ing). Other experiments have been performed
with a configuration where the static and the rf
polarization axis are parallel (parametric reson-
ance).

The polarization of the pump beam is chosen
in such a way that the beam acts selectively on
either of the two levels involved in the transition.
Then in the longitudinal pumping, the pumping
cycle creates a difference in the populations,
i.e., in the diagonal elements of the atomic density
matrix. In the transverse pumping, the light
beam creates coherences, i.e. , the off-diagonal
elements are nonzero.

Several semiclassical or fully quantum-mech-
anical methods have been developed to interpret
the experimental results. Owing to the large
number of photons in the rf field, even at small
intensities, the semiclassical theory seems to

predict correctly all phenomena occurring in the
transitions. Moreover, it may treat phenomeno-
logically any incoherent relaxation mechanism, as
well as the pumping mechanism. The semiclassi-
cal theory has been developed by several authors
to describe phenomena occurring in different con-
figurations of the magnetic fields or pumping
beam. Favre and Geneux' found the steady-state
solution for the density matrix elements in the
parametric resonance, through an expansion in a
series of Bessel functions. For an oscillating
field perpendicular to the static one, a continued
fraction solution has been derived, in the case of
longitudinal pumping by Stenholm" and in the
case of transverse pumping by Stenholm and
Aminoff4 and Tsukada and Ogawa. '

A proper description of actual experiments has
to include deviations from these geometries for
the rf and static fields and the pump beam.
Several authors have described the phenomena
arising with the misalignment of the rf field
from the direction alorig the static field or per-
pendicularly to it, with the presence of an uncom-
pensated stray field and with the misalignment of
the light beam with competition of longitudinal
and transverse pumping. ' ' Different treatments
have been developed to describe the influence of
a small misalignment present in the experiments.
The line shape of the resonances for an experi-
ment of longitudinal pumping with an arbitrary
angle between the oscillating and static fields has
been investigated by Yabuzaki et al." The nu-
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merical solution of a very large set of simultan-
eous linear equations, derived from the time
evolution equations for the density matrix, has
been applied to interpret their experimental re-
sults.

It has been shown by one of us" that the density
matrix elements of a two-level system, which in-
teracts with a high-intensity field, made up of
several modes, may be found by means of a con-
tinued fraction expansion, whose terms are ma-
trices. The solution applies in the semiclassical
laser theory when the atoms are fixed in the
space, and the electromagnetic modes are equally
spaced in frequency. There is a close resemblance
between that situation and rf spectroscopy, since
in the latter case the vapor atoms are confined in
a small cell, whose dimensions are negligible in
comparison with the wavelength of the electro-
magnetic field. Therefore, a matrix continued
fraction expansion for the elements of the density
matrix is expected to solve the rf spectroscopy
problem with any configuration of magnetic fields
or the pumping beam.

The purpose of this paper is to show that such
solution exists, and to use it in discussing several
cases of interest. For numerical calculations the
continued fraction is very useful, since the con-
vergence of the solution can easily be tested.
Moreover, in truncating at some order of the
continued fraction expansion the contributions of
that order are neglected altogether.

In Sec. II, the basic equations of motion are
derived, and the Fourier transformed equation of
motion for the out-of-phase polarization is ob-
tained. In Sec. III, the matrix continued fraction
solution is presented, and a comparison is made
with the previous results obtained by Stenholm. ' '
These results are recovered as a limiting case of
our treatment. In Sec. IV, some numerical ap-
plications of the general solution are presented.
The conclusions are presented in Sec. V.

II. DENSiTY-MATRIX EQUATION OF MOTION

Let us consider an experiment on an ensemble of
spin--,' atoms in the ground state. These two levels
are split by a static magnetic field II„and a
pumping light beam removes them from their
thermal equilibrium. An oscillating magnetic
field II, cos~t induces transitions between them.
The directions of these fields and of the light beam
are drawn in Fig. 1. The z axis is directed along
the static magnetic field. In order to allow for
any possible planar misalignment, the pumping
light beam and the rf field have arbitrary direc-
tions in the x-z plane. Two special cases are
included in the general treatment; they are the

"H
light

H

FIG. 1. Orientations of the Ho static field, the H&

radio-frequency field and the pumping beam.
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The pump rates y at which the diagonal and the off-
diagonal elements reach the steady state values are
the same. Let us now rotate the axis of quantiza-
tion by an angle y, making the quantization axis
to coincide with the g axis (the axis of the static
magnetic field). In this scheme, let

~
-) and ~+)

be, respectively, the upper and the lower levels.

longitudinal and the transverse pumping. The
former is achieved with the light beam perpen-
dicular to the static field, while the latter
is generated with the light beam perpendicular
to the static field. In most experiments,
both these resonances are caused by a rf field
perpendicular to the static field. In our analysis
the rf field-polarization axis is kept arbitrary,
in order to allow us to discuss any misalignment
effect.

We choose the z axis as the quantization axis
for the quantum treatment of the atomic system.
This choice is made on physical grounds. In fact,
in this quantization scheme, we can allow for dif-
ferent longitudinal and transverse decay rates of
the density-matrix components. In order to show
this, let us briefly summarize the process of
pumping.

Let ~a) and ~b) be, respectively, the upper and
the lower levels of the ground state, in the scheme
where the quantization axis is directed along the
pumping light beam. The pumping process is an
incoherent process, so that its net effect will be
that of generating different populations in the two
levels Ia) and ~b). Let us call L the population
difference as created by the pumping process

p(0) p(0)

If the two levels are removed from their steady
state, they will regain it with the equations of
motion
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Equations (2) in this scheme now read

p -- p—++ = y—(p --p++)+ ~«sV' i

p, + p, = —y(p, + p, ) + & sing,

p-, - p, - = - r(p-. - p, -) .

(3a)

(8c)

p-+ p+- 2 ~ Sn8 i ntdf;

Owing to the particular choice of the Fourier
expansions, each set of coefficients(d„], {c„],
(s„] satisfies the relation

(6c)

where A. =yb, . The ~-) and ~+) states are the energy
levels of the atomic system in the static magnetic
field. They relax, in the absence of an external
pumping mechanism, towards a state of equal
populations, with a rate y'„ the longitudinal decay
rate. Their coherence (i.e., the off-diagonal
elements) relaxes to zero with a rate y,' which may
be greater than y', . The relaxation and the pumping
process are incoherent. Then we are allowed to
add up the decay rates, and, defining

1—RM& cose(sn+x+ s„z),
(y, + in(u)c„= & sing 6, „—(u, s„

(8a)

+-n +n ~

where x„stands for d„, c„, s„. In summations
{6), even and odd components are included, since
multiphoton transitions at all orders are allowed.
The following set of equations is therefore derived:

(y, +in(u)d„=A, cosy 6„,

the equations of motion for the density-matrix
elements (including contributions from the static-
field Hamiltonian) are readily written

——,'(u, sine(s„„+s„,),
(y, + in(u)s„= (u,c„+-,'(u, sine(c„„+c„,)

+ z(uz cose(d„+q+d„z) .

(8b)

(8c)

p —p++ = cos(p —y, (p —p++ ),
p, + p, = X sing —y,(p, + p, )

—z&o(p + —p+ ),

(4a)
From this set of equations we obtain recurrence
relations for the Fourier coefficients of any den-
sity-matrix component. The simplest recurrence
relation is found for the s„coefficients

i(p —p„,) =i&cosy —iy, (p —p„)
+(u, cos8cos(ut(p, —p, ),

z(p, + p, ) = zZ sing —r (p, + p, )

(5a,)

+((u, +(u, sinecos(ut)(p, —p, ),
(5b)

z(p, p, -) = -zr, (p , --p, -)-
+((u, + (u, sinecos(ut)(p, + p, )

+ (u, cose cos(ut(p —p„), (5c)

where co, = y~H, . In order to find the solution to
systems (5), the density-matrix components are
expressed as a Fourier series

p —p =Qd„e (6a)

inar gp ++p+ =~ Cne (6b)

p + —p, = r, (p —+ —p+ )-z~.(p-++p+-), ( c)

where ~, is the frequency separation of the two
levels, i.e., ~,= y~H„and ya is the gyromagnetic
ratio. To these equations we must add the inter-
action term with the rf field. Let 0 denote the
misalignment angle of the rf field, i.e., the angle
between the direction of the rf field and the x axis
as indicated in Fig. &. Then the complete set of
equations to be solved is given by

with

P(zz) = —,
'

&u,'(sin'8E„„+cos'8E„,)D„,
Q(n) = —,

'
(u, (u, sine(E„+ E„,)D„,

S(n) = —,'(u, (u, sine(E, + E„„)D„,
T(n) = ~(u', (sin'8E„„+cos'8E„„)D„,

ft(n) =E(zz)+ T(n),

X, = (1/y, ) A.sing (u, D, ,

(10a)

(lob)

(10c)

(iod)

(10e)

(10f)

X»= ~A(u, (y, ' sing sine+ y, ' cosy cose)D„

(»g)

D„= ~ [y, +i(n&u —(u,)] '+ —,'[y, +i(zz&u+ (u, )]

E„=(y,+izz&u) ',
E„=(y,+in(u) '.

(1la)

(1lb)

(1lc)
Knowledge of the coefficients s„allows one to

evaluate, from (Ba) and (8b), the coefficients d„
and c„. Then the recurrence relation (9) is the
basic equation to be solved, and in Sec. II we shall
show how to solve it in terms of a continued frac-
tion expansion, whose terms are matrices.

P(n) s„,+ Q(n) s„,+ [1+R(n)].s„+S(n) s„+,+ T(n) s„+,
=X,6, „+X,6„,+X,5„, „(9)
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III. MATRIX CONTINUED FRACTION SOLUTION

In this section we describe the solution of.the
recurrence relation (9), with a. matrix continued
fraction expansion. The convergence and the
uniqueness of the solution will not be treated here;
a detailed discussion of these properties may be
found in Ref. 11.

Let us consider the five central equations of (9),
i.e., the equations with n=0, +1, a2. This set
forms. a linear system with nine unknowns s,
with m = 0, zl, z2, z3, +4:

P(-2)s, + Q(-2)s, + [1+R(-2)]s,

where K~ are vectors

/san -i)
)

and U~, V~, W~ are 2&&2 matrices

(17}

Z =(Z, )*.
In order to find the matrix Z, , we write the wing
equations of system (9), i.e. , those with n ~ 3,
1n a matrix form

U~„Np„+ VpN~+W~, N~, =0 (P=2, 3, . . . ),

+ S (-2)s, + T(-2)s, = 0, (12a)

P(-1)s,+ Q(-1)s,+ [1+R(-1)]s,
+S(—1)s,+T( 1)S„=—X, , (12b)

P(0)s, + Q(0)s, + [1+R(0)]s,

+S(0)s,+T(0)S,=X, , (12c)

P(1)s,+ Q(1)s, + [1+R(1)]s,
+ S(1)s,+ T(1)s,=X, , (12d)

T(2P —3) 0
U, =

S(2P —2) T(2P —2) ) '

(1+R(2P —1) S(2P —1) )
Q(2P) 1+R(2P) ) '

W
(P(2P + 1) Q(2P+ 1) )

0 P(2p+ 2) )

(18a)

(18b)

(18c)

P(2}s,+ Q(2)s, + [1+R(2)]s,
+ S(2)s, + T(2)s, = 0. (12e)

Obviously, this system has not a unique solution.
But if we handle with the other equations, the
"wing" equations, of (9), we can express the four
extra unknowns s», s, 4 in terms of sp s„sy2,
and substitute them in (12). Then the system (12)
may be readily solved, and a unique solution is
found for s„s„,s„. We proceed therefore to
express the four unknowns s», s„, in terms of
the central unknowns s„s„,s„.

First of all, we note that the wing equations of
(9), i.e. , the equations withn =+3, +4, . . . , link
together the coefficients s with the same sign of
m. Furthermore, s, does not appear in these
equations. Therefore, the coefficients s„and s, 4

are expressed as a function of s„and s „and
the coefficients s, and s, as a function of s
and s,. Owing to the linearity of the system (9),
these relations must be also be linear, i.e. ,

(13)

-3 1

IS 4) S 2)

where Z, and Z are 2&&2 matrices, which must
be deduced from the wing equations of system (9).
Actually, we need to evaluate Z, only (or, equiv-
alently, Z ), since the condition (7) implies

We must search for the relation which links N,
with N, . If we put N3= 0, then the relation is
easily found from (16):

Ã2 = —(1/V, )W, N, = Z~~3~N, (19)

where 1/V, is the inverse of the matrix V,. Sim-
ilarly, if we put N, = 0, we obtain from (16),
after some algebra,

1
V2 —U3 —W2

3

(2o)

By putting successively N3= 0, N4 —-0, N, =O, . . . ,
we obtain the succession of matrices Z+, Z+,
Z+'~, . . . , which converges, as shown in Ref. 11,
to the Z, matrix, which appears in (13). There-
fore, the continued fraction expansion for the
matrix Z, is given by

V. -U3
1

V, —&4 — W,

W2

(21)

As we have said at the beginning of this section,
we shall not prove that the expansion (21) con-
verges towards a definite limit. We only note that
the convergence of (21) is a consequence of the
fact that the five coefficients P(n), Q(n), R(n),
S (n), and T(n) tend to zero as 1/n' when n tends
to infinity. The matrix Z, may be computed as
we shall describe in Sec. IV. When Z, is known,
one can numerically solve the system (12), and
find the coefficients s0 spy sy2 In turn, know-
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coscp cos0 sing sin0Res +
rg r2

(22)

In order to gain some insight into the physical
significance of the obtained solution, we shall
discuss some special cases of the expansion (21).
We observe that, when the static field is perpen-
dicular to the rf field, the angle 6I is zero, and
the two coefficients Q(n) and S(n) vanish. Then
the matrices U&, V~, and 8'~ are diagonal, and
the matrix Z+ has a diagonal form also:

!

(8 0)
2+ =

(0 6I)

where

ledge of these coefficients, is sufficient to deter-
mine all other coefficients of interest in the
Fourier expansions. For practical purposes,
only a few Fourier coefficients are needed; i.e. ,
those which enter the analytical expression of the
monitored signal. For example, if we detect
resonances in the static magnetization along a
particular direction of the x-z plane, then the
coefficients of interest are cp and d, . When that
direction coincides with the pumping light beam
direction, as in most experiments it is made, the
analytical expression of the monitored static mag-
netization is given by

3g =d, coscP+ cp sin(P

cos'y sin'p (4Ppsp sing
+

r] Y2 r2

P(1}s,+( [1+R(1)]-T(1)8}s,= X, ,

P(2)s, + ([1+R(2)] —T(2)$}s,= 0 .

(28d)

(28e)

P(1)X,—[1+R*(1)—T*(1)ft*]X,
IP(1) I' —Il+ R(1) —T(1)& I' (29)

This result coincides with that obtained by Sten-
holm, ' although the continued fraction expansion
which is given by (29) is a contracted form of the
continued fraction expansion used by Stenholm.
In order to show the equivalence of (29) and Eq.
(22) in Stenholm's paper, we use the identity

1+R(1)—T(l)8 = 1+P(l)+ T(1)
P(3)

T(3)
P(5)

T(5)
]+« ~ «

(30)

It is seen that the system (28) splits into two
mutually independent systems, one of them in-
volving the unknowns s „s„and s„, and the
other the unknowns s, and s„. In this case,
therefore, the longitudinal and the transverse
pumpings act independently; the former creates
a coherence f(p, —p +) which has only odd Fourier
coefficients (s „s„„s»,. . . ); the latter contri-
butes only the even Fourier coefficients of
'/
z(p —p ) l.e. sp& -2& s+ 2P $4) ' ' ' ' We give
the solution to the longitudinal pumping as de-
rived from (28). We have

P(3)
T(3)P(5)1+R(3) —

~ )~~)1+R(5)—

(24)

where

(dP cosgl
2I 1+/+/* ' (31)

Then, after some algebra, Eq. (29) may be re-
written

P(4)
T(4)P(6)

1,R 6
T(6)P(8)
1+ ~

We have, therefore, from (13) and (23):

S3 = —QSi,

S4= —S2 .

(25)

(26)

I=g (d j.

P(1)
T(1)

P(3)

1 T(3)
1 + ~ ~ ~

(32)

(33)

With these relations and their complex conjugates
we are now able to solve the system (12), which
takes the form

The continued fraction Q is simply related with
the continued fraction expansion 2 used by Sten-
holm, namely,

P(0)s, + [1+R(0)]s,+ (0T)s, = , ,X (28c)

(-P(-2}$*+[1+R(-2)]}s2+ T(-2)so= 0, (28a)

(-P(-1)8*+[1+R(-1)]}s,+ T(-1)s, =X, ,

(28b)

Z = (y, /I)Re/ . (34)

From (31) and (34), Eq. (22) of Stenholm's paper
follows immediately. A similar calculation shows
that the coefficient s, as evaluated from (28) and
(25) is identical with the expression (20) given in
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the paper by Stenholm and Aminoff. 4

When both longitudinal and transverse yumpings
are present, the odd and even coefficients s„may
be evaluated from (28). Owing to the absence of
any interference effect between these two sets of
coefficients, the values of s, and s, which enter
the signal expression (22) are mutually indepen-
dent. Therefore, a misalignment of the pump
beam from the directions of the s axis or the x
axis may be treated with a simple superposition
of the two cases discussed above.

The situation changes appreciably when a mis-
alignment of the rf field is introduced. In this
case, the matrices Z, and Z are not diagonal,
since the interference terms Q(n) and S(n) are now

different from zero. On the other hand, the cou-
pling terms P(n), R(n), and T(n) are little affected
by the rf field misalignment when y, = y, (if y, = y„
these terms are completely independent of 8).
Therefore, the off-diagonal terms Q(n) and S(n)
bring any misalignment effect into the shapes of
the resonance curves. As an example, let us con-
sider the solution for the coefficient s, at the
lowest order in ~y This is given by

X, —[S(0)X,+ c.c.]
1+R(0) —[S(0)Q(1) + c.c.]

(35)

IV. DISCUSSION ON SOME SPECIAL CASES

The solution presented in Sec. III allows one
to compute numerically the resonance line shape
in any experiment with arbitrary orientations of
the rf field and the pumping light beam. Before
discussing some cases of interest, we give some
details about the numerical evaluation of the ma-
trix continued fraction expansion.

If the pump beam is perpendicular to the static
field, and the rf field is not directed along the x
axis (84 0, m), the source terms X, and X„, to-
gether with the off-diagonal elements S(0) and

Q(l), are different from zero. Furthermore,
both X, and Q(1) are resonant at &u-&u, . There-
fore, a one-photon transition appears in s„giving
raise to a resonance at ~= (d, . This resonance
appears just when 8 is different from zero, i.e. ,
it is produced by the misalignment of the rf field.
When 0 approaches &r, this resonance becomes
the parametric resonance, as found by Aleksandrov
et al."and Favre and Geneux. ' At high values of
the rf field intensity, these resonances are broad-
ened by the rf field power, and one cannot find
simple expressions like (35) for the Fourier co-
efficients: in this case, the matrix continued
fraction expansion must be evaluated until con-
vergence is achieved. A few examples of these
misalignment resonances will be shown in Sec. IV.

A. Numerical computation

In order to evaluate s, and s„ i.e., the Fourier
coeffi.cients which enter the expression (22) for
the monitored signal, we need to compute the
matrix Z, ; then, using Eq. (13) and its complex
conjugate, we express s„,s~, in terms of s», s»,
substitute them into system (12) and solve it.
This latter step does not need any elucidation,
being a standard calculation. The matrix Z, has
been computed with N and X+1 stages. If the
moduli of the matrix elements of Z, do not change
more than 10 ' when passing from% to%+1
stages, then the matrix continued fraction is
truncated, and its value is assumed to coincide
with the (N+1)th order calculation. Otherwise,
a further step is included in the calculation, and
comparison is made between the (N+ 1)th and the
(N+ 2)th order calculations. The number of re-
quired stages to achieve convergence increases
when increasing the rf field intensity, or when the
static magnetic field is close to a resonance. In
our calculations, 10-15 stages are required when
the rf field intensity (d, was 2-3 times ~, the os-
cillating field frequency. For a comparison, let
us note that the number of stages required in our
calculations is one-half the number of stages used
in evaluating the Stenholm's continued fraction,
since our expansion is a contracted (i.e. , more
rapidly convergent) form.

8. Static magnetization line shape

In most experiments, where the rf field is lin-
early polarized, the axis of polarization is chosen
to be parallel or perpendicular to the static mag-
netic field. In the former case, usually referred
to as parametric resonance, a transverse mag-
netization is created whenever ~, =n&u (n integer,
odd or even) if the pump beam is propagating
transversally to the static magnetic field. The
parametric resonances are neither broadened nor
shifted by the rf field. In the other case, i.e. ,
when the axis of rf field polarization is perpendicu-
lar to the static field, longitudinal and transverse
resonances occur. Let us briefly review their
properties. In a longitudinal-resonance experi-
ment, the pumping light beam is directed along
the static field, and creates a static magnetiza-
tion in that direction. In turn, the rf field at
resonance tends to equalize the level populations,
thus destroying the static magnetization. There-
fore, dips in the line shape of the longitudinal
magnetization are observed at &u=n&u, (n odd).
These dips become broader and shift towards
zero static field when increasing the rf field in-
tensity. On the other, in a transverse resonance
experiment, a static magnetization is created
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10--
8 =go'

0--
0.9

8 =24'

FIG. 2. Transverse static magnetization for a trans-
verse pumping, radio-frequency field amplitude cu&

= 0.32cu and different misalignment angles as function
of the static field ne@r the one-quantum resonance
value.

by a light beam propagating orthogonally to the
static field direction. In this case, peaked reso-
nances in the transverse magnetization occur when
&u =no&, (g even), but their linewidths are little
affected by rf field power. The transverse reso-
nances, as the longitudinal ones, are shifted when
the rf field is increased. It has been shown in
Sec. III that for 8= 0, the longitudinal and trans-
verse pumpings aet independently upon the spin
system in inducing longitudinal and transverse
static magnetization, respectively. Therefore,
if the light beam produces both types of pumpings,
the longitudinal and transverse resonances appear
independently in the static magnetization parallel
or orthogonal to the static field.

If a misalignment of the rf field from 8 =0
direction is introduced, the situation changes
appreciably. In this case, the off-diagonal ele-
ments of the matrix Z, [Eq. (21)] couple the two
phenomena and new resonances appear, as dis-
cussed previously. Moreover, the source terms
of system (12) are changed: the X, and X, terms
are proportional to the components perpendicular
to the static field and to the rf field, respectively.
As an example of the phenomena occurring, the
static magnetization along the pump beam direc-
tion is represented in Figs. 2 and 3 as a function
of the static field. The pumping light beam is
directed along the x axis, i.e. , transversally to
the static field, and the rf field orientation is
changed from 8=0 to 8=90 . In these figures the
lineshapes for one- and two-quantum resonances,
respectively, are reported for a rf field intensity
cu, /~=0. 32. At 8=0', only a two-quantum trans-
verse resonance can be observed, with a very
small broadening over the natural linewidth. For

a. u.

8= 90

0--

2--
g= 53'

0--

8= 24

0--
0=0

2--

0— I

1.95

FIG. 3. Transverse static magnetization near the two-
quantum resonance value for the same parameters as in
Fig. 2. The arbitrary unit of the y axis is 1000 times
smaller than in Fig. 2.

8= 90', parametric resonances appear for both
one- and two-quantum transitions with the natural
linewidth. For an intermediate rf field orientation
resonances appear with a comparable intensity.
Their line shape is a combination of absorption and
dispersion part. We have also found that the line
shape at strong rf power is mainly determined by
the dispersion component. The resonance lines
suffer rf power broadening and shift as a function
of the rf field component orthogonal to the static
field. Resonances for a transverse pumping and
rf field arbitrarily oriented in the space have been
observed by Aleksandrov et al. ,

"but not enough
data have been reported to make a comparison
with the present theoretical results.

For afixed value of 8, butdifferent from zero, the
off-diagonal terms of the Z, matrix have their
strongest influence when the light beam is di-
rected along the rf field, if y, = y, . In this case,
the source terms in the right-hand side of Eqs.
(12b) and (12d) vanish. Furthermore, the moni-
tored signal of expression (22) depends upon the
sp component only. When 8 = 4 5 ' and the pumping
beam is directed along the rf field, we have found
dips in the line shape for all the resonances, with
a large asymmetric component at strong rf field
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power. This is not surprising, since all the
phenomena, for arbitrary orientation of the pump-
ing beam, are masked by the presence of strong
longitudinal resonances. In fact, Stenholm has
shown that, for a pure transverse rf field, the
longitudinal resonances exceed the transverse
resonances by a factor ~,'/y, '. In our analysis the
resonance phenomena shown in Fig. 3 are of the
same strength as the transverse resonances.
Therefore they are completely masked by the
longitudinal ones, when the pumping beam deviates
appreciably from the x-axis direction. Thus, if
the longitudinal and transverse pumpings have a
comparable intensity, the dips created in the line
shape by the longitudinal resonances dominate
over the resonance signals due to the transverse
pumping.

C. Resonance shift

Large attention, from the theoretical and ex-
perimental points of view, has been devoted to the
shifts of longitudinal and transverse resonances as
a function of the rf field intensity (see Ref. 14
and references therein). For longitudinal pumping
and rf field orthogonal to the static one, the well-
known Bloch-Siegert shift is obtained: the static
field at which resonance occurs (at a given fre-
quency of the oscillating field) shifts towards the
zero value when increasing the rf power. Mea-
surements of the shift for the one- and three-
quantum transitions have been performed by
Arimondo and Moruzzi, "over a wide range of rf
field intensities. The experimental results were
compared with the continued fraction solution of
Stenho1m.

In Fig. 4 the dashed line represents the result
of Stenholm's theory: the experimental points are
also reported. 'The rf amplitude co, has been consid-
ered up to the value when the one-quantum transition
disappears. ' This value is the smallest root of
the equation J,(&u,/~) = 0, where 8, is the zeroth-
order Bessel function.

The influence of the rf field misalignment on the
Bloch-Siegert shift has been investigated by Pegg'
in the ease of small rf field intensities y~H, « ~.
Through the continued fraction solution the shift
may be derived for any value of the rf field: if
the angle between rf field and x-axis directions
differs from zero by a few degrees, the deviations
from the Stenholm's curve cannot be reported on
the scale of Fig. 4. Also the competition of longi-
tudinal and transverse resonances when the light
beam is arbitrarily directed, but with the rf field
orthogonal to the static one, does not produce any
appreciable change of the Stenholm result: except
for a very large misalignment of the light beam,

FIG. 4. Bloch-Siegert shift of the one-quantum re-
sonance as a function of the radio-frequency field inten-
sity. Shift without misalignment in the dashed line;
8=2 and y=ll or —ll' in the upper or lower chain
line, respectively. Shift in the presence of a static
stray field in the continuous line.

the transverse resonances are not intense, and
their effect on the line shape is negligible.

When both misalignments of rf field and pump
beam are present, the deviation from the Bloch-
Siegert shift as predicted by Stenholm's theory
becomes large, even if introducing only one type
of misalignment it was negligible. The chain lines
in Fig. 4 represent the behavior for a rf field
making an angle 8=2'with the x axis, and for the
pumping beam making angles y =+ 11 or -11 with
the static field. Very different results are ob-
tained in the two cases, with an increase in the
shift if 8 and y have the same sign, or a decrease
if the signs are opposite. In the strong rf field
region (yGH, » 2.4&v), where the theoretical curves
have not been reported because of the presence
of the zero-field transverse resonance, the occur-
ing phenomena are completely different from the
Stenholm's case.

In the experiment of Arimondo and Moruzzi, "
at low rf power a dip was observed around zero
static field, related with the presence of a small
static stray field perpendicular to the static one
which was swept over the resonance values. The
phenomenon has been described as a magnetic
resonance transition at zero frequency. ' More-
over, a check of the rf field misalignment was
carried out by observing the intensity of the two-
quantum transtion dip. The measurements were
performed when that dip was not present in the
line shape, indicating that the rf field was well
perpendicular to the static field.

It is possible to reproduce theoretically the zero-
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frequency signal and the absence of the two-
quantum dip in the line shape, by supposing that
the static field experienced by the spin system is
made up of two parts: the applied static field, in
the z-axis direction, and a stray constant field
along the x axis. The absence of the two-quantum
resonance indicates therefore that the rf field is
perpendicular to the direction of the total static
field, when the value of the latter one is close to
the two-quantum resonance.

The continuous line in Fig. 4 represents the
resulting shift for a stray field y~H $ y 0 140,
and for 8=4.5 (misalignment of the rf field);
y = ll (angle between the pumping light and the
s axis). The double bend shape observed in the
theoretical curve at strong rf fields is related to
the overlap of the zero-field signal and the zero-
field transverse resonance with the one-quantum
transition. If one chooses these misalignment
parameters, the agreement with the experimental
data are impressive, far more as some unpub-
lished details of the line shape observed in the
experiment by Arimondo and Moruzzi" may be ex-
plained. As confirmed by the theory, at very
strong rf field the dip observed at zero static field
is transformed into a transverse resonance peak.
The amplitude of the stray field introduced in the
theoretical analysis determines the width of the
zero-frequency signal and turns out to be larger
than that observed in the experiment. But, if one
considers that only two-dimensional misalign-
ments have been introduced in the theoretical
analysis, the obtained fit must be considered as
completely satisfactory.

V. CONCLUSIONS

The resonance phenomena occurring in a Zee-
man-split spin- —,

' system interacting with a strong
rf field have been investigated for the case in
which the static magnetic field, the rf field, and
the pumping beams directions are arbitrarily
oriented in a plane. The Fourier components
of the density matrix are determined by the solu-
tion to an infinite set of coupled linear in-
homogeneous equations. By limiting attention
to the lowest-order terms, a finite set of equations
results in which the inhomogeneous terms include
contributions from the longitudinal and transverse
pumping action. A matrix continued-fraction solu-
tion is found which takes into account the rf mis-
alignment.

The solution may be simply extended to the case
of a light beam directed out of the plane defined by
the static and rf fields. With such an extension the
inhomogeneous terms in the equation for the
Fourier components of the density matrix would
include contributions from the pumping beam action
along all three axes.

Numerical calculations for the static magnetiza-
tion line shape have been given for a few cases
investigated experimentally. The influence of the
light beam and rf field misalignments on the
resonance intensities and shifts has been worked
out.
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