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A multiconfiguration Hartree-Fock calculation is used to test the hypothesis that ground-state correlations
involving excitation of a single pair of electrons from an outer p shell into d orbitals are the dominant ones in
the photoionization cross sections of Ne, Ar, Kr, and Xe. Dramatic improvement in the agreement of dipole
length and dipole velocity forms of the cross section is obtaining in going from a Hartree-Fock to a
multiconfiguration Hartree-Fock calculation. Results are found to be comparable to recent values obtained
using the random-phase approximation with exchange and the R matrix.

I. INTRODUCTION

Photoionization cross sections in the rare gases
have been extensively studied, both experimental-
ly* and theoretically.?”” The first really success-
ful calculation of these cross sections was per-
formed by Amus’ya et al.? using a form of many-
body theory called the random-phase approxima-
tion with exchange (RPAE). Kelly and Simons®
later obtained extremely accurate results for Ar
using diagramatic many-body perturbation theory
(MBPT). More recently, good results have been
obtained for Ne and Ar by Burke and Taylor? using
R-matrix techniques.

There are many equivalent formulations of the
RPAE.® These approaches can be classified
roughly as either “matrix methods” or “coupled
differential equation methods.” In either case, the
results obtained do not lead directly to a very
clear physical picture of the interactions being in-
cluded in the calculation or to an identification of
the dominant excitations for the case being studied.
The RPAE also has many benefits, among them
being the fact that certain types of both ground-
and excited-state correlations are evaluated si-
multaneously, and that length and velocity forms
of the dipole transition operator are equivalent.
The traditional description of the RPAE is that it,
in general, sums to all orders the contribution
from pairs of excited electrons, including simul-
taneous excitation of several pairs. This inter-
pretation, however, is not universally accepted.®

The MBPT calculation of Kelly and Simons® and
the RPAE calculation of Amus’ya et al.? utilize a
V¥-1CP) potential in obtaining the continuum wave
functions. As explained below, this has the effect
of incorporating certain types of excited-state cor-
relation into the zeroth-order calculation.? Be-
yond this, the work of Kelly and Simons® indicates
that ground-state correlations involving excitation
of a single pair of electrons from the filled 3p
shell into d orbitals are the dominant ones for the
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3p - ed photoionization channel in Ar. Since this
type of excitation is also included in the RPAE,
these results are consistent with the RPAE re-
sults of Amus’ya et al.? However, these results
also indicate that some of the supposed advantages
of the RPAE—excitation of multiple pairs and
summation to all orders—are not important in the
rare gases.

One can, based on the results of Kelly and Si-
mons,® make the hypothesis that only excited-state
correlations included by use of a V¥=1(*P) and
only ground-state correlations involving excitation
of a single pair are important in determining the
photoionization cross sections for the rare gases.
In order to test this hypothesis in the simplest and
most direct manner, we have carried out multi-
configuration Hartree-Fock (MCHF) calculations
of these cross sections, choosing configurations
so as to include only these very restricted classes
of excitations.

In Sec. II, we describe the general theory in-
volved in the application of the MCHF to the cal-
culation of photoionization cross sections in rare-
gas systems. In Sec. III, we describe the calcula-
tions in Ne, Ar, Kr, and Xe. Our calculations
take into account the np - €s, ed and ns—~ €p chan-
nels. No resonant structure is included. Finally
in Sec. IV, we discuss our results and their im-
plications.

II. THEORY

The total photoionization cross section in the
dipole approximation is given by

o(E) =4n’aa’ Z: Ks T 1PE; @)
Wherg
T=T,= I[: 2

in the length form,
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in the velocity form. The matrix elements are
evaluated in atomic units; E;; is the photon ener-
gy; ¥, and y; denote the final and initial states,
respectively, and the sum runs over final config-
urations and all magnetic quantum numbers. When
the initial and final states are exact solutions to
the same Hamiltonian equation, the length and vel-
ocity forms of the cross section will agree. In the
procedure described below this conditions is not
met and thus length and velocity forms may not co-
incide. In this work we evaluate both the length
and velocity forms. The degree of agreement be-
tween the two forms is a necessary, but not suf-
ficient, test of the validity of the method and of the
accuracy of the results.

A. Initial state

One of the simplest approximations we can make
for the ground state is to take it to be a pure np®
state and to use single-configuration Hartree-Fock
wave functions. Using this approximation, together
with the approximation for the final state specified
below in Sec. IIB, in Eq. (1) leads to cross sec-
tions in the length and velocity forms which in
most instances are widely disparate. The two
forms of this approximation are hereafter denoted
HFL and HFV.

The most significant improvements over the HF
approximation have been made using MBPT? and
the RPAE.? The essential interactions in both of
these methods which lead to large improvements
over the first-order approximation for the cases
considered here are the so-called ground-state
correlations. In particular, the work of Kelly®
has demonstrated that the virtual excitation of a
pair of outer np electrons to n'd states is the dom-
inant correlation effect.

We can attempt to include excitations of this type
by taking the ground state to be given, not by the
single configuration np%, but by the combination

ly;)=alnp® S) + ), bSEa|mp*SL, (' dn” d)SL;'S)
"I"II
LS

(2)

where the coefficients a and b and the single-elec-
tron wave functions are chosen so as to minimize
the energy of the state described by |§;), in other
words, by MCHF. As it stands, the wave function
of Eq. (2), although it describes the type of excita-
tion of interest, is not too useful, since the double
sum over #’ and »” includes not only all bound d
states of the atom, but also a double integration
over all continuum states €’d and €”d. However,

Froese Fischer'® has shown that wave functions of
the type given by Eq. (2) can be rewritten in a much
more tractable form.

Because the coefficients by5» form a matrix B
which is symmetric in the indices n’ and n” there
exists an orthogonal matrix O,.,» which diagonal-
izes B (i.e., OTBO=D, where D is a diagonal ma-
trix). If we operate 0" on a vector whose compo-
nets are the kets in (2), we will then form a new
expansion for the ground state:

[v:) =alnp® 'Sy + D dS* |mp?)SL, (nd)’SL; 'S)

S,L,n
=% wil, (3)

where we now have a single summation over # and
where the single-particle states ¢z are super-
positions of the original ¢, basis, including an ad-
mixture of continuum states. Thus, for example,
the 3d is not the usual 34 wave function, although
the dominant component of the 3d will probably be
the 3d. These new wave functions ¢;z are similar
to the natural spin orbitals of Lowdin. 't

This transformation would be of little practical
significance if one had to carry out all the calcula-
tions indicated above to obtain the functions ¢z
Fortunately, it has been shown'® that one can ob-
tain a similar basis set by solving the correspond-
ing MCHF. That is to say, if one does a MCHF
calculation involving the configurations np® and
np*nd?® (all @), that is equivalent to doing a MCHF
involving the configurations np® and np*n’ dn”d (all
n’,n"), the two calculations being related to each
other by an orthogonal transformation. In addi-
tion, Froese Fischer has shown that the expansion
of Eq. (3) usually converges rapidly, meaning that
only a few values of z# need be taken to get a very
large percentage of the correlation energy. Ac-
cordingly, we have chosen to use our ground-state
wave function the expansion (3) where the weights
a and d and the wave functions @5z are solutions of
the MCHF. These ground-state wave functions
were obtained using the program MCHF 75.'2 The
angular coefficients of the Slater integrals were
calculated using the program wgIGHTS.® We dis-
cuss below the number of terms in the expansion
over n which kept in specific cases.

B. Final state

In the cases considered here, where the initial
state is a 'S, the final state is a superposition of
Slater determinants forming a 'P state. The bound
single-particle states of the determinants are
chosen to be those obtained as solutions of the
single-configuration (np®) Hartree-Fock equations
for the ground state of the atom. The continuum
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electron state is solved for in the V¥=1("P) potential
so that

(Pelmlms = [PEI (T)/,r] Ylmz (9’ ¢)Xms(s) ) (4)
where
( LKD) o +V(r)) Put)+X()=0, (5)

V(r)=;2; <Z -2 Y U, ;7’)> ,  (6)

in’y’

2
X0) =5 2y by ¥l €l )Py 7)
n'1!

+ :/; Xpt P (7) (M
The ¢ and b coefficients appropriate for a y¥=1('P
potential are given by Kennedy and Manson.'* The
Lagrange multipliers A,, in Eq. (7) are included
to insure orthogonality between bound and contin-
uum states with the same I. We shall discuss the
effects of these multipliers below. The normaliza-
tion of the continuum states is such that as ¥ -~

P, (r)~ (2/7k)Y? sin[kr + (q/k)n2kr+51m + 0, +8;]

(8)
where o; =arg[['(l +1 —iq/k)] is the Coulomb phase
shift; 6, is the residual phase shift and ¢ =Z - N
is the net charge of the ion. The normalization
has been carried out using the method of Strom-
gren as given by Bates and Seaton.'®

Amus’ya and co-workers have shown that by
using this potential, one effectively sums a set of
perturbation diagrams which are diagonal in the
hole state and involve only a single channel. This
means that the perturbation Hamiltonian

R e ©
4 Vij

does not couple the state np%d ‘P to any state of
the type np°’d 'P. Thus, this choice of potential
enables one to automatically include a large class
of final state correlation terms. We have not in-
cluded any other type of final state correlation in
our calculation.

C. Cross section

Given the specifications of the initial and final
states and Eq. (1), it is now convenient for the
sake of calculation to separate the angular and
radial integrals involved in the transition ampli-
tude. For the cases considered here where the
transition is always 'S—'P Eq. (1) may be rewrit-
ten

o(B) = dnaa 3 [ IT ) By (10)

where the sum over magnetic quantum numbers
has been done.

The reduced matrix elements which are left are
of two types. The first type corresponding to a
ground-state configuration without virtual excita-
tion (p®'S) factors into

w,A (el|T"|nl") , : (11)

where w, is the weight of the configuration

(np)e 'S [Eq. (3)], A, is the angular part of the re-
duced matrix element given by A, = @||C*|ly})

= W lICHinp®'S), and

(elIT;,Inl')=f P, )rP,y dv (length form);
° (12)

1 * d 2 +1x1
Ty = g [ P (s T3 Pat)
0

(velocity form).

In this last equation, the + is taken as!=['+1. The
second type of matrix element, corresponding to a
ground configuration with an excited pair, factors
into

w, Al |TT D) @Llel) (#1), (13)

where A;=@|IC'll¢]) and (’l|el) is a radial over-
lap integral between the virtually excited state
P,s, and the continuum state P,,. The channels
np - e€s and ns -~ ¢p involve only the first type of re-
duced matrix element in our calculation. Table I
gives the values of the factors which were used to
evaluate the cross section for argon at a photon
energy of 1 a.u. Note that the overlap integral is
of the order of 1. For the cases considered here,
we find that the overlap integral peaks at an ener-
gy near the peak in the cross section, and tends to
zero at higher energies. Here and in all subse-
quent tables and graphs cross sections are given
in units of megabarns (107! cm?.

III. RARE GASES

Within the framework of the above method there
remains some latitude in the specifics of the cal-
culation. We have investigated several different
approaches in order to find the one which gives
the best results with a reasonable amount of cal-
culation, since our aim is to apply the technique
to a fairly large number of systems. We will de-
scribe in this section several variations which
were considered, since knowing what is not im-
portant in the calculation may be as useful as
knowing what is.

For convenience of calculation, we used the
same core wave functions in the ground state and
in the final state. Two methods were considered
for obtaining these core functions. In the first,
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TABLE I. Numerical factors used in calculation of o(3p — ed) for argon with Ef;=1.0 a.u.

Configuration Weight  Angular coeff. TI Ty Overlap RME, RMEy,

3p°[1S] 0.9775 2 ~2.009  -1.3858 —3.9276  —2.7092

3pt1s3q?is[ls]  -0.1139 2/V15 —1.6038  1.1412  1.0949 0.1033 —0.0735

3p*3p3a®3p[ls]  -0.1287 3/V5 —1.6038  1.1412  1.0949 0.3032 -0.2157

3p*1p3d?'D[lS]  —0.1222 VT/15 —1.6038  1.1412  1.0949 0.1416 —0.1043
Total —3.3745 -3.1027

2
O'L(V)(3p——€d)=<z RMEL(V)> (2.688 Mb)Es;; 0,=30.61 Mb, oy=25.88 Mb

they are obtained from a MCHF in which all orbit-
als were allowed to vary. In the second they are
obtained from a single configuration HF calcula-
tion using only the configuration np®; in this case,
only the 7d functions were allowed to vary in the
ground-state MCHF, with all other orbitals being
frozen. It was found that the latter method re-
sulted in cross sections slightly superior to those
obtained from the former method. Since, in addi-
tion, the latter method requires slightly less com-
puter time than the former, it was decided to use
this method in all calculations.

It is also possible in the MCHF to use different
7id wave functions for each value of S and L in Eq.
(3). This has the effect of absorbing certain other
types of higher-order correlation effects. We car-
ried out calculations using a different 7d function
for each of the three possible values of S and L —
S, 'D, and °P; calculations were also made using
only a single 7id for the three terms. It was found
that, in the former case, all three 7d functions
were quite similar, to each other and to the single
7id function obtained in the latter calculation. In
addition, the cross sections in the two calculations
were almost identical. Since the latter method is,
once again, considerably more efficient in terms
of computer time, it was decided to use it exclu-
sively.

In calculations of this type, the Lagrange multi-
pliers of Eq. (8) are often set equal to zero, with
the result that continuum states P€,(7’) are not

TABLE II. Effect of including orthogonality for argon
o(3p—€s). A superscript “O” means orthogonality in-
cluded; “NO” means no orthogonality; V=[(o;—0y)/0;]
x100%.

Photon
energy vo o
(a.u.) a? a9 (%) of© oy° (%)
0.7 3.282 2.929 11 3.643 2.579 29
1.0 1.672 1.493 11 1.924 1.349 30
2.0 0.442 0.407 8 0.531 0.384 28
3.0 0.194 0.185 5 0.235 0.177 25

strictly orthogonal to occupied states of the same
angular momentum. We found that including these
terms has the benefit of reducing somewhat the
discrepancy between length and velocity cross
sections as well as aiding convergence of the so-
lution of (6) by reducing the effect of exchange
terms. It is, of course, the reduction of the im-
portance of the exchange terms which brings the
length and velocity forms closer together, since
it is the nonlocal exchange potential which de-
stroys the equality between the two forms orig-
inally. Obviously, this inclusion of Lagrange
multipliers affects only the relatively small ns

- €p and np - €s cross sections in Ne and Ar; in
Kr and Xe, it also affects the dominant np —~ ed
cross section. We show, in Table II, the photo-
ionization cross section for the np - €s channel in
Ar for several values of photon energy calculated
both with and without Lagrange multipliers.

As mentioned above, Froese Fischer'® has found
that the series of Eq. (3) is usually very rapidly
converging, and that only a few terms need be kept
to obtain a good energy. We have found that rapid
convergence in the cross section results also.
Table III gives the coefficients w; obtained in a
study of Ar. The coefficients of the 4d are seen to
be an order of magnitude smaller than those of the
3d states. In Table IV, we show the cross sections
obtained using these ground-state wave functions,
as well as those obtained using ground-state func-
tions containing only 3d excitations. Similar re-
sults were obtained for Ne, Kr, and Xe. Because

TABLE III. Weighté for the ground state of argon.

Configuration Weight
3p8[1s] 0.9773
3pt 15342 1s[ls] -0.1132
3p*3p3d?3p[is] —0.1287
3p*1p3a?p[is] —-0.1219
3p* 1s4a? 1s[1s] -0.0148
3p*3p4d?3p[is] —0.0142
3pt1paa?ip[ls] —0.0156
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TABLE IV. Comparison of o(3p — €d) in argon for the
1, 4, and 7 configuration ground state. (HF removal en-
ergy is used here.)

Photon
energy .
(a.u.) oL oy or oy gL oy

0.6 26.01 15.13 21.62 17.66 21.29 17.95
1.0 44.19 20.67 31.35 25.85 30.97 26.06
1.5 7.147 2.06 3.40 3.13 3.53 3.08
2.5 0.41 0.51 0.61 0.43 0.53 0.45

the difference between the cross sections calculat-
ed using two d functions and those obtained using
only the lowest d function is so small, we decided
to use only the lowest d in subsequent calculations.
Kelly,® in his Ar calculation, used experiment-
ally determined ionization energies, rather than
calculated energies, in the denominators of his
perturbation terms. This makes it rather difficult
to compare our results to his, since we have no
way of making an equivalent use of the experimen-
tal energies in our calculations. We can, however,
use experimental energies in Eq. (1) rather than
HF energies. In Figs. 1, 2, 3, and 4 we have
plotted total photoionization cross sections for Ne,
Ar, Kr, and Xe, respectively. Included in these
figures are the HFL and HFV curves and the
length and velocity curves obtained using the cor-
related ground state (CL and CV, respectively).
All curves are obtained using experimental ener-
gies. The cross sections were evaluated at inter-
vals of 0.1 a.u. in all cases. Also included are the
experimental points of Samson.'® In Table V, we
give the coefficients w; used in these calculations.

Mb
10f

CROSS SECTION

) 5 20 25 30
PHOTON ENERGY (a.u)

FIG. 1. Photoionization cross section for Ne in
Hartree-Fock length (HFL), Hartree-Fock velocity
(HFV), correlated-length (CL), and correlated-velocity
(CV) approximations.
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50

40

30

20+
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PHOTON ENERGY (au)

FIG. 2. Photoionization cross section for Ar (same
designations as in Fig. 1).

Figures 1-4 clearly show the importance of the
ground-state correlation which is included by tak-
ing the ground state to be np® +np*n'd®. The two
most significant imporvements obtained by adding
this ground-state correlation are (1) the differ-
ence between length and velocity forms near thres-
hold is significantly reduced; and (2) the Cooper
minimum appears at the same energy for both
length and velocity forms. A general feature of
all the MCHF curves is that agreement with ex-
periment is better for the length form at lower
energies, and for the velocity form at higher en-
ergies.

It is to be noted in the Ne case that the opening
of the 2s—¢p channel at 1.76 a.u. produces a large
bump theoretically which is apparently not present
in the experimental data. Amus’ya'” has shown
that there is a significant interchannel interaction
in Ne between the 2p - ed and 2s - €p channels

Mb
60r

S0,

KRYPTON

CROSS SECTION

5 10 5 2.0
PHOTON ENERGY (a.u)

FIG. 3. Photoionization cross section for Kr (same
designations as in Fig. 1).
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FIG. 4. Photoionization cross sections for Xe (same
designations as in Fig. 1).

which reduces the magnitude of this bump. Since
the total cross section in this channel is small we
have neglected this effect.

One can verify that excitations of the type de-
scribed by Eq. (3) are indeed the most important
ones in the MCHF picture. This can be done in a
straightforward manner by adding other configura-
tions to the MCHF calculation. We have carried
out calculations in which the configurations
|np? D, mswd 'D; 'S) and |np*'S, (ms)?'S; 'S) were
added to the configurations of Eq. (3). These are
the only configurations which contribute to a
“first-order” MCHF theory for np shell ionization.
In such a theory only admixtures into the ground
state are included which couple to the “nominal”
excited states [in this case |np’ed) and |nps9)].
The MCHF coefficients of the configurations above
were found to be at least an order of magnitude
smaller than those of the lowest |#p*SL,nd?SL;1S)
states. The inclusion of these extra configurations
had a negligible effect on the calculated cross sec-
tions. Thus, the MCHF calculations confirm the

TABLE V. Weights for ground states of neutral rare
gases.

Configuration Neon Argon Krypton Xenon

np®1S] 0.9957  0.9775  0.9799  0.9779
nptiSnld?1S[!S] -0.0466 —0.1139 —0.1074 —0.1138
np*3pnld?3pP[lS] —0.0627 —0.1287 -0.1222 —0.1262
np* 'Dn'd?'D[1S] —0.0499 _0.1222 —0.1148 —0.1217

results of the RPAE and MBPT that the configura-
tions of Eq. (3) are the only important ones in the
rare gases.

IV. CONCLUSIONS

The calculations described in the previous sec-
tion seem to support the hypothesis made in Sec.
I—that is, that the main correlation effects of
importance in photoionization cross sections in
the rare gases are the excited-state correlations
included in the V¥=''P) and the ground-state cor-
relations produced by the excitation of a single
pair. In particular, we see that this type of cor-
relation effect can be evaluated relatively easily
using a MCHF. Because of this, a large fraction
of the correlation effects included in the RPAE
can, at least in the rare gases, be obtained using
a MCHF with no corrections (other than the
V¥-1CP)) {0 the final state.

Chang and Fano® have suggested in their deriva-
tion of the RPAE that only single pair excitation
are actually included in the RPAE. If this is the
case our calculation should give a good first-order
approximation to the RPAE. In their derivation
the function ¢ () introduces ground-state correla-
tion analogous to the role of Pz(#) in our method.
When the angular integrals and overlap integrals
of Egs. (11) and (13) are combined with the appro-
priate wave functions our equation for the cross
section is the same as their Eq. (16).

Recent calculations by Burke and Taylor® using
the R-matrix method incorporated a large number
of configurations into both initial (36 configura-
tions) and final states (67 configurations). The in-
clusion of final state interchannel interactions has
allowed them to give a detailed analysis of the ns
- mnp resonance region and confirms earlier work
by Amus’ya et al.’” concerning the near-threshold
behavior of the ns—~e€p channel. Despite the large
number of configurations considered their work
gives little better cross sections outside the res-
onance region than our own. We conclude from
this that (i) there are a large number of effects
we have neglected which have little influence on
the total cross section, and (ii) the method chosen
for incorporating ground-state correlations and
the precise form of the correlating orbitals used
are important in minimizing the number of con-
figurations needed to achieve a given degree of
accuracy.

We have pointed out that there are a number of
more subtle effects which we have neglected. It is
possible to take some of these into account by in-
corporating other techniques. For example, final-
state interaction can be included by using a K-ma-
trix approach'® or solving the close-coupling equa-



tions.” Furthermore, Lindgren®® has shown that a
multiconfiguration basis set can be incorporated
into a many-body perturbation theory, thereby
making the current approach more flexible and
potentially exact, but certainly extracting a cost in
its complexity.

A number of questions have been raised by this
study and will require further investigation.
Among these questions are: (i) How well will the
method work for closed-shell configurations other
than #p®? (ii) When will interchannel interaction
have to be taken into account? (iii) What refine-
ments will be necessary to extend the method to
open-shell systems?

The third question above is particularly inter-
esting. The usual RPAE is, with a very few ex-
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ceptions, applicable only to closed-shell systems.
Extensions of the RPA to open-shell systems do
exist,?%2! but their application is very complicated
and the results obtained thus far for atomic sys-
tems are somewhat ambiguous.?® The MCHF can,
of course, be applied to open-shell systems with-
out any particular difficulty. Thus one should be
able to use this approach to study ground-state
pair excitations in open-shell atoms, thereby
doing an RPA-like calculation. For open-shell
atoms, however, interchannel interactions may
also become important because of the number of
allowed parent states. These interchannel inter-
actions could be taken into account by including a
close-coupling calculation in the determination of
the final state.
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