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The problem of resonance fluorescence from a two-level atom that is driven near resonance by a laser beam of
finite bandwidth is tackled via the Heisenberg equations of motion, by a simple generalization of our previous
treatment. It is found that the two-time intensity correlation function is again factorizable into a product of
the mean light intensities at the two times, each of which is slightly modified under broad-band excitation
from its value under monochromatic excitation. The spectrum of the fluorescence is affected rather more
drastically, and, in general, becomes asymmetric under broad-band excitation.

I. INTRODUCTION

Partly because of the development of the tunable
dye laser, and the opportunity it provides for ex-
citing resonant atomic transitions, the theory of
resonance fluorescence has recently received a
great deal of attention. ' In most treatments the
exciting field has been regarded as strictly mono-
chromatic, and its quantum state has generally
been taken to be a coherent state. We have recent-
ly obtained solutions for the growth of the fluor-
escent light intensity, for the spectral distribution,
and for the intensity correlation function in the
presence of such a monochromatic, coherent ex-
citing field."Although the monochromatic ap-
proximation is often entirely adequate to describe
a laser field, there are circumstances when the
bandwidth of the exciting field cannot be neglected,
for example when very high resolution measure-
ments are carried out. '

In the following we show how various results
relating to atomic resonance fluorescence in the
presence of a laser beam of finite bandwidth can
readily be extracted from our previous treatment, '
with minor modification. We model the laser field
as being in a coherent state, but with a phase that
performs a random walk. We recalculate various
quantities of interest and subsequently average over
the ensemble of phases. When the atom is driven
near resonance, we find, as before, that the
growth of the fluorescent light intensity and the
two-time intensity correlation function are gov-
erned by similar integral equations with the same
kernel. The time development of the fluorescence
is modified somewhat by the finite bandwidth ex-
citation, but the intensity correlation at times t
and t+q- is again reducible to the product of the
mean light intensities at times t and t+g (see also
Agarwal'). However, the kernel of the integral
equation describing the amplitude correlation func-
tion, whose Fourier transform gives the spectral
density of the fluorescence, is different from the

other kernels, and in general yields an asym-
metric spectrum. The effect of a finite bandwidth
driving field on the spectrum is therefore much
more drastic than on the other features of reso-
nance fluorescence. Although some of the effects
of finite bandwidth excitation have very recently
been discussed, "these conclusions appear to be
new. They are illustrated graphically for various
values of the laser bandwidth.

II. TIME DEVELOPMENT OF THE LIGHT INTENSITY

We consider the resonance fluorescence of a
two-level atom, of level spacing 0(d, located at
the origin r =0, in the presence of the exciting
field of a laser whose spectrum is centered at
frequency ~,. Our treatment is based on the
solution of the Heisenberg equations of motion,
and closely follows the approach that we used
previously in Ref. 3. The atom is initially in
some arbitrary, known state, and we suppose
that the inter action is turned on at time t = 0. The
slowly varying atomic variables' b, (t), b, (f) are
related to the usual atomic lowering and raising
operators b(t), bt(t) by

b, (t)-=b(t)e' o', b, (t)=-bt(f)e ' (l)

and the slowly varying free-field operator A(+) (r, f)
is related to the positive frequency part of the
free-field vector potential A(„'),(r, f) by

A,+ ( r, t) = A,+,( r, t) e' (2)

We shall take the eigenvalue of A( (0, f) in the
coherent state

~ (v)& of the field to be given by

A( ) (O, f) ~ (~] &
= V(t) ~ (v) &,

with

y(f) eeei(&Q iQ—i )i ei 4 (i)-

where & is a unit polarization vector, 6 is a real
amplitude, and P(t) a real phase. Whereas the
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phase g(t) was treated as a constant in Ref. 3,
we now suppose that it performs in effect a ran-
dom walk about zero, and we subsequently aver-
age over the phase ensemble, for which we in-
troduce the symbol « )&. As has been shown, ' the
positive frequency part of the fluorescent field
produced by the atom at some point r in the far-
field is proportional to b, (t), through the relation

-"(,) (- )
&do' t& ( p, ~ r) r

4m' g2 r

x b, (t r/c-) e ' o ' " ' + E,„',( r, t),
(4)

where p. is the transition dipole moment. The
mean fluorescent light intensity at points not ex-

posed to the exciting beam is therefore given by

(«E (r, t +x/c) E(+ (r, t+x/c)»&

) (((&R,())&+!&&),
0

(t&0), (6)

where P is the angle between the p, and r vectors.
&([&R,(t)) +—,']&) is therefore proportional to the ex-
pected light intensity in the present case.

In Ref. 3 the Heisenberg equations of motion
for the atomic and field operators were derived
and integrated to yield the following two integral
equations:

7'

b, (t+r) =b, (t)e ")'"+
~ dt'R, (t+t') p ~ A+ (O, t+t')e8 ')' '

40
(6)

T

R,(t+v)+ —,
' =[R3(t)+—,']e ' ' — dt' [b,~(t+t') p, ~ A,+ (O, t+t')+H. c.]e~

0

Here p is half the EinsteinA coefficient and r is the Lamb shift. These two equations can be combined
into one if we substitute for b, (t) and 5 (t) in Eq. (7) from Eq. (6). On taking expectation values, with the
assumption that the initial state of the field is the coherent state with eigenvalue given by Eq. (3), and then
averaging over the ensemble of phases, we find

t
«[&R,(t)&+-,]» = &([&R,(o)&+-,'])&e '" ,'Qe ' -' -dt'[«&b, (0t)& e'~"'&& e " '"'+c.c.]

0

t
1 g2 -28t dye e6(1-ie)t'
2

0

t'
d)"e))+;e) "((()( () )) ei))'()')-)'()")))) +), ), )

The parameter Q is the Rabi frequency' given by

0=—2p, ~ e ar, 8/@, (9a)

and 6I is a dimensionless detuning parameter

0 = (r + ~, -&d. )/P . — (9b)

If the ensemble averages under the integrals in
Eq. (8) could be factorized, so that

(&(R.(t")».*""'-'"""
&

—« &R (Pi)»& «e((4(&')-4 (&")l»

(t'~t"), (ll)
then Eq (8) would r.educe to an integral equation

&(&b,'(o)) e""'» = « &b, (o) &
e"'"» «e'""' ""'»,

(t' ~ 0), (10)

for ((&R,(t)&)) as in Refs. 2 or 3. Fortunately these
factorizations are entirely plausible, as &II)(t') —(t)(0)
and &p(t') —&I&(t") are the changes of the randomly
walking phase subsequent to the times 0 and t",
respectively, and the atomic variables are inde-
pendent of phase changes occurring at subsequent
times. As is usual for the random walk problem,
we shall take the characteristic function of the
phase change to be given by'

«e((q& (t ') 4(~ ")]x&)- (12)

where 1/)(, is the diffusion time, or )(. is the effec-
tive bandwidth of the laser beam.

With the help of Eqs. (10)-(12), Eq. (8) then
reduces to the form of a Volterra-type integral
equation of the form

«(&.()»&) =))&()+f d)'Ic(t-)')«(R()')»&, ,
0

(13)
in which
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-(B+Z+ f Be) t &-2 B fe+-"))e '" --'n(&((iit(o)) e"'"))
~ ~,.p~

y(t) =- --."«[«.(o
—0' e i '~ [(1-)t/p) cosp8v+8sinp8v8g, —,1 —)). ) e

P [(1-~/P)'+ 8']

+ c.c. (14)

(15)

yP
efore, ' and we

—,'0'(1+))./P) 1 g +;;' ' e ~

«[&" (')) -'])&= 0(l,X/p), (P,X),p
8-- 2, , p

[(P +)t+P, )2+P' 8'] e"
+ «[&lt,(o)&+e]» Q (p p') (p p )f=1

f &j&k
Pff(P+)). +p; -iP8) e i

f=1
f Aj&AI

(P +X +P; +IP8) e i'
-l~&&$.(o)&e ' '"&& Q ( )( )f=l

f ~j&k

ual of the cubic equationts (assumed to be unequal) oare the three roo s a ual o

2 0

where pit p27 p3

+ '8'+0' p+2 (P+)))'+2P'8'+(P+)t) 0 =p'+(4P+»)p"[(P ~)(5P ~) p'8"fl' p. 2

orm in Ref. 3 for monochromatic excitation. Ine functions are very similar in orm
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and with the help of Eq. (4) together with the commutation relation1'

[b,(t), E(;„),( r, t +y)] = 0, for r & v/c,

this can be written

sinr'*"(r,tr)=, ( (' ", l([(bJ(t-r/c)j(( -Cr c/r)c(i(C ,r/ )-) c'Or(, (C r/c))+-,'—]&).
0

(20)

In order to calculate I' '@(r, t, z) we therefore
need to determine the average over the phase
ensemble of the correlation function

X(t, i) -=(I,t(t)R,(t+i) f, (t)& . (21)

As before, ' it is convenient to define another
function F(t, T) by

&(t, ~) = (b,'(t)-I,'(t+7) t, (t)&

X ef 4 (t+r) e~(M0-&y)(t+r)

With the help of the commutation relations (19),
with the proviso 7 ~0, we then have by direct
multiplication from Eq. (7),

((~(t,.) &&
= - -:(( [&R.(t) & + -.']&&

20 dt' 5 t, t +C.C. e28(t -r)
0

(23)

and from Eq. (6)

is((r))) =o I c(c'((,cc(c r)c"c""c""""))

X ~('+'e)('-r)e (24)

As the phase change during the time interval t+t'
to t+7, which follows time t+t', is expected to be
uncorrelated with the atomic variables at earlier
times, we again factorize the average of the pro-
duct with the help of Eq. (12),

((~(t t() ei[o) (t+(') -c8(t+ ir))
&&

((3(r(t t/)» ((ci(0(i+i') -([i(i+i')1»

=((Z(t, t'))) e ~ ' 0&t'&T) (25)

and then substitute in Eq. (24), to obtain

pr
(8+),+ i Se)( i')--

0

(26)

If we now write the expression for (( 6/(t, y) »
given by Eq. (26) in Eq. (23), we arrive at the
following integral equation for ((R(t, 7)», exactly
as in Ref. 3,

where K(7) is the integral kernel that was already
encountered in Eqs. (13) and (15). The inhomo-
geneous term ——,'« [(R,(t)) + —,']&) exceeds the in-
homogeneous term y(t) given by Eq. (14) by the
factor (( [(A,(t) & + —,']&) in the special case in which
the atom starts in the lower or ground state at
time t =0. We may therefore make use of the
previously found solution to the integral equation
(13) to write down the solution to Eq. (27), viz.

&«(t,.)» = « [«.(t) & +-.']» « «.(.)». &, (28)

where the suffix G refers to the fact that the in-
itial atomic state is taken to be the ground state.
From Eqs. (19) and (28) we then have, for q-&0,

r" (c,ccrc/ ,c)r= (
—' ", i([(R,(O)+-'. ]&)

0

x« [&R,(~)&, +-.']&& . (29)

IV. SPECTRAL DENSITY OF THE FLUORESCENCE

From Eq. (4) the two-time amplitude correlation
function of the fluorescent light at some point r in
the far-field of the atom outside the laser beam is
given by

« &
&' ' (, t) ~ &"( r, t +~)& &&

Apart from the appearance of the ensemble aver-
ages, Eq. (29) is formally identical with the corre-
sponding result found in Ref. 3 for monochromatic
excitation, and its interpretation is similar also.
The t-dependent factor gives the probability for the
emission of a photon at time t following the turn-
on of the interaction, after which the atom re-
turns to the lower state, and the y-dependent fac-
tor gives the subsequent emission probability v

seconds later. The effect of the finite bandwidth
is merely to modify the light intensity, as ex-
pressed by the factors (( [(R,(t) & +-,']&) and

(([(R,(7)&e +-,']». Figure 1 therefore shows the
effect of broadening the bandwidth of the exciting
field on both the t dependence and the y dependence
of the intensity correlation function F"(r, t+ r/c, r)

««(t ~)&& =- l& [&R,(t)) +-.']&&

+ Jl
dt'R'(7 -t')((~(t, t )&&,

0
(27)

e
(do ]1 sin[[)

4&e0C2r

~(((5,'(t -~/c) t, (t -~/c+~)&)&, (30)
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It(t, T)-=&b,t(t)R, (t+T}&e'2 "' e' "o (31c)

We then find with the help of Eq. (19) from Eqs.
(6) and (7), by direct multiplication, with the
proviso y ~0,

((g(t, 2.)» = « [&R,(t)) +-.']» e '" *'"'

+0 dt' h t, t' e
0

(32}

((f&e e))) =2 f Se «)e(e e )e*"'""'e"""))
0

8(l+ S8)(t'- 7)

«h(t, ~}&& =--,'&&&b,'(t)& e'e«"
&&

e" '
7

—
2 0 J~ dt' [((f (t, t') +«g(t, t')]

0

X et[@ t+(' -e t+ t' ] )) e2t) t

(34)

In order to solve these equations for &(g(t, v}» we
first observe that, as the time interval I;+t' to
t+T follows t+t'(t' 2.~}, we may factorize the cor-
relation functions under the integral in Eqs. (33)

and the spectral density in the steady state is just
the Fourier transform of («E (r, t) ~ E ' (r, t +2&))

with respect to g. We therefore proceed to de-
termine ((&5 t(t}5,(t+7)))) from the equations of
motion (6) and (7), as in Ref. 3.

We define the following correlation functions,
which are generalizations of ones introduced by
Muon i":
g(t, 2.) -=&5,t(t) b, (t + 2.)&

e' (31a)

f (t y}= &b~(t) b t(t +2)) e ie«+') e«~o ~1)(2t+") (3]b)

((g(t t() et[a(t+t') -e(t+t')]))

=(&g(t t')&) «e'""" '""'"»
(&g(t te})) e-2. ( t')-

tt) i[0(t+t') -e(t+t')] »

((f (t t()» e-1.()' t) e-tl (+ (36)

after making use of Eq. (12) for the characteristic
function of the phase change. Equations (33) and

(34) then simplify to

r7

((f(t 7)&) = 0 dt'((h(t, t')&) e ( '
"0

(37)

«h(t, )» =- l«&b,'(t)& e'e«" » '"o

——,'Q dt' I;, I," + g t, I"
0

x -('8+~)('-")Xg (38)

The solution for (([(R,(t)) +-,'])), which is needed
in Eq. (32), has already been obtained and is given
by Eq. (16). To determine «&b,~(t)& exp[i(j)(t+2.)]&&,

which is needed in Eq. (38), we make use of Eq.
(6) with t-0 and v-t and take expectation values.
We then find

and (34) as before, and write

«h(t t)) 2i[&t(t+T) -4{t+te)]))

((h (t t() » «e2 i[&i
(t+) ) ete(-t+ te)]

)&

«h(t t(}))e-4 )(&r t-)ete ~ + (35)

(((b t(t}&

etc�

(t+)')
)) et((e)O-&e)1) t «&b t(0}&

etc�

(0) et [e(e(t+)') -t)(O)] » e-8(1+ie) t

+ [I dt( (( (R (t() &
et[&(e (t+t') - t(t ')(])» et)(1+ ie)(t e t)-

0

and, with the help of the factorizations (10}and (ll), this simplifies to

«(t (e)) e' "'
)) e'" ' =(((b (0))e' )) e + '' 'e 'eOe ' f d('(((R (e')))) e

0

(39)

(40)

with(((R, (t'))&) given by Eq. (16). Hence every function other than«g(t, 2})), «f(t, r)», «h(t, v})) in Eqs.
(32), (37), and (38) is known once («R,(t)) &) has been determined from Eq. (16), and we merely have to
solve these three simultaneous equations as in Ref. 3 in order to obtain the required correlation function

«g(t, .}».
The equations can be solved by Laplace transform techniques. Alternatively, we may observe that ad-

dition of Eqs. (32) and (37), with the substitution for ((h (t, w}» from Eq. (38), immediately leads to an in-
tegral equation for the sum ((f (t, 2.}&) + ((g(t, v}», of the form

«f (t, 2.)»+ ((g(t, 2.)» =e(t, 2)+ «'](f(~ —t') [((f(t, t')&) + «g(t, t'))&],
"0
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with

g-~8+~~+ ~ 8 e)7 e —~7 8 8(& & e)&
~ (f +) &( [&It (f)& &]» e-8(1-io)& one-(8+1+ i 89)t +

P + 3K+ iP0 P —A. —iP0

e&4 (0) + g dt's g tI (8+k+ ~8e) t'
(42)

and kernel

nk e-(8+44+ i 6 8)& (28+k) 7' e-S(x-i e) & -(2~+k)7'

2 P —S. iP-0 P +A, +iP0
(43)

The solution can therefore be written down as before, and substitution in Eq. (38) yields «h(t, 7)», from
which «g(t, r)» follows from Eq. (32). We note that the kernel M(~) is complex and differs significantly
from the one we encountered in Eq. (15), although they become identical in the limit of monochromatic ex-
citation, when A. =0. The two-time amplitude correlation of the field therefore reflects some features that
are not present in the behavior of the light intensity. %e shall see that the complex nature of the kernel
is reflected in an asymmetry in the spectrum of the fluorescence.

After straightforward but somewhat tedious manipulation of terms, we arrive at the following general
solution for «g(t, ~)&&:

« («)» = ' '
«&f '(f)& e'~"'&& e" o

3 PgT

+ Q ~ (&&[&ft,(f)&+-,']&& (P, +X)[(P, +2P X)'(P, +P+ X+iP0) ,'n']-
pi + pi pj pi pk

—l n(P'+2p+l ) (P~+p+4~+ip0) &&&h.'(f)& e""'&&e*'"

(~ ~ 0) (44)

in which the f-dependent terms are given by Eqs. (16) and (40), C(P) is the third-order polynomial defined
by

C(P) =P'+P [4P+ 5A]+P [5P'+P'0'+ n2+X(14P +4K —4iP8)]

+2P +Pn +2P'0 +A(9P'+2n'+4AP+P 8'-8iP'8 —4iPX0),

and p„p„p, are the three roots (assumed to be unequal) of the cubic equation

C(p) =0.

(45)

(46)

It is worth noting that this complex equation again differs from the real cubic Eq. (17) that we encountered
in connection with the problem of determining the time development of the light intensity. Although both
reduce to the same well-known equation' ' when A. = 0, the effect of finite bandwidth excitation is clearly
more pronounced on the correlation function «g(t, r)» than on the light intensity.

As time t-~, the t-dependent terms in Eq. (44) become t-independent, and we find from Eqs. (16) and
(40) that they are given by

—.'n'/p'

, ~(„,l, (~ ~ ), ——,'(n/P) (I+X/P -i0) e ~'

,
" """"" ' """"=[-:(n/p )(1"/p).(1"/p)"0]. (46)

Hence the atomic correlation function ((g(t, v)» reaches the steady-state form, as t-~,
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—,'n'/p'
—,'(n'/P') (1+X/P) + (1+~/P)'+ 8'

(P+ n. +iP8) (P+X -iP8) e-"
(P + 3X+iP8) (P —A. -iP8) + —,

' Q2(1+X/P)

(p;+2P) —(~/P) (p; —3P+~) —(2X/Pn') (p;+P+4X+iP8) (p;+2P+X)'
(P;+~) (P; -f;) (f; P. )-

(~ ~ o) . (49)

If we take the Fourier transform with respect to v of the correlation function &(E (r, t) E ' (r, t+1))))
in the long-time limit, we arrive at the spectral distribution 42(r, a&) of the fluorescent light at position r.
Thus from Eqs. (30) and (49), we obtain

00

@(r,u&) = dvlim(«E~ (r, t) ~ E+ (r, t +1)&)) e' '+c.c.
0 $~00

(4po i1 sing «[«g(, ~))) e"" "'+c c ]47J'f 0 Q

(do p, slllg 2 Q /p
4we, c'~ —,'(l2*/P*) ((+2/P)+((+4/P)'+4' )

—,'(P+ N. +iP8) (P+X -iP8) 1

[(P + 3X+iP 8) (P -X - iP8) + -,' Q'(I+ X/P)] [i+i((u, —(u)]

(P; +2P) —(2/P) (P; —22 +4) —(22/Pll )(P;+2'+ 42+ipp) ( +P2 + P)'2)
(P; + ~) (P; -P;) (P; -P. ) [-P; + (~ - ~)]

i&j&k

(50)

The interpretation of this spectral density follows the same lines as for monochromatic excitation. The
first term on the right of Eq. (50) corresponds to elastically scattered light, whose bandwidth largely re-
flects the spectral width A, of the driving field. However, off resonance, when 8 10, even this contribution
to the spectral density contains an asymmetric component, that vanishes when 8 = 0 or X-0. In the mono-
chromatic limit X-0 the term becomes proportional to 5(e —v, ).

The remaining three terms represent the atomic fluorescence, and they contribute peaks that are centered
at frequencies determined by the three roots p„p„p, of the cubic equation (46). These spectral contribu-
tions are again asymmetric in frequency off resonance, when L940, but become symmetric on resonance.

To illustrate the analytic structure of the spectral distribution (50) in the simplest cases, we consider
the strong-field limit Q»p, l). on resonance, when 8 =0. We readily find that the three roots of the cubic
equation (46) are then approximately given by

P2= —(P+2/))2 P2= —~(P+X)+1np P2= —~(P+X) -1Q
2

and the spectral density reduces to

&u20 p, sinter ' 2P (P + 3A.)
4m&, c'~ n'(1+ x/p) [x'+ ((o —(u, )']

—,'(P + 2~) -', (P + X) -', (P + X)

(i)+ 22)'+ ((a —(o, )' —,'( ll +2)'+ ((a —(a, + i2)' —', (2 + 2)'+ (~ —(a, —i2)' ) '

(51)

As in the case of monochromatic excitation, there are peaks in the spectrum centered at the driving fre-
quency ~„one of which is associated with elastic scattering, and at the Stark-shifted frequencies coy Q.
For the inelastic components, the ratio of the width of the central peak to the side peaks is 2(P+2X)/3(P+X)
and the ratio of the height of the central peak to the side peaks is 3(p+A, )/(p+2A). These reduce to the well
known ratios 2:3 and 3:1, respectively, under monochromatic excitation, but to the ratios 4:3 and 3:2 in

the limit of wide band excitation X»P. Similar conclusions were also recently reached by Eberly' and
Agarwal' from other arguments.

Perhaps the most interesting aspects of the spectral distribution (50) relate to its asymmetries off-
resonance (8220), because these features are not encountered at all under monochromatic excitation, "
and appear never to have been investigated before. For purposes of numerical computation, it is some-
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(
w ii sing —' ii iP
eeoc'x (—,'0'/P') (1+A/P)+(1+X/P)'+8'

1

what more convenient to rewrite E . '50
b Mollo

i e q. ( 0) in a form that is mor
xci a con. If we re lace

m a was first iv

plane, we can transform E . '50'
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where C(p) is the polynomial defined b E . (45).
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Q, =jop
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FIG. 3. Spectrum
4'()(4&&0& &) /(Op sinjI')
of the fluorescence radiated
by a driven atom in the
steady state, for various
values of the excitation
bandwidth ~, with Babi fre-
quency ~ =10P, and no de-
tuning (9 = 0) .
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tuning 8 on the spectrum, for a fixed, but modest,
excitation bandwidth X = 0.5P. The asymmetry in-
creases with 8, and of the two side peaks produced
by Stark splitting, only the one closest to the atom-
ic frequency survives for large detuning. The
peak centered at the driving frequency &, shows

an interesting behavior, in that it reaches a maxi-
mum height for a certain detuning 6I, and rapidly
declines thereafter.

Somewhat similar effects appear to an exagger-
ated extent in Fig. 6, in which we have taken the
exciting field to be very strong (0 = 100P), with a

0 =jop
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FIG. 4. Spectrum
(~)(4@go ~2~)2/(~20' Sing)2

of the fluorescence radi-
ated by a driven atom in
the steady state, for var-
ious values of the excita-
tion bandwidth A, , with Babi
frequency ~ =10P, and de-
tuning 8 =-3.
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1ight intensity, its intensity correlation function
and its spectral density. But whereas the effect
is relatively small in the first two cases, it can
become substantial and quite dramatic in the last
case. This conclusion is not altogether surprising;
the phase fluctuations of the driving field are
naturally reflected more in the complex amplitude
of the fluorescent field, and therefore in the radi-
ated spectral density, than in its intensity. In

particular, with off-resonance excitation she fluor-
escence spectrum becomes asymmetric, and re-
flects constructive and destructive interference
effects on the two sides of the excitation frequency.
These asymmetries are absent under monochro-
matic excitation, and represent a newly encoun-
tered feature of resonance fluorescence. It is
possible that they played a role in some of the
recently reported observations. 4
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