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The 2s», ~2@»,+ one photon transition rate is calculated and discussed for hydrogen and hydrogenlike ions.
It is noted that the induced transition rather than the spontaneous transition is of primary importance since it
is the basis of many of the precision Lamb-shift measurements. The lack of a calculation of the transition rate
other than a heuristic nonrelativistic derivation which requires a nontrivial assumption motivates the
calculation presented here based on the external field approximation to quantum electrodynamics. It is found
that the heuristic answer is correct in lowest order. In this derivation we see that the 2s»2~2p», + one photon
transition gives an apparent contradiction to the often-stated remark that for the electric dipole matrix
element there exist three equivalent representations, the "length, " "velocity, " and "acceleration" forms. The
difficulties of an experimental determination of this transition rate using induced transitions in hydrogenlike
ions are briefly noted as well as the somewhat different case of heavy muonic atoms where the spontaneous

2s»2~2p», + one photon transition has. been observed.

I. INTRODUCTION

The spontaneous 2s]]2 2py]2+one photon transi-
tion in hydrogen seldom occurs in nature. This
decay mode is highly dominated by the principal
decay mode of the 2s, &, state, the 7 -sec) two-pho-
ton transition to the ground state. The induced
transition is, on the other hand, of great import-
ance in physics because it is the basis of many of
the precision experiments on the Lamb shift. Fu-
ture experimental interest in this transition may
occur in measurements of the rate. Viewing the
total decay rate as the imaginary part of a complex
energy-level shift, the experimental determination
of the 2s&(2 2p&(2+one photon transition rate in
hydrogenlike ions would be a far more severe test
of quantum electrodynamics in terms of powers of
& and Ze than the real energy-level shift. In Sec.
III we briefly comment on such experiments.

There is theoretical interest in this transition
because it offers a contradiction to the often-stated
contention that there exist three representations
for the electric dipole matrix element, the "veloc-
ity, " "length, " and "acceleration" forms and that
when one uses the exact wave function the forms
are equivalent. The calculation of this decay amp-
litude appears to have been neglected so far. All
we have is the heuristic argument referred to by
Bethe and Salpeter. ' This argument uses non-
relativistic quantum mechanics and an unjustified
assumption.

This derivation starts with the nonrelativistic
electric dipole transition amplitude'.

' „,—(2p lp. zl2s ).
& is the polarization vector of the emitted photon.
, is the frequency of the emitted photon, and

l 2s, ) arid l2p~) are the nonrelativistic wave func-
tions.

Using the commutation relation p=-im[r, H„j,
which involves the nonrelativistic hydrogen Hamil-
tonian H,&, we obtain

M, =
( ), (, (E 2~E,~)(2P„lr c l2s„), (2)

which is zero since the difference in energy of the
two degenerate states is zero. As an ansatz the
heuristic argument replaces E~~-E,~ by the actual
energy difference n, E(2s»„2p», ), which is the
Lamb shift, to obtain the transition amplitude.

2p g )&2p lr ~ I2s ).

This point of view though engaging is not satisfy-
ing. The answer is not justified. Further, we note
the "velocity" form of the dipole matrix element in
(l) gives a zero result and modified "length" form
(2) is definitely nonzero. This procedure appears
to contradict the equivalence of the "length" and
"velocity" representations. '

In Sec. II we calculate the 2s», -2p», + one
photon transition rate using quantum electrodynam-
ics. Vfe find that M the heuristic matrix amplitude
is correct up to terms of order u and (Za)'. ln
Sec. III we give the spontaneous transition rate and
briefly discuss some of the problems in performing
a measurement of this rate by using induced transi-
t,ion s.

II. CALCULATION

In this section we will calculate the 2s, &, -2p, &, +
one photon transition rate. The techniques used
and simplifications noted are applicable to the other
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electric dipole transitions between states of the
same principal quantum number and total angular
momentum. These states have the same energy
when calculated by the Dirac equation. Radiative
corrections split this degeneracy.

The calculation we perform starts from the ex-
ternal field approximation in quantum electro-
dynamics. The notation and some of the procedure
comes from Lin and Feinberg's work on the radia-
tive corrections to the 2s»2 —1s, &, +one photon
transition rate for hydrogenlike ions. The diagrams
we need to evaluate are shown in Fig. 1. The sum
of the graphs l(a)-1(d) gives rise to the expres-
sion

{a) (b}

Next, we employ the relativistic commutation
relation

/=i[j, r ~ eJ,
which enables us to cancel the energy denomina-
tors.

F/G. 2. (a) Electron self-energy operator; (b) vacuum
polar iz ation operator.

(4)

where Z„,= Z" +Z" is the total self-energy opera-
tor. Z" is the electron-self-energy term which is
shown in Fig. 2(a), minus its mass counterterm.
Z' is the vacuum polarization operator which is
displayed in Fig. 2(b). The initial and final states
are degenerate solutions of the Dirac equation
with eigenenergy E and as such have the property

(g —m) ln) = 0,
&~ l(P-m) =0,

where, here, (n
l

represents the Dirac adjoint
vector (n l

=utP rather than the Hermitian con-
jugate vector. The mechanical momentum is
n = (E+Za/r, p) and c„=(0, e) is the emitted photon s
polarization vector. The frequency , corresponds
to the photon's energy which is the actual difference
in energy between the 2s, &, and 2p& y2 states.

We expand the energy denominators in a complete
set of solutions to the Coulomb problem in the
Dirac equation neglecting those states i and f which
are projected out by the use of ig in the denomina-
tors:

g (&/lz. .. lu&(&[pe ~lf&
n &E,f

—&Jlpr ~ lu&&ulzt. ~If)).

After adding and subtracting the i and f states
to the intermediate states, we sum over a com-
plete set of states:

(9)

The first term in the square brackets in (9) con-
sists of the transition amplitude (f l

Pr c li) mul-
tiplied by the lowest-order contribution to the Lamb
shift nz"'(2s,

&
2p g )=(flZ~.~lf) —(flZt.tlf). It

is this term which gives rise to the amplitude M
in (3). The second term in the brackets contains a
part (f lZ"r e —r ~ ~Z" li) which cancels through rel-
ative order a in (9) because the leading order of the
the vacuum polarization operator Z"- PZa V'(1/r)
commutes with r ~ &. The remaining part of the
second term in (9) cancels exactly the entire vertex
amplitude M~ as we will show in the next few
paragraphs:

Mc=
(2

)~(26E"'( s,2( , 2p,2( )(2flpr half)
(10)

(a) -2P I/2 ( b)

2S I/2

2r (c)

—2S I/2 2' t/2

FIG. 1. (a) and (b) Elec-
tron self-energy contribu-
tion to transition amplitude;
(c) and (d) vacuum polariza-
tion contribution to transi-
tion amplitude; (e} vertex
contribution to transition
amplitude.
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The vertex graph is drawn in Fig. 1(e), and its matrix element is written below':

—. ;y, —i —y f.e (y d4 1
(2~)'~' ~ 4~' ~u' ' j g-m-g-g-m

Using the commutation relation i[pl —|t —m, r cj =g, we simplify M~:

M = — f r ey —— =y —y —-- yr'at
(2~,)'~' Z~' fu' ~' ~' g- y'- m 'g- y'- m

(12)

Next, inside the matrix element and regulated
integral over k we add and subtract %nr &, where
An is the mass counterterm, and finish with an
expression for M" containing Z":

M = —— (f ir cZ" —Z"r six). (13)
(2& )a/2

This expression for M" exactly cancels the second
term of M in (10).

The lowest-order part of the transition amplitude
lit =1VI~+1VI~ is given by

„-, ~Z&'&(2s„„2p„,)(yi pr ~ Zif). (14)(»,)'"
We may replace relativistic states i and f by the
nonrelativistic states 2s„, and 2p„with a relative
error of (Za) . As a result, the lowest order of
the transition amplitude M which we derived from
quantum electrodynamics agrees with the heuristic
nonrelativistic calculation of M in (3).

III. CONCLUSION

From (14) we obtain the lowest-order spontaneous
transition rate for 2sy/2 2py/2+ one photon transi-
tions:

There are several difficulties in measuring this
quantity. %e would apply to a known amount of
hydrogenic ions in their 2s», state a known amount
of radiation with a frequency corresponding to tile
2sz/2 2p, /2 separation. From the measurement of
the number of subsequent 2p», -ls, /, transitions
we would infer the amount of induced 2s, /2-2p, /,

+ one photon transitions. From this quantity we
could determine the value of the spontaneous-
2s, /2

—2p, /, + one photon transition rate. These
expel imentRl conslderRtlons Rl e hampered some-
what by the finite width of the 2P, /,„state which is
about one tenth the size of the 2s, /, —2p, /, splitting
for hydrogen.

In addition, it should be noted that the spontan-
eous 2s, /, - 2p», + one photon transition has been
observed in heavy muonic atoms. ' A major change
in the derivation of the transition rate results in
this case from allowing for the finite size of the
nucleus which produces shifts of order (go. )~M

to the energy levels where M„ is the mass of the
muon. For heavy atoms such as Pb'" this term
is not small and therefore is generally taken into
account in the Dirac equation for the wave functions
~i') and

~

f') by choosmg a model for the nuclear
charge distribution such as a uniform distribution.
This alteration splits the 2s», -2p, /, degeneracy.
For this process ihe transition matrix element is
[e~(2& )'"j(f I& li') where we have neglected re-
tardation. Using Eq. (7) we may write this transi-
tion matrix element as [fe/(2&, )'~'J(E, , —Ez, )
x(f'~r ep~i') which is here nonzero. The transi-
tion rate itself depends on the model and the atom.
The radiative correction principally the order
c.(Za)M„vacuum polarization contribution to the
energy levels are not of much consequence and may
be neglected in lowest order. '
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