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K-shell charge-transfer cross sections are calculated for swift fully stripped ions impinging on target atoms in
a post-interaction distorted-wave formalism. The projectile interaction with the residual target atom is part of
the unperturbed Hamiltonian, and is approximated by its asymptotic form while the consequent projectile
distortion is approximated by an eikonal wave function. The results are compared to experiment and to other
theoretical calculations and are used to shed light on some aspects of the three-body Coulombic
rearrangement process and in particular on the significance of asymptotic properties of interactions and wave
functions on the results of simple approximation schemes.

I. INTRODUCTION

The realization that charge transfer can play a
competitive role to ionization in K-vacancy forma-
tion in target atoms due to collisions with swift
fully stripped ions, ' and the recent availability of
experimental data on such charge-transfer pro-
cesses"' allow theoretical charge-transfer ap-
proximation schemes to be tested as a function of
target and projectile charge, as well as energy.
It has been shown for example, that the Jackson-
Schiff (JS) full first Born plane-wave approxima-
tion for charge transfer, which is so successful
for protons on hydrogen, ' gives nonphysical results
for K-shell charge transfer in most other sys-
tems. ' This is in contrast to the Brinkman-Kra-
mers (BK)' approximation which, while it over-
estimates these total cross sections by even larger
factors than in the case of proton-hydrogen charge
transfer, gives the correct energy and projectile
charge dependence for other systems. Recent
work' has shown that if one replaces the inter-
nuclear potential in the Js interaction Hamiltonian
by its asymptotic form, i.e., by the interaction of
the projectile with a single positive charge at the
target nucleus, one gets remarkably good results
for K-shell charge transfer for protons on He and
argon. This is all the more surprising because
in heavy targets such as argon one might expect
that the projectile would be most effective in pick-
ing up the K electron in the vicinity of the K shell,
and hence would see a much larger nuclear charge
(see Ref. 6).

In this paper we have performed K-shell charge-
transfer calculations for protons impinging on ar-
gon as well as for bare high-Z projectiles im-
pinging on argon and chlorine, using a distorted-
wave eikonal approximation. We use the asymp-
totic interaction of the projectile with the residual
target (target atom minus active K electron), hut

that interaction now appears in the eikonal exponent
rather than in the interaction potential. The re-
sults give good agreement with experiment, and
further evidence the significance of the asymptotic
approximation to the interaction of the projectile
with the residual target atom.

Distorted-wave formalisms have been applied by
a number of authors to charge transfer in proton-
hydrogen collisions in the tens of kilovolts, and
above range. '"" These were done in part to help
clarify the still not fully resolved question of why
the JS total cross sections for charge transfer in
P-H scattering yield so much better results than
those of BK, despite sound reasons for expecting
the proton-proton interaction to become unimpor-
tant at high energies. " Numerous other relatively
simple approximation schemes have been applied to
proton-hydrogen charge transfer, " including an
eikonal calculation within an impact-parameter
formalism, '~ because of the well-known difficulties
of getting a soundly based simple low-order ap-
proximation to yield good results for that system.
More sophisticated calculations yielding good
agreement with experiment have, of course, also
been performed for that system. '""

In our present calculation in examining distorted
waves as applied to more complex charge-transfer
systems, but systems where the essential three-
body nature of the process can still be identified,
we hope to contribute towards clarification of some
of the ambiguities in the three-body Coulombic
charge-transfer process. In addition, we present
quantitative calculations of K-shell charge-transfer
cross sections for bare high-Z projectiles im-
pinging on heavy targets, as well as cross sec-
tions and angular distributions for protons on ar-
gon, and compare these with experimental and
other theoretical results.

In Sec. II we develop our distorted-wave eikonal
scheme and attempt to justify theoretically use of
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the asymptotic interaction. In Sec. III we bring the
formalism into a form suitable for calculation. In
Sec. IV we present our results and conclusions.

where

mM, (M, + m)M„
m+M ' f M+M +m' (2)

and m, M~, and M~ are the electron, projectile,
and residual-target-atom masses, respectively.
If we ignore terms in Uz of order m/M~, U& can be
considered a function of Rf rather than R in gener-
al, and IIf is separable. We shall assume this to
be done in what follows. The "post" interaction
Hamiltonian for the collisions, V&, is then the
Coulomb interaction of the captured electron with
the target nucleus and the residual electron cloud.

z R,.

N

FIG. 1. Coordinate scheme for three active bodies.
e, Z, Zz locate the active electron, projectile, and tar-
get nucleus, respectively. H; starts at the CM of the
active-electron-residual-atom system. Hf ends at the
CM of the active-electron-projectile system. These
are the standard coordinates used for three-body re-
arrangement collisions and facilitate separating out the
energy of relative motion of the colliding bound frag-
ments in both initial and final states.

II. FORMALISM

We assume that a bare projectile of charge Ze
impinges on a neutral target atom of nuclear
charge Z„eand picks up a K-shell electron into one
of its own bound states. The other (inactive) elec-
trons are treated as a static charge distribution
seen by the projectile and active electron. Hence
the problem reduces in this approximation to a
three-body problem. The coordinates for the three
bodies of interest are shown in Fig. 1.

We choose a "post" or "final-state" distorted-
wave formalism in which the unperturbed Hamilto-
nian Hz includes (a) the interaction of the captured
electron with the projectile, —Ze'/x&, (b) the pro-
jectile interaction with the residual target, U&, (c)
the kinetic energy of the electron-projectile system
about its center of mass (CM)„and (d) the relative
kinetic energy of the two final-state bound frag-
ments: the electron-projectile bound system and
the residual target atom. Thus,

Then II, the total Hamiltonian for the system, is
given by

IJ =IIf+ Vf.

The essential distinction between the present for-
malism and a plane-wave formalism is that we in-
clude Uf in the unperturbed Hamiltonian Hf, in-
stead of in the interaction potential Vf. There are
in fact many possible choices for breaking up the
Hamiltonian into an unperturbed part and an in-
teraction part. The choice one makes becomes
important in the context of a perturbative scatter-
ing series. ""' The lowest-order term in such a
Born series will depend on the particular break-
up of the Hamiltonian chosen. The choice itself
can depend on various considerations that one im-
poses from outside the formalism that one hopes
gives it physical significance. In our case we
choose to view the capture as a consequence of the
active electron being disturbed, the disturbance of
the projectile being accounted for in a distortion of
the projectile wave function outside the framework
of the perturbative scattering series. The motiva-
tion for this choice relates back to the historic
controversy, still not fully resolved, of whether
the BK or JS approach is the more physically and
formally meaningful one for the plane-wave Born
approximation applied to proton capture in hydro-
gen. Our approach is, in fact, the correct one for
developing a first-order Born approximation in
which only the active electron's potential appears
in the interaction, and we will compare our results
with recent plane-wave results based on the JS
prototype. '

In our case the T matrix for the capture is then

T„=&X,II;l~;&, (4)

where 4'& is the full outgoing scattered wave with
initial-state boundary conditions and X& satisfies
the unperturbed equation,

Hfxf =Exf,
where E is the energy of the colliding system, and

obeys final-state boundary conditions with incoming
scattered waves.

yz is the product of a continuum wave P, for the
relative motion of the CM's of the two final-state
bound systems, with Cf the final bound-state wave
function of the captured electron and projectile.

For our cases, 4f will be taken to be the exact
hydrogenic 1s state, since capture into higher
states is down by an order of magnitude from cap-
ture into the ground state.

t/, differs from a plane wave as a consequence of
Uf. Since Uf has a Coulombic tail, one must be
cautious in formulating an approximation to g, .
One clearly defined first-order approximation to
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)I), that obeys the asymptotic boundary conditions
and is the lead term in a clearly convergent series
is that obtained by replacing U& by its asymptotic
form in Eq. (5). This asymptotic interaction U& is
just the Coulomb interaction of the projectile with
a single positive charge at the target nucleus, and
to order m/M~ as discussed earlier, we have

ignored the electron cloud contribution to Vf in the
matrix element, we must use the correct energy
of the initial state C,. in working out the kinematics
of the problem. Indeed, the whole capture process
is very sensitive to the bound-state energies of the
initial and final systems. Third, one could develop
the whole formalism from an initial-state rather
than final-state perspective. This turns out to
give considerably poorer results, and this is to
be expected. In the initial-state formalism the T
matrix is given by

(6)Uy'= Ze'/R~.

Higher-order corrections to P, then involve the
well-behaved potential U& —U&'. For the heavy
projectiles and high velocities under considera-
tion here we can further approximate g, by using
a Coulomb eikonal wave instead of a full hydrogenic
Coulomb wave, yielding finally"'"'

where 4& is the full incoming scattering wave with
final-state boundary conditions, V,. is the interac-
tion of the active electron with the projectile, and
X',. is the solution of the unperturbed Schrodinger
equation obeying initial-state boundary conditions
with outgoing scattered waves. The unperturbed
Hamiltonian now includes the target atom Hamil-
tonian, the relative kinetic energy of the colliding
systems, and the interaction of the projectile with
the target nucleus and the residual electron cloud.
If we attempt to approximate the continuum part
of 0& by a plane wave as was done with 4',. before,
we no longer get a valid description of the asymp-
totic final state, because asymptotically neither
bound fragment is neutral. Similarly, the contin-
uum part of X',. can formally be approximated by a
Coulomb eikonal for a single positive charge at
the nucleus, but physically the incoming state has
no such Coulomb behavior because the projectile
sees a neutral atom. Indeed it would be more
sensible to approximate 4& with an eikonal Cou-
lomb wave and X',. with a plane wave, but this would
violate the self-consistency of the distorted-wave
formalism. As is well known, X', must show the
evidence of distortion due to that part of the inter-
action left out of the T matrix element. In the
final-state formalism, on the other hand, the ap-
proximations made are consistent with both the
requirements of the formalism and the physical
boundary conditions.

f tR
g,(Rz) =e'x&'"& exp i.A

R~

where A. =Ze'/hv, Ki and K& are the initial-
and final-state momenta, and v is the relative
velocity of the colliding system in CM. The in-
tegral is performed along the z axis corresponding
to the direction K&.""Returning to our T matrix,
Eq. (4), we now approximate 4; by a plane wave
times Q;, the initial K-shell bound-state wave
function of the active electron (which is taken to by
hydrogenic), since this is the correct asymptotic
form for a projectile impinging on a neutral atom.
Furthermore, we can neglect the contribution to
V& of the interaction of the active electron with the
residual electron cloud, since Q, is significant
over such a small radius that the electron cloud
contribution in the matrix element is quite small
compared to that of the nucleus. In addition, the
small contribution of the cloud to the interaction is
that of a constant potential, and this as has been
shown in a similar context' gives a very small con-
tribution to the capture matrix element. The final
form of our T matrix is then

(8)

Z e
Te, —— d, (Re)de(re) (

" .(),.(r,.)e' i' dr, . d R, '

Before going on to reduce this to a form suitable
for calculation, three points should be noted. Qne
is that despite the ability to approximate R by R&

in U& without introducing significant error, one
cannot do the same in the wave functions, particu-
larly in the phases. This is because R& and R,. in
the phases contain the information about the mo-
mentum transferred to the electron as a conse-
quence of its changing from the nucleus to the pro-
jectile. This momentum transfer is the same or-
der of magnitude as the momentum transfer to the
heavy projectile, and hence plays a central role
in the capture process. Second, although we have

III. CALCULATION

We now reduce Eq. (8), with Eq. (7) for p„to a
form suitable for calculation. Letting

C,.(r,.) = (P', /7i)' 'e ~i."i,

e (r ) =(P'/7i)' 'e 'x"s
(10)

where P,. and P& are the reciprocals of the initial
and final hydrogen-like Bohr radii for the active
electron (corresponding to nuclear charges Z„and
Z, respectively), we get
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Z e2(P3P3)1/2
N i f

exp —iA —e ' f
Rf

x e 3y "ie 2i" ie' i'"id'r d'R. /r . . . (11)i i i"
We note that

q = —y,.K,.+ Kf+k, F = —y~k —k'+ (y.y —1)K. .

(15)

Integrating d'r& yields a factor (211)353(F), and in-
tegrating over d'k' yields

d'k
fi (y2 p2)(C2 p2)2

e-'f "f= —'p
m2

d'k'e " '
(I

l2 + p2)2f
e"i&'Rf exp d3R~, (16)f &

d'ke '"'i
(u'+p', .)

'

and further that

r. = yzrf+Rz, R,. = (y,.y~ —1)rz+y, R&,

where

y,.=M„/(M„+m), yy
—-M2/(Mp~m) . (13b)

where

D =4Z e'p (p3p3)'"/~2

(17)
C=~(y,.y, 1)K,. y,kI.

Changing integration variables from k to q, we
finally get

Changing integration variables to d'xfd'Rf and sub-
stituting (12) into (11), we obtain with the aid of
(13)

Z„e'P~(P',.P~)' '
2m'

T~=d'qf(q, .) d'Re'"exp(-M

with

f (q) =D[P', +(y,.K,. —K~+ q.)2] "

'dz)

(18)

where

f CfZ
exp —iA —e " fei f

x (I2'+ p'. )-'(I3"+p') 'd'r d'-R d'k d'I3'

(14)

x IPi+ (yy&q —K; —yqq)'j '. (19)

We have shown (see Appendix) that if q is ex-
pressed in cylindrical coordinates (q„q„P)with
the z axis along R„wecan transform (18) into (to
within an overall indeterminate phase)

Tfi=Li sf( 0 A)q-i& " q&' '
dq dy + I,qb

b 0

„„i22E,(iA+ I, iA/2+ I; 2A/2+2; -q /q 3)B2f (q3, q„y)
Iq, l

'"" eq,

x q3dq, dq, dQ (+ when q, ~ 0), (20)

where

I., = (2v)22'"" r(zX/2+ I)/m I (-za/2)
(21)

@~K Z e2 52K'. Z2 e2
i

2 p.f 2ao 2 p, 2ao
(23)

where a, is the Bohr radius, ii, =M&(M„+m)/(M2

r., = 4~x2*"r(w + I)/(2&+ 2) .
The expression for f (q) can be simplified as
follows. Let the x axis of our coordinate system
be in theglane of K,. and K&, and let 6 be the angle
between K,. and Kf. If x, y, z are the unit vectors
for our coordinate system, then

K&=K&z and K,.=K,. cos0z+K,. singx . (22)
From conservation of energy,

+M„+m) is the initial-state counterpart of pz de-
fined in Eq. (2) above, and we ignore the difference
in the electron reduced masses for the initial and
final bound states. Z~ is the effective charge of
the target so that Z'„e'/2a, is the correct binding
energy of the active electron in the target.

In Eq. (19) we can see that P,. and P& are essen-
tially the momenta of the bound electron in the ini-
tial and final states. Since the velocities of the
projectile in our calculations are comparable to
the E-shell election velocity in the target, K,. and

K& are thousands of times greater than P,. or P&.
Furthermore, K,. -Kf is of the order of p,. or pf,
as can be seen from Eq. (23). Thus only small-
angle scattering (8 or order m/M2 or m/M~) is
important, and we can use Eqs. (22) and (23) to
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generate the lowest-order contributions to f ((I) in
powers of m/M~ and m/M„. In this approximation,
after some lengthy algebra,

b, =2&,K, , b, =2&+, , c=28K, , (25b)

f (q) =D(a, +q' —b,q, +cq, cosg) '

x(a, +q' —b,q, +cqbcos(f}) ~, (24)

e, =-.'(5/u, '-m/M), e, -2(5/u2+m/M),

with

(25c)

where (f} is the azimuthal angle of (I in our coordi-
nate system, so that (I x =qb cosQ and

a, = P2&+ &',K',. + O'K2, a, =P',. + &PP, + O'K', , (25a)

M =MpM~/(Mq+M„), 5 = (Z —Z„)e~p~/5 ao.

(25d)

Now f(q) can be reexpressed as

or

B
f(j)= -D ([a,+q' —b,q, + cq, cosQ][a, +q' —b~, + cq, cosP]] '

1

[a,+ q' —b~, + cq, cosP] ' —[a, + q' —b,q, + cq, cosQ] '
sa, (a, -a, ) —(b, —b,)q,

(26)

The integral over (]}} can be performed, yielding

(} Bai (a, —a, ) —(b, —b, )q,

This leads to
2I ef B

dQ = —2wD g,(a„a„c;q,}
Bgy BQ

and

21F B

„o Bg8 Bgi
d((]}= —KD g2(ai, a2, bi, b2, c;qb, q ),

where

q, c' —2(a, +q~2) c' —2(a, +q', )
a, —a, [(a,+q,'}' —c'q,']' ' [(a,+q,'}'—c'q,']' ')'

1 1

[(a, —a,}—(b, —b,}q,]' [(a,+ q' —baq } —c'q']' a, ' [(a,+ q' —b,q }'—c'q', ]'a),
1 (b, —2q, )(a,+ q' —b,q,} (b, —2q, )(a, + q' —b,q,)

(a, —a2)- (b; b,)q, [(a,+ q' —bg, )' —c'qb]'i' [(a,+ q' —b,q,)' —c'q]'}]'

(28)

(29)

(30)

(32)

Substituting E(ls. (32), (31), (30), and (29) into E(l.
(20) yields

T&, = —2]]D[L,G,(a„a„c)+ L,G,(a„a„b„b„c)],
„,+,(iA+ 1,—,'iA+ 1;&iA+ 2; —q', /q,')

ijA+2
o a on Qg

(33) x g2 q~dqzdq
BQi

(35)

where

B fA
Zb(ab a2 qb)qb dqb

BQi
(34)

t", can be simplified by changing integration vari-
ables. Letting q, =q cosg and q, =q sing, and noting

q, dq, dq, -q'dqd(cosP), we get (letting x=cosP)

oO

G, = p, (i +A1, 2i'A+ 1; piA+ 2; (x —1)/x')
o ~o

(36)
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where

g,(a„a„b„b„c;q, x) =g,(a„a„b„b„c;q„q,).
(37)

TABLE I. K-shell to K-shell charge-transfer calcu-
lations. Fully stripped ions on argon; all cross sections
in units of 10 cm .

Eq. (36) has the advantage of leaving only one vari-
able of integration in the hypergeometric function.
Transforming Eqs. (20) and (33) into dimension-
less units with all lengths in units of a, and all
momenta/8' in units of p, =- a,', and letting m = 1 and
noting jU,, = p&=M, we get

lf', =M(v/v, ), p;=z, py=z~, 6=(z'-Z„'}M,

(1) v/vo ——6.504 (1.05 MeV/aInu)

19.3
54.9

144.7
359.6

6.3
8.2

10.2
12.9

(2) v/vo ——7.777 {1.50 MeV/amu)

12

(38)

where vp is the electron velocity in the ground
state of hydrogen and n„defined earlier, is the
incoming projectile laboratory velocity. Eq. (25)
now gives

a, =Z'+ b,'/4+ (v/v, )'(Me)',

a, = Z'„+b,'/4+ (v/v, )'(M 8)',

b, = (Z' -Z~)(v, /v) —(v/v, ),

b, = (Z'-Z'„)(v,/v)+ (v/v, ),
c= 2(v/v, )M8, A, =Z(v, /v).

(39)

4M ZZ
2m'' ~' m'P'p""

The differential cross section is then (assuming
two electrons in the target K shell)

d /dQ = 2
~f(8)

~

', (41)

and the total cross section is [recalling that f(8) is
negligible for 8» m/M„or m/M~]

if(e)i'ede. (42)

Since f(8) is a function of y =Me only,

g=," '- [I.,G,(y)+L,G, (y)]'ydy. (43)
64(ZZ„)'a',

Jp

Noting that a 1/p', "~ factors out of Eq. (20) or (33)
and that p&e'Z„/K'= p,.M, we get for the differential
scattering amplitude [recalling the expression for
D Eq. (17)]:

30.7
80.8

194.5
434.9

8.3
12.0
16.6
22.6

4.0
5.7

15.0
30.7

(3) y/uo ——8.713 {1.88 MeV/amu)

37.1
93.1

212.4
446.8

8.3
12.9
19.1
27.7

5.1
12.8
22.9
43.3

See Ref. 17.
"Data from Ref. 2 (pickup to all states). Pickup ex-

tracted from K-vacancy rate by assuming Z scaling for
ionization.

TABLE II. K-shell to E-shell charge-transfer calcu-
lations for Cl'~7 on krypton. All cross sections in units
of yp "cm

nuclei Z =+ 6, 7, 8, 9 impinging on neutral argon
targets at three velocities. The experimental
numbers are obtained from the K-vacancy forma-
tion cross sections of Ref. 2 by subtracting Z'-
scaled ionization cross sections based on proton-
on-argon data from the same reference. Because
of the experimental uncertainties and the limita-
tions of Z' scaling, not all the experimental num-
bers are meaningful at the lowest velocity. None-
theless, the agreement is quite remarkable, and
indeed if increased binding effects" account for
the violation of Z' scaling at the lowest velocity,
the agreement there would improve.

In Table II we show similar results for Cl"' on
krypton. Here the experimental cross sections
for charge transfer are obtained from Ref. 4 by

After differentiation with respect to a„the C,
and G, integrations were performed numerically
using Gaussian quadratures on the CUNY IBM
370/168 Computer.

10.615
11.628
12.560
13.427

E' (MeV)

100
120
140
160

+BK1

146
205
261
314

4.3
8.5

13.5
19.5

8.5
14
27
48

IV. RESULTS AND CONCLUSIONS

We now present the results of our calculations
and discuss their significance. "'d'

In Table I we compare our results, o~, with
OBK" and the experimental results o~ for bare

~ Lab energy.
See Ref. 17.
Data from Ref. 4 (pickup to all states). Pickup ex-

tracted from K vacancy by subtracting Z -scaled E va-
ca,ncy for Cl' 5.
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TABLE III. Proton-on-argon X-shell to all-states
charge-transfer calculations. All cross sections in units
of 10 cm

v/vo E~ (MeV) O.J c
A Oc d

10.00
10.96
12.65
14.15
15.49
17.32
17.89
18.98
20.00
20.98
21.91

2.5
3.0
4.0
5.0
6.0
7.5
8.0
9.0

10.0
11.0
12.0

0.467
0.513
0.521
0.470
0.402
0.303
0.273
0.223
0.180
0.147
0.120

0.533
0.389
0.289
0.262
0.245
0.206
0.194
0.166
O. 142
O. 118
0.099

0.36
0.272
0.192
0.15
0.147
0.1.2
0.114
0.096
0.083
0.068
0.059

0.192
0.272
0.262
0.196
0.168
0.110
0.099
0.072
0.056
0.050
0.034

Lab energy - 0.1(v/2vo) .
Pickup to all states, see Ref. 17.

'Scaled to give pickup to all states.
"Results of Ref. 8, pickup to all states.
'Data of Ref. 3, pickup to all states.

subtracting a Z'-scaled target K-vacancy cross
section for Cl"' projectiles from the K-vacancy
cross section for Cl'" projectiles, since the
Cl"' vacancy formation is almost solely due to
ionization.

In Table III we show the results for protons on
argon. The experimental data in this case directly
measures charge transfer and is that of Ref. 3.
Also included is another theoretical cross section
oc, which results from the modified full first
plane-wave Born calculation' in which the projec-
tile-residual-atom interaction is taken to be its
asymptotic form; i.e. , the residual atom presents
a single positive charge to the projectile. cr„is
0~ scaled to include capture into higher states
using o~„scaling. o~K is capture to all states. "

Finally, Fig. 2 shows the differential scattering
cross section for 6-MeV protons on argon. (K
shell to ls state only) for BK, the modified first
Born approximation, and our own results. (We
have also calculated the eikonal cross section for
protons on hydrogen, and the results are consis-
tent with other distorted-wave calculations"""
and will be reported elsewhere. )

The key features of the above results can be
summarized as follows: (a) We obtain relativity
good quantitative agreement with available experi-
mental results for all the high-Z projectile cases,
and give both the correct projectile-charge and
projectile-velocity dependence. (b) In the case of
protons on argon, both the present result and the
modified first Born results yield improvement
over a~„atthe higher energies shown, but show
a rapid rise at the lower energies where the ex-
perimental cross section decreases. (c) The dif-

10

-17
10

E —18
10

b

-1910'

10
.02 .04 .06,08

e~z & Degrees )
.10 .12

FIG. 2. Angular distribution for protons on argon.
0& is our result, o, is modified first Born of Ref. 8, and
cr~ is Brinkman-Kramers result. For this case e&~
= ecM

ferential scattering cross section for protons on
argon agrees remarkably well with that of the
modified first Born, and both give rise to the
same interference dip that is characteristic of
first Born for protons on hydrogen. The fact that
a distorted-wave calculation exhibits this inter-
ference dip is of particular interest and lends
weight to its possible physical significance for
protons on argon. It should be noted, however,
that a recent measurement of the proton-on-argon
K-shell charge-transfer angular distribution at
6 MeV" does not indicate the existence of such a
dip. It would be interesting to see angular dis-
tributions for protons on hydrogen in the compar-
able energy region, 20-100 KeV, since the pos-
sibility of the narrow dip being obscured due to
residual target electron interaction with the pro-
jectile would not arise. Such experimental results
exist at lower energies" and exhibit considerable
structure in the very-small-angle region.

What is perhaps most interesting about the
eikonal results is that the asymptotic form of the
projectile-residual-atom interaction gives as good
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results as it does. The results of a standard im-
pact parametrization of our angular distribution
indicates that for high Z on argon most of the
capture takes place near the L shell of the target
where projectile distortion is due to an effective
charge at the nucleus much greater than 1. It is
interesting to note, however, that when we per-
formed our eikonal calculation using such an effec-
tive interaction of the projectile with the residual
atom, we obtained cross sections which were four
orders of magnitude to small. This is, perhaps,
not surprising, in light of our arguments about the
asymptotic boundary conditions.

Despite the above reservations, we believe that
the agreement with experiment for the wide range
of cases tested, and the success of the asymptotic
approximation in the quite different contexts of
plane-wave Born and distorted-wave eikonal cal-
culations, sheds new light on the question of how

to treat the projectile —residual-atom interaction
in a Coulombic rearrangement collision. Indeed,
just as our present work can be deemed a dis-
torted-wave calculation in which part of the inter-
action appears in the unperturbed Hamiltonian, so
canthe modified plane-wave Born calculation of
Ref. 8. In our case all the interaction of the pro-
jectile with the residual atom is included in the
unperturbed Hamiltonian, in the case of Ref. 8 the
interaction of the projectile with a single positive
charge at the target nucleus is included in the
interaction, and the remainder of the projectile
interaction with the residual atom is in the unper-
turbed Hamiltonian. In both cases the unperturbed
wave function (y& in our case) is approximated by
its asymptotic form. In the case of Ref. 8 this is
of course a plane wave; in our case it is a Cou-
lomb wave due to a single positive charge at the
target nucleus which we approximate by an eikonal
exponent. Thus both formalisms treat the unper-
turbed wave function in the same asymptotic ap-
proximation, but they break up the Hamiltonian
differently.

When the asymptotic wave function for the given
formalism also conforms to the physical asymp-
totic behavior, we should not be surprised if we
get the best results. This explains the success of
our calculations in the "post" formalism, and the
lack of success of the same calculation in the
"prior" formalism as discussed in Sec. II. This
same fact perhaps explains why plane-wave Born
(i.e. , JS for protons on hydrogen and Ref. 8 for
protons on argon) gives better results than either
our present calculation or other typical distorted-
wave calculations for those systems. Charge
transfer to a proton is the only case we are con-
sidering where in both the initial and final states
one of the fragments is neutral. Thus the physical
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APPENDIX

We wish to evaluate the integra12'

«Z

f(q)d'z e" exp(-iz
)

g )
d'z,

~y2+g 2 1/2

(44)
where

B=z+b, O'R =dzbdbdg, (45)
in cylindrical coor dinates. Letting q = q, + q „with
q, along z, we choose Q, to be the angle between
q, and b.

Equation (44) can then be cast in the form (let-
ting z -—z)

x exp —iA

Integrating over Q, yields

Z dg

„(b+z ,
)
„,)

zz b db dQ, .

(46)

f(q) d'q 2v e "z zJ,(q,b)

& exp —iA
d

(b3 3),~3 bdbdz

(4'I)

boundary conditions call for a plane wave while
the formal boundary conditions call for a Coulomb
tail in our X& for protons on argon. A similar
result is true for the proton-on-hydrogen calcula-
tion of Ref. 11. The plane-wave calculations for
these systems, on the other hand, satisfy both
the physical and formal boundary conditions. In-
terestingly, the proton-on-hydrogen distorted-wave
calculation of Ref. 9 is weak for the reverse rea-
son (although the issue there is not that of a Cou-
lomb tail). The formalism requires the unpertur-
bed wave to show distortion, but is none the less
approximated by a plane wave which satisfies the
physical boundary conditions. In our calculations
for the case of high-Z projectiles both the formal
and physical boundary conditions are (at least
approximately) satisfied, and it is in these cases
that our technique should be most useful. We are
presently further examining these questions and
hope our present results will stimulate additional
theoretical work in this area.
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The eikonal exponent f'„(z'+b') '/2dz can be eval-
uated as follows:

l ,)„,—ln[z+(b'+z')' ']
y2 g 2 &/t'2

8Q

—ln[z, + (b'+z,')'/']. (48)

e'"{b'+z'} '/2 exp[-iA sinh '(z/b)]dz

=2e"A/21', .A(~q, ~b) (+for q, ~0), (56)

and substituting (56) into (54), and then into (52),
we get

(49)

If we take the limit as zp- —, we get for fixed 5

lim ln[z, +(b'+z,')'/']= lim ln[b'/(2 ~z, ~)],
zo

and
&(q,) = J,(q, b) b'"" db,

&{q„q.) =(2~)'6(q,)&(q,)+G(q„q,),
where

(58)

exp —i A
dZ

(&* *')"*) G(qz, qz) =21/(2A/q )e'zA/2

f(q) d'q 9(q„q.), (51)

=[zi. (b +z ) / ] i b lim (2~z ~)
' (50)

0

This last form has an indeterminant limit because
of the oscillating phase term, but because that
term appears as an overall multiplicative phase
factor which cannot affect the cross sections, we
factor it out. That this limiting procedure is the
correct one to use is evidenced by the fact that the
result does conform to the required asymptotic
phase behavior of g, .

Substituting Eq. (50) into Eq. (47) and factoring
out the indeterminant phase, we get for our in-
tegral

~,(q2b)&A(lq, lb)b*""db

(+ for q, ~~ 0). (59)

It should be noted that expression (59) and indeed
the right-hand side of (54) are valid only for ~q, ~

2-'0. We must check the behavior of P(q2, q,) at q,
=0 for further possible singularities. Let G(qz, q,)
include the correct singular behavior at the origin
q, =0, so that it is represented by Eq. (59) for q,
&0, and by whatever 5-function-type singularities
are necessary at the origin. We will shortly re-
turn to the singular properties of G. First we
carry out the integration in Eq. (59) which yields"

where

6:(q„q,) =2ii e'"'J,(q, b)

Z, (q,b)K, A(iq, ib)b'""db =

(60)

&& [z+ (b'+ z')' '] '"b""b db dz.

(52)

We now turn to the z integration in Eq. (52). Let
us add a convergence factor e " ', v&0, to the in-
tegrand. Then we have to calculate

eiqz ze-vl zl[Z + (b2+ Z2)1/2 ]-1AdZ

and hence

4i/A2'"I"(1A+1)e"A/2~q ~'A

~b9~z [q WO 2hfA. +&
z

9'zigp+9 gi
(61)

To test the q, = 0 behavior of 6, let us integrate F
over q, directly from the defining Eq. (52). In-
tegrating q, first yields a 6(z), and integrating
over z then gives

and take the limit v-0. This is a standard tech-
nique for exhibiting the 6-function singularity
structure of such an integral. Splitting the inte-
gral into the two intervals [—~, 0] and [0,~], per-
forming an integration by parts for each segment,
taking limit v-0, and recombining, we get for
expression (53)

2i/6(q )b-iA+ eiqzz(b2+Z2)-1/2A

&z -e

F(q„q,) dq, = (2ii)' J,{q,b)b'""db
OQ 0

= (27/)'&(q, ), (62)

G(q„q,) dq, = 0.

but this is the result one gets by integrating just
the first term in Eq. (57) over q, . Hence we con-
clude

Noting that

x [z+ (b'+z')"']-*"dz

ln [z+ (b'+ z')'/'] = sinh '(z/b) + ln b,

and that"

(54)

Jq

OO

G dq ~~qcA+ ~2 as llm~ 0 (64)

It should be noted that if we assume the form Eq.
(61}for G for all q, and integrate directly, we get
an indeterminant answer due to the widely oscilla-
tory behavior of the integral:
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[)., and X2 constants, see Eq. (72) below]. Thus
the singular properties of G at q, =0 must cancel
this effect. The important point as we shall see
is that the full G function has the well-defined
integral property, Eq. (63). Returning to Eqs.
(57) and (51), we need to obtain

q d'qG q, q,

q, q, Gq, q, dqqdqd, 65

where ff& is the azimuthal angle for q in cylindrical
coordinates. Performing the integral over q,
first, and integrating by parts yields

fGdq, =(f Gdq ,)f'
Gdql dq

and evaluating the right-hand side for q, &0. Pro-
ceeding to do this, we have

G q„q dq =4 g2 &Z' ~g+y ~ &&

Iq I

r co

X
~
q

~

-
(q2+ qf2)-qA ldqf-

"lq l

q, &0. (69)

r -I c~l

G(q~, q,'}dq,'= —4vrA2'AE'(iA+ 1)e 'Af2

r -Iqgl

~q. ~'" '(q', +q.") '" 'dq,',

q, &0. (70)

Letting q', ——q,' in Eq. (70) we immediately see

The surface term vanishes at —~ and+ ~ because
of the asymptotic behavior of f(q} and the integral
property of G [Eq. (63}]. To obtain the integral
term one needs an analytic expression for

-l a, l OO

G(q„q',) dq,'=- e '" G(q„q,') dq'.
&Oo "l eel

(71)

G(q„q,')dq,'.
«OO

This can be done if we can use expression (61)
for G, but that would give a correct answer for
the integral (6V) only for q, &0. For q, &0 we can
still obtain an analytic result using expression
(61) by again using the integral property [Eq. (63)],
obtaining

%e can perform the integral on the right obtain-
ing'4

ql
~

Aq1(q2+ qq2) qA ldqf
~ l agl

2F1(iA+ 1,iA/2+ 1;iA/2+ 2; q22/q2)

(iA+ 2) [q, ('A"

(72)

t e
G(q „q',)dq,' = — G(q „q,')dq', ,

«OO e
(68)

Putting (72) and (Vl) into the integral term on the
right-hand side of (66), and recalling (68), we get

f(q„q„p)G(q„q,) dq, =L, e""~',F,(i A+1, iA/2+1;i A/2+2; q,'/q,') (ef/Sq, ) ~q, ~-'A-2dq
OO «OO

(+ for q, ~ 0), (73)

where

L, = 42A2'AI'(iA + 1)/(iA + 2). (V4)

(22)' f(q)6(q, )F(q,)q, dq, dq,

Although the integrand in Eq. (V3) still has a sin-
gular behavior at the origin, it is of the form
~q, ~

'" and the integra, l converges unambiguously
at the origin.

We now return to the first term on the right-
hand side of Eq. (57), and in particular to the form
of F(q,). We could actually evaluate F(q, ) by using
convergence factors and proceed to obtain our final
result, but rather than do that we can obtain our
final result directly by noting

f(q„o,4)F(q,}q,dq„(75)

We now rewrite the expression for F(q,) [Eq. (58)]
by introducing the integral representation"

(76)

and noting

1 BJo(bt)
b Bt

(77)

/ OO

5'" '=2'" t '"J(bt)dt'
F(1 —iA/2)
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we get, substituting (77) into (76), and (76) into
(58) into (75),

(2 ) f(q, 0, $)F(q )q dq,

Integrating over q~ then yields

I. ' ' t '"dt=I
1 1

;~sf(qp 0~4')d

=L, f(q„0,Q) J,(q,b)t '" (81)

where

„sJ,(bt)
&&

'
bq~ db dq~ dt, (78) Combining Eqs. (73) and (81) in Eq. (51) yields the

desired result [Eq. (20)]. Equation (20) was tested
as a check by choosing f(q), so that

(79)

L, f(v„o,l)& „'"—')e, &o, «
(80)

;„„I"(1+tA/2)
tA I"(- tA/2)

[which follows from (76) and the minus sign in (77)
after some manipulation of the I functions]. In-
tegrating over b gives

f{q)e iq R-d3q e 0!R e-ot(b +z ) (82)

T&, was evaluated analytically in coordinate space
using Eq. (18), and was then evaluated analytically
using our result [Eq. (20)], yielding the same re-
sult.
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