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An extension of the Bethe theory for the total inelastic cross section in the Born approximation is presented
and used to evaluate the total electron-loss cross section for H™ collisions on H and He targets at high
energies. Sum rules are used to derive expressions for both the leading and the next leading order
contributions to the asymptotic cross section. A comparison with the available experimental data for He
targets shows good agreement with the theoretical calculation. In the case of hydrogen the calculated cross
section for atomic H targets shows a clear preference for the larger values of the cross section obtained by
several groups and disagrees with the conflicting lower experimental data from two other measurements.
When corrections for H, are included, this conclusion remains true for the conflicting experimental data near
10 MeV, but the calculated cross section in this case favors the lower experimental data near 1 MeV. Results
are also presented for the total elastic cross section and the total nondetachment inelastic cross section. The
latter is smaller than the total electron-loss cross section at intermediate energies, but exceeds it at sufficiently
high energies. However, the convergence of the series generated in the Bethe theory approach for the nonloss
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cross section appears to be much slower than that of the electron-loss cross section.

L. INTRODUCTION

Attempts to calculate the collisional electron-
detachment cross section for negative hydrogen
ions incident on hydrogen and helium targets were
first carried out by McDowell and Peach,' and by
Sida,? respectively. Based on the first Born ap-
proximation, these efforts were exploratory in
concept and only relatively simple models of either
the H™ ion or target atoms were examined. Order
of magnitude results were correct, but good agree-
ment with experiment was lacking. A free-colli-
sion approximation developed by Dmitriev and
Nikolaev® and the quasiclassical impulse approxi-
mation given by Bates and Walker* improved the
agreement somewhat. However, experimental
results by Rose et al.® and Berkner ef al.® above
100-keV incident energy, indicated that the fre-
quently utilized result of the free collision approx-
imation was still about 50% too high in the asymp-
totic region. Further results obtained by Smythe
and Toevs” and also by Dimov and Dudnikov® indi-
cated discrepancies in the experimental data, sug-
gesting that the disagreement with the theory may
even be greater. The recent increased interest in
neutral beams for the heating of thermonuclear
plasmas has revived the work on electron detach-
ment processes and the experimental differences
should soon be resolved. However, it seems clear
that the theoretical work published to date on the
electron-loss cross sections of the negative hydro-
gen ion will remain unsatisfactory.

Because the negative hydrogen ion has no bound
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excited states, the calculation of the total electron-
loss cross section is ideally suited to the use of
sum-rule techniques, since a sum over all excited
final states of the H™ ion will automatically include
all detachment states. Bethe’s now classic treat-
ment® of the use of sum rules to evaluate the total
inelastic cross section of atoms due to structure-
less charged particle impact first demonstrated
the power of this approach. It has been used by
many workers since,'® including the calculation of
the H™ detachment cross section due to electron
collisions.'*** The work discussed in this paper
utilizes an extension of Bethe’s theory so that the
incident charged particle need not be regarded as
structureless. The approach is similar to that
used by Levy in evaluating the electron-loss cross
sections for neutral hydrogen atoms.!* Sum rules
applied to the final states of both the incident H~
ion and target H or He atom allow the accurate
evaluation of the first Born approximation for
collisional detachment at high energies.

Section IT A briefly outlines the theoretical
framework, Sec. IIB calculates the leading order
terms of the detachment cross section, and Sec.
IIC the next leading contributions, still within the
context of the first Born amplitude. Section IID
derives results for the total elastic and inelastic
nondetachment cross sections, in which the target
atom, but not the incident ion, may be in an excited
final state. That section clearly demonstrates the
relationship to the Bethe results for structureless
charged particles. A compilation of the available
experimental data above 200-keV incident energy
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is used in Sec. III to examine the agreement be-
tween this theory and experiment, Molecular cor-
rections for H, targets are considered in that sec-
tion. Section IV provides a summary and some
discussion of features of the theory not yet esta-
blished by experiment. Some concluding remarks
are presented in the final section.

II. CALCULATION OF THE CROSS SECTIONS

A. Basic formulas and theoretical overview

The differential scattering cross section in the
Born approximation for a collision involving a mo-
mentum transfer of magnitude K between two
atomic systems, initially in their respective
ground states, but in final states labeled by n
and m, may be written

d(a, K)

@ K"’ 1)

2

40,,= 870 23 | FO(K)P | F)
when exchange effects are neglected. The incident
particle’s velocity is contained in the parameter
B=v/c; a, and a are the Bohr radius and fine
structure constant, respectively. The functions
F!9(K) are the atomic form factors for the inci-
dent (j=1) and target (j=2) particles. For the jth
atom or ion with nuclear charge Z{/’ and a total
of Z§ ) electrons, the form factor is given by

8
FPK)=;e[2y - explK-F{)][0);,  (2)
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where F{7) is the coordinate vector for the Ith elec-
tron in the jth atomic system. The matrix element
is evaluated for eigenstates, ]n)j, of the free Ham-
iltonian for the jth atom or ion. The nuclear
charge term in (2) is omitted by most authors since
for the inelastic form factors (n#0), the ortho-
gonality of the initial and final states quarantees
that its contribution vanish. It is included here

so that the elastic form factor (r=0) at K=0 is the
total charge of the atomic system, i.e.,

F§N0)=2z{ -z . (3)

(When the nuclear charge term is omitted for the
n=0 form factor, it is usually referred to as the
atomic scattering factor or atomic form factor.)
The inelastic atomic form factor is related to the
more widely recognized generalized oscillator
strength, f{(K), by

[PE)=EP | F(K) e, K[ (4)

where E{” is the excitation energy in rydbergs of
the state n. As is customary, the definitions of
the form factors and generalized oscillator
strengths used in this work include an implied
sum over all degenerate final states of energy

E{? (as well as an average over degenerate initial
states if appropriate). Such a sum reduces the
dependence of these functions on the vector I_E, to
a dependence only on the magnitude K of the mo-
mentum transfer. The ordinary oscillator strength
f is defined by the limit of Eq. (4) as K goes to
zero.

The total cross section for the excitation of the
incident particle to the state n, and of the target
particle to the state m, is given by an integral
over the momentum transfer,

apK max

2
=82 & d(a, K)
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(aoK)**
(5)
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The integration limits are determined by the kine-
matic constraints of the collision. For a collision
in which the initial and final relative momentum
differ in direction by an angle 6 (the center-of-
mass scattering angle), the momentum transfer
is

22712 52 (1) (2)
o Mg (. E{V+ B
(a, K) 3 11‘ Mp?
(1) (2) 1/2
_[1_%&_2] cosg}, (6)

where M is the reduced mass (in rydbergs). The
minimum and maximum values of K appearing in
(5) correspond to scattering angles of 0 and 7, re-
spectively. The integration limits are explicitly
state dependent via the excitation energies. How-
ever, for large incident velocities, K ; and K.,
tend to zero and infinity, respectively [propor-
tional to g2 and B2 upon expanding (6)]. Together
with the known behavior of the form factors at
small and large K 2, this fact allows one to extend
the region of integration in (5) to (0, ) for all ex-
citations (for »#0; however, see Sec. IID). A
sum over all final states then permits the use of
the completeness of the energy eigenstate basis to
evaluate the inelastic cross section in terms of
ground-state expectation values only. The applica-
tion of this procedure to both the incident and tar-
get particles constitutes the double-closure ap-
proximation.

B. Leading term of the electron loss cross sections

Since the'negative hydrogen ion has no bound
excited states, a summation over all final states,
except the ground state, of the incident H™ ion is
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a sum over all states resulting in electron loss.
A simultaneous summation over all final states
of the target atom (either H or He) yields the total

consists of two terms, one arising from single
electron-loss, o_, ,, and one arising from double
electron-loss, o, ,. These two together are given

electron-loss cross section. This cross section by
K
(01,0 0.1,,) =870 — Z}: f 0¥ | F&O(E) | FE(K) P ﬂ—; (7
B 30K min (a K)
—

where the summations over the final states labelled
by n and m includes an integration over all con-
tinuum final states as well. This generalized defi-
nition of the summation over discretely labelled
states will be used throughout this work. Writing
the integrals appearing in Eq. {7) as the sum of
three terms,

Imn:J IF(I)(K)IZ ,F(2)(K){2 d(aol)g), (8)
Jnm(Bz) J' %Kmin IF(l)(K) |2|F(2)(K) lz d(a;{KS) ,
(9)
2 () 2| FO(K) d(a, K)
Kol B%)= L, IRl -~
(10)

then the total electron-loss cross section becomes

(0-1,0"' 0-1,1)

LS Y -
n¥0 m

The integrals defined by (8)-(10) are all well be-
haved at both small and large K2 provided that
n#0, i.e., the final state of the H™ ion is not the
ground state. (The case n=0 is examined in Sec.
IID.) The integral I,,, is a constant independent

of the incident velocity of the H™ ion and provides
the leading contributions to the total electron-loss
section. The integrals J,,(8%) and K, (8?) are vel-
ocity dependent. Their contributions are examined
in Sec. IIC.

Since the integration limits for the evaluation of
I, are independent of the states » and m, the or-
ders of integration and the summation over final
states appearing in (11) may be interchanged. The
completeness of the energy eigenstate basis may
then be used to reduced the matrix element sum to
a matrix element involving the ground state only.
The result is

PIPI

n#0 m

(B*) - K,u(B®)] . (11)
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d(a,K)
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(12)

where S{1)(K) is the incoherent scattering function

inc

for the H™ ion, S{2)(K) and F{*(K) are the inco-
herent scattering function and elastic form factor,
respectively, of the target hydrogen or helium
atom. The incoherent scattering function is ex-

pressed in terms of ground-state expectation val-
z{ - i exp(iK - )

ues by
2
10)
I=1 i

- |F®)P. (13)

For the case of a target hydrogen atom,
z»8$2 (K)+| F(K) [P may be easily evaluated

analytically.'* For the H™ ion, S{}(K) has been
calculated (and the results tabulated) by Inokuti

and Kim*! for a 20-term Hylleraas wave function,'®
and by Kim'® for a 39-term Weiss wave function.'”
The integral in (12) can then be integrated numeri-
cally, substitution of the result into (11) yields the
leading contribution to the total electron-loss cross
section for H™. For the most accurate H™ wave
function,'®!” this gives for the case of atomic hy-

drogen targets
(0.1,0+ 0.y, )(H) =87a2(0?/p%)(2.42£.01),  (14)

where the indicated error limits are those asso-
ciated with the numerical integration.

For the case of a helium target atom, the inco-
herent scattering function and elastic form factor
required for the integration in (12) have also been
calculated (and tabulated) by Kim and Inokuti,'® for
several different wave functions obtained from the
literature. Utilizing the most accurate results
given, for a 20-term Hylleraas wave function,'®
the total electron detachment cross section for
helium targets is

(0-1,0+ 0y,,)(He) =87a%(a®/B)(2.812.01) . (15)

Again the possible errors indicated are associated
with the uncertainties in the numerical integration.

The dependence of this result on the He wave
function was examined by carrying out the same
integration utilizing the S{2)(K) and | F,(K) | for a
six-term Hylleraaswave function.®'!®* The results
were identical, well within the numerical uncer-
tainties. The integral (12) was also evaluated for
the simple product wave function with effective

249

Z(J)S(])(K) = <

inc
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nuclear screening Z*=(2 - %),

¥, 7,)= 1 <Z—*>3 exp[— Z*(Ei—l;-—liz—l)} . (16)

a 0

The function Z@SE)(K)+ | F® (K)} may be easily
evaluated analytically for this case.® The result-
ing cross section (15) was reduced by a little more
than 3%. These results indicate that no large un-
certainties in the cross section (15) are expected
due to the finite accuracy of the He wave function
underlying this calculation.

The cross sections are expected to be more
sensitive to the H™ wave function. The integral
in Eq. (12) was also evaluated for the 20-term
Hylleraas H™ wave function.''!® For H targets,
the result is 2.40+£0.01; for He targets, one gets
2.79+0.01. This suggests that the error associa-
ted with these accurate H™ wave functions is only
of the order of 1%. For comparison, the Ohmura
model® of H”, for which S{!)(X) may be evaluated
analytically,' gives cross sections which are
nearly 25% higher than Eqs. (14) and (15).

C. Corrections to the leading term of the electron-loss
cross sections

Deviations from the asymptotic forms of the
electron-loss cross sections are expected at low-

order Born amplitudes. The contributions to the
next leading term of the first Born cross section
arising from J,,(8%) and K, (8% may also be cal-
culated in a relatively straightforward manner.
These contributions are evaluated in this section.
Since it is clear that additional contributions are
expected at lower energies, the results for the
next leading term developed here must be regarded
as only approximate.

For small K? the only contributions to J,,(38%)
which are of significance arise from optically
allowed (dipole) transitions. From Eq. (4) the
small-K? behavior of these form factors, re-
quired to evaluate the integral in (9), is simply
related to the ordinary oscillator strengths at
K=0. Expanding the integration limit, K, , in
terms of the parameter (E'’+ E{?’)/M g2 (a small
parameter implicit within the theoretical frame-
work of the first Born approximation), the follow-
ing result is obtained:

(1) (2))2 2
g =g rre Eet iy &0 an
n m

The summation over final states appearing in (11)
can now be evaluated in terms of the energy mo-
ments of the oscillator strength distribution

er energies due to finite contributions from the S”’(p)=2 (Bl (18)
terms J,,(B?) and K,,(82) appearing in (11), as %0
well as from electron exchange effects and higher- Specifically,
J
1 o?
\/; 2 J,(B2) = 3 _'; [S(“(_ 1)S@(1) + 2S1X(0)S(0) + S1(1)S (- 1)]. (19)
n m

Note that the m =0 term does not contribute to the
sum since the square of the elastic form factor

is proportional to K* at low K, consequently, the
“ground-state oscillator strength” f§?’ is zero

[or more correctly f{?’/E{? as defined by the lim-
it of (4) is zero].

The three moments required for a particular
atom or ion are all readily related to ground-
state expectation values using well-known sum
rules.?* $%(0) is simply Z{’, given by the

r

Thomas-Kuhn-Reiche sum rule. S%)(-1) is the
total dipole matrix element squared, usually re-
ferred to as M3,,. S‘)(1) is simply related to the
ground-state energy and the total momentum ma-
trix element squared. They may be analytically
evaluated for atomic hydrogen, and Pekeris??23
has given accurate results for both H™ and He.
These values are summarized, together with the
resulting coefficient of a?/g? appearing in (19), in
Table I.

TABLE I. Values of SY(u) for u=—1,0,1, and the resulting sum ([32/042)2”0 Z}m,oJm(Bz)
for small a?/g%. The uncertainties in these numbers are less than one unit in the last signifi-

cant figure.

Atomic system SD(-1) (M)

s90) (2 sP)

L IPIFM

n#0m=0
H™ (j=1) 7.4842 2 1.4952
H (j=2) 1 1 i 1.934
He (j=2) 0.75252 2 8.1672 8.781

2These values are from Pekeris, H~ data from Ref. 22, He data from Ref. 23.
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Contributions to the next leading term of the
electron-loss cross section arising from Knm(ﬁz)
may also be calculated by using the closure ap-
proximation. Utilizing the same expansion para-
meter, (EM+E®)/Mg?, the integration limit
a, K, is simply aM g to first order, independent
of the state » and m. Consequently, the orders
of summation and integration may also be inter-
changed for these terms and the contributions to
the cross section evaluated by using the same
closure approximation as used for the leading
term. Only the large K? behavior of the inco-
herent scattering functions and elastic form fac-
tors is now required. These are readily esta-
blished, namely,

lim ZS{NK) =2z (20)
K->

and
lim F{(K)=z§{". (21)
K—>®

The resulting contributions of the K, (8°%) terms
are then

1
; Zm: Kom(B?) E%Zfe”[zéz)"'(sz))z]mz .

(22)

Recalling that M is the reduced mass in Rydbergs,
it is obvious that this contribution is down by a
factor of the square of the electron to proton mass
ratio, compared to the J,,(8%) contribution, and is
consequently negligible compared to that term.

Combining the results of this section with the
leading terms of the electron-loss cross sections,
the cross sections may be written

(01,0 01,1 )(H) = 87a2(a?/p?)[2.42 - 1.93(a?/B%)],
(23)

(0.y,0+ 0.y, )(He) =87a%(a?/p?)[2.81 - 8.78(c2/p?)].
(24)

D. Elastic and nondetachment inelastic cross sections

The total elastic cross section for H™ scattering
on H and He in Born approximation may be cal-

~J

Uom- 7nl8]= [ EE G D G0 20500

by (2)
1 (1m0 Ly @k - [FO@ FO )
a0Kmin m

(2)
- | F{V(0) lz 1]_;"12 [ln <a01§\min >J .

m

culated in a straightforward manner since the
elastic form factors are available. Using the H™
form factor also given by Inokuti and Kim'! and
the H and He form factors already discussed, the
asymptotic elastic cross sections are

0, (H)=87a%(a?/p?)(0.125+0.003), (25)
0., (He)=87a?(a?/p?)(0.262+0.005) . (26)

These terms arise, of course, only from the I,
integral given by (8). Within the context of the
first Born approximation, the next leading terms
to these cross sections are negligibly small.
J,0(B?) is identically zero and K.,(B%) is of the same
form as the electron-loss sum in (22), only with
the Z terms replaced by (Z{’Z{?’)?, according to
(21). [Consequently, the first significant correc-
tions at low energies to (25) and (26) are expected
to arise from the second Born amplitude, which is
beyond the scope of this work.]

The total nondetachment inelastic cross section
provides a direct comparison with the Bethe the-
ory. The difference between this theory and the
total inelastic cross section due to charged-par-
ticle impact in the Bethe theory is the inclusion
here of the structure of the incident charged par-
ticle via the form factor F(‘)“(K). The total non-
loss, inelastic cross section is given by

Gnonloss, inel = 877(1%(012/[32) ; [Iom - Jom(Bz) - Kom(ﬁz)] .
m#0

(27)

The leading-order contributions to this cross
section come from I,, and J,,(8?) given by (8) and
(9). Neither of these is well defined separately
since the lower limit in the K integral is logarith-
mically divergent. The combination I,,, - J,,(8%)
appearing in (27) is well defined. Consequently,
this combination will be treated together, defined
by

O FR P ).

(28)
For optically allowed transitions, the lower limit
in (28) may be evaluated by examining the small-

K? behavior of the form factors, as given by (3)
and (4). This gives

[Fom=Ton(8)]= [

99K min

d(a, K)
(a,K)°

(29)
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Expanding the lower integrationlimit, q K

in?

then yields the leading terms to the cross section. Summing

over all excited final states of the target atom yields [note that Eq. (29) is valid for optically unallowed transi-

tions as well, simply setting f»’/E’=0]

D [Tom=Tom(BD] =] FEO0) P[SP(- 1) In(28/@) - L= 1)]+ (9, - 9,)

m#0
where
°° d(a,K)
= (1) 2 7(2)6(2) A\ apht )
g,=2 fx | F$&(K) 23S 2)K) @i’

inc

b
g,= 2 f [ngl)(O) [28(2)(_ 1)(a0K)2 _ | F(g“(K) lzzéz)sgz)
0

and L®(- 1) is defined by

L”’(u)=Z(Ef,“)“ In(ED) 497, (33)
n#0

The integrals 9, and 9, are generalizations of
those used for structureless ions'® 2 to include
the structure of the ion in terms of the elastic
form factor. They may be evaluated numerically
using the H™ elastic form factor and the incoherent
scattering functions previously utilized. The inte-
grand in 4, is well defined as K~ 0 since
Z®’S2)(K) approaches S (- 1)(a,K)? for small K.
The combination 4, — g, should be independent of
A, for X of the order of unity. It is usually set to
1 by most authors; however, because of the limited
number of tabulated points for the integrands near
a,K=1, the integrals 9, and 9, were evaluated for
several values of . L®’(-1) is not directly re-
lated to a simple ground-state expectation value in
the same way that S®’(y) is simply given by sum
rules for several integer values of u. However,
reliable values of L®’(~ 1) for both H and He atoms
are available.?® The parameters L®(-1), 4, and
9,, as well as the combination

2L(2)(— 1)1F(()1)(0) |2" (91 - 52)

lFél)(O) '23(2)(_ 1) (34)

@) -
Incig=—

(K)]

(30)
(31)

r

for both H and He targets are given in Table II.

The values of the integrals 4, and 9, are those ob-
tained for the 39-term Weiss H™ wave functions

and the 20-term Hylleraas He wave function; rep-
resentative results are given for x=1 and x=3.

The resulting cross sections are given by precisely
the same form as the Bethe asymptotic cross-sec-
tion formula, i.e.,

Unonloss, inel

az
=470} 7 | F$(0)P

2

x§®)(=1)1n <4c§§z -5—2>, (35)

The dependence of the integrals 9, and 9, on the
wave functions was examined in the same manner
as for the leading contribution to the electron-loss
cross section. Again the results showed negligible
differences between the six-term and 20-term Hyl-
leraas He wave functions. However, for the sim-
ple He wave function given by (16), the combina-
tion 9, - 9, was reduced in magnitude by nearly
10% from the accurate values given in Table II.
The values of 4, - J, for the 20-term Hylleraas H-
wave functions were reduced in magnitude by about
3% from those values given in Table II, but the
integration uncertainties associated with this case

TABLE II. Parameters required for the evaluation of the nondetachment inelastic cross
section; and the combination, Inc{2), defined by Eq. (34). The values for g, and 9, are based
on the 39-term Wiess H™ function (Refs. 16 and 17), and on the 20-term Hylleraas He wave
function (Refs. 15 and 18). The limits on 9; and 9, are associated only with the uncertainties

in the numerical integration.

Atomic
system L®(-1) A 29, 39, 3(9,-9,) Inc2)
H —0.073252 1 0.167+0.001 1.356+0.009 —1.189+0.008
3 0.0517+0.0001 1.240+0.008 —1.188+0.008 —-2.23+0.02
He +0.638+£0.002% {1 0.259+0.001 1.003 +£0.006 —0.744 +0.006
3 0.0992+0.0001 0.843+0.006 —0.743+0.006 —3.67+0.02

2These values are from Ref. 24. [The value of L ?’(—1) for H was not calculated in this ref-
erence explicitly, but appears in footnote 9 of Ref. 24.]
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were considerably larger and could account for
this difference.

The next-order contributions to the nondetach-
ment inelastic cross section may be obtained by
retaining the second leading terms in the expansion
of K, in Eq. (29). [Again, the contributions aris-
ing from K_,(B%) are negligible, being of the same
form as (22) with the Z factor now replaced by
Z3(Z{).] The nonloss inelastic cross section
may then be written

2
Gnonloss, inel = 4'" ag 'Z'f'

% |:| F§9(0) [2s)(= 1) In <4c§<2,{ B—2>+ y ;J

(36)
where v is given by

y=— %'Fél)(o) |Zsr(2)(1) _ %Fél)(O)Fé(”(O)S(Z)(I)
-3 (m,/M)|F{V(0) [PS*(0), (37)

and m, is the electron mass. The first and third
terms contributing to y in (37) are the same as
those for the next-order corrections in the Bethe
theory,'® since ]an(o) [? is just the square of the
net charge of the incident ion. The second term is
an additional contribution arising from the struc-
ture of the H™ ion. Two additional parameters not
appearing in the previous results are required,
both are derivatives with respect to (a,K)* at K=0.
They are defined by

5" P(u)=lim W 2 (E) I (9
and
4 =13 a
FP0)=lim 5= FP(K). (39)

Both of these parameters may be related to ground
state properties. F;‘)(0) is simply the expectation
value of 3|T{""’, and Pekeris has calculated an
accurate value of 3(11.914) for the H™ ion.?2 The
evaluation of S’®(1) requires a more complicated
expectation value.'”!? However, for H targets' it
is simply 1, and for He targets the value given by
Kim and Inokuti'? is 2.047. These parameter val-
ues, together with those previously given, yields
the following correction factors for H and He tar-
gets:

y(H)=2.40, (40)

y(He)=15.6. (41)

It should be noted that these are strongly dominated
by the second term in (37) due to the large expec-
tation value of the square of the electron orbit
radius for the loosely bound H~ ion. [The first
term in (37) is only about 10% of (40) and about

3.2% of (41); the third term in (37) is negligible.
Note that the first term is of the opposite sign as
the dominant second term.]

III. COMPARISON WITH EXPERIMENT

The Born approximation for atomic scattering
cross sections is expected to be valid if the inci-
dent velocities are sufficiently large compared to
typical atomic electron orbital velocities, i.e., if
a?/B%<« 1. This is the effective expansion para-
meter appearing in the results given in this work.?®
Requiring g%z 10a® implies that the cross sections
calculated here should be valid for H™ laboratory
energies greater than about 200 keV. There are
no direct measurements of H™ detachment cross
sections on atomic H targets in this energy re-
gion. However, there is data on molecular H, and
atomic He targets over a wide energy range.

The data above 200 keV are summarized in Fig.
1, together with the theoretical results of this
work. The cross sections for H are presented in
units of cm?/atom, i.e., one half the H, cross sec-
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FIG. 1. Total electron detachment cross section
(0.4,0+0-4,1) for H™ collisions on H and He targets as a
function of energy. Solid curves, theoretical results of
this work for atomic H and He targets. Broken line, re-
sults of this work for the asymptotic cross section for
H, targets. Open triangles (A), data of Rose et al. (Ref.
5, 0.4,9 only); solid triangles (A), Dimov and Dudnikov
(Ref. 8, 0., ( only for H, targets at 1.3 MeV); open cir-
cles (©), Berkner et al. (Ref. 6, 20 MeV D”); solid cir-
cles @), Smythe and Toevs, (Ref. 7); open squares @),
Hayward and Tesmer (Ref. 26). The upper scale gives
the parameter a?/p%=o®(1+«k)2/(1+2k), where k =M,c?/
E > M, being the proton rest mass.
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tions. In all cases (0., ,+0.,,,) has been plotted
except for the noted exceptions for which only o_, ,
was available. However, experimentally o_, , is
only about 4% of o_, ,. Since the experimental un-
certainties for the absolute cross sections are
10-20%, whether or not o_, , is included in the
data is largely academic.

The theory agrees well with the experimental
data for He targets. The theoretical cross sec-
tion for H targets clearly favors the experimental
results of Rose ef al., Berkner et al., and Hayward
and Tesmer,?® over the lower data given by Dimov
and Dudnikov, and Smythe and Toevs. The theo-
retical curve is expected to be lowered somewhat
by considering H, rather than atomic H targets.
This correction was estimated for the leading term
of the electron-loss cross section by using the H,
incoherent scattering function calculated by Liu?’
for afive-term configuration interaction wave func-
tion, and the square of the H, elastic form factor
given by Liu and Smith?® for the Davidson-Jones
wave function.?®* The value of the integral (12),
which appears as the numerical factor in the cross
section (14), is 1.98+0.01 per H atom in this case,
a reduction of about 18%. This cross section is
shown in the figure as a broken line. With this
lower value of the cross section, the theory is
still close to the higher-lyingvalues of the experi-
mental data at the higher energies, but is now
closer to the results of Dimov and Dudnikov near
1 MeV. The trend of the lower-energy data of
Rose.et al., suggests that the low-energy correc-
tions for H derived in Sec. IIC may not be ade-
quate. This is not surprising since contributions
in this region due to the second Born amplitude
may be important. (In addition, consideration of
H, may make a larger correction at lower energies
than in the asymptotic region.)

IV. DISCUSSION

The relationship between the total electron-loss
cross section in this work and the free collision
approximation given by Dmitriev and Nikolaev,
can be understood in terms of the derivation pre-
sented in Sec. II. The leading term to the detach-
ment cross section arises from the integral given
by Eq. (12). Besides the photon propagator and
density of final states, the integrand consists of
two factors describing the structures of the inci-
dent and target atomic systems. A simple exami-
nation of these factors, Z{’S{:)(K) and Z!*’S{2(K)
+|F(K) [P, shows that they decrease rapidly from
their maximum (large K) values as K becomes in-
creasingly smaller than the typical electron orbital
momentum; i.e., for K smaller than [2m E{] /2,
where Eg ) is the binding energy of jth atomic sys-

tem. The low-K region of the integral in Eq. (2) is
then primarily cutoff by the structure factor as-
sociated with the more tightly bound system, that
is, by the target atom. As the target atom’s
structure factor begins to cutoff the low K region
of integration, the incoherent scattering function
of the H™ ion is still a large fraction of its maxi-
mum value. As K becomes increasingly smaller,
so that it is less than the typical momentum of the
loosely bound H" ion, the contribution to the inte-
gral becomes virtually negligible. This suggests
that the incoherent scattering function of the inci-
dent ion may be given, as a first approximation,
by its limiting values.

0 for K<[2m EL)/2,
ZMVSGUK) =~ (42)

Z® for K=[2m,EQV]2.

Utilization of this approximation for the incoherent
scattering function in Eq. (12), together with the
analytic forms for the H and He factors given in
footnote 14, gives the free collision results of
Dmitriev and Nikolaev at high energies. The nu-
merical factors of Dmitriev and Nikolaev, which
appear in the expression for the leading term to
the electron-loss cross sections given by (14) and
(15), obtained in this way are 3.78 and 3.79, re-
spectively. These are not particularly bad esti-
mates, acknowledging the simplicity of their
model. The results presented in the previous sec-
tion do indicate that the factors derived in this
work are in much better agreement with the ex-
perimental data.

There are no published experimental data on the
elastic or nondetachment inelastic cross sections
at high energies. However, there are a few fea-
tures of the Born approximation for these cross
sections which should be mentioned and may be
accessible to experimental tests in the future. For
any negative ion, the elastic form factor has a
zero at a certain value of the momentum transfer,
K,. This is clear since the small and large K2
limits of F{(K) given by (3) and (21) are of the
opposite sign. For the case of H™, the zero oc-
curs at a,K,~0.78. As a result, there will be a
zero in the (angular) differential elastic cross
section® at a fixed scattering angle, §,. This
angle depends only on the incident energy, the
particle masses and the zero of the incident-ion’s
elastic form factor. From (6),

cos6,=1-2(a, K,)?/a*M?2p2. (43)

It is entirely independent of the structure of the
target particle. However, the percentage of the
total elastic cross section which lies inside of this
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angle depends strongly on the target particle. For
H targets it is about 11%, for He it drops to
around 3.6%. For increasingly higher Z{?’ tar-
gets, this percentage can be expected to decrease
rapidly as the bulk of the integral I, is determined
by increasingly larger values of K. Nevertheless,
this zero in the elastic differential cross section
for negative loss represents a rather unique pre-
diction of the Born approximation which may be
experimentally accessible.

The nondetachment inelastic cross section, if
excitation to a specific final excited state of the
target particle is considered, also displays a zero
in the differential cross section. In this case,
however, the location of the zero angle 6, depends
on the excitation energy of the final state. Again,
this feature is characteristic of nondetachment
scattering of all negative ions if only a single final
state of the target particle is considered (or a sum
over degenerate substates), and in principle could
be examined experimentally. (Of course, the an-
gular distribution of the cross section need not be
measured specifically, measurements at a fixed
angle near the zero, with the incident energy va-
ried appropriately would also display a zero ac-
cording to the Born approximation.)

The most interesting feature of the inelastic
cross section derived in Sec. IID is the predic-
tions of the Bethe theory for the nondetachment
cross section. At low energies the leading term
of the total nondetachment cross section, o_,,_,
(01,12 o1+ Opontoss, ine1) 1S lower than the total de-
tachment cross section. Because of the logarith-
mic factor in the incident velocity, the leading
term of the nondetachment cross section even-
tually exceeds the total electron-loss cross sec-
tion at sufficiently high energy. The energy where
this crossover occurs, that is, where o_, _, is
equal to o_, ,+0,, ,, is a little above 10 MeV for
atomic H targets and slightly more than 300 MeV
for He. This says in effect that as the energy in-
creases beyond these values, the loosely bound H”
ion has a higher probability of exciting the more
tightly bound target atom than it does of exciting
itself. The next leading terms for the detachment
and nondetachment cross sections are of the oppo-
site sign. Consequently, as the energy is de-
creased, the nonloss cross section again eventually
exceeds the total detachment cross section if only
the two terms calculated in this work are retained
for each case. However, the basic expansion im-
plicit in the Bethe theory approach for the nonloss
inelastic cross section is almost certainly no lon-
ger converging in this energy region.

In the case of the total electron-detachment cross
sections (23) and (24), the second-order term is
of the same magnitude as the leading contribution

at approximately 20 and 80 keV, respectively, for
H and He targets. At higher energies, the second-
order term rapidly becomes a small correction to
the leading term so that in the region where the
Born approximation is expected to be valid, above
200 keV or so, the series generated by this ap-
proach (of which only the first two terms have been
calculated here) appears to rapidly converge, pre-
sumably to the exact Born cross section. This is
of major importance in the success of the Bethe
theory for summed inelastic cross sections, that
the implicit expansion converges rapidly to the
complete Born cross section in an energy region
which is the same as that for the validity of the
Born approximation itself. For the case of the
nondetachment inelastic cross section of H™ ex-
amined in this work, the second-order term in
(36) is of the same order as the leading term at
significantly higher energies than in the case of
the electron-loss cross section. This occurs near
100 keV for H-target atoms and near 400 keV in
the case of He. This suggests that the series gen-
erated by this approach to the total nonloss cross
section converges in a region which is significantly
smaller than that for the corresponding total de-
tachment cross section, and that it most likely
does not converge in the full region of the appli-
cability of the Born approximation.

Examination of the “low-energy correction fac-
tor” v, given by (37) shows that the large values
of this term are due to the contributions arising
from the structure of the incident ion. The effec-
tive expansion parameter in the Bethe theory, as
presented here for the cross section 0,,,;,q, ine1s -
contains a factor which is essentially the expecta-
tion value of |¥ {2, For negative ions this is not
a small parameter. Clearly the problem is only
associated with the structure of the negative ion;
indeed, the Bethe asymptotic cross section for
structureless charged particle impact on these
same target atoms gives reasonable results.!? 24

The results of this work are insufficient to de-
termine conclusively the regions of convergence
of the series expansions for the various Born
cross sections. It should be noted, however, that
if this region is very small for the nonloss cross
section, a summation or rearrangement of the
series may be required (i.e., a more “exact”
evaluation of the Born cross section) which could
lead to an alteration of the results concerning the
relative sizes of o, _, and o, o+ o0, ;.%

V. CONCLUSIONS

The extension of the Bethe theory, for the as-
ymptotic cross section for charged-particle im-
pact, tothe case wherethe structure of the charged
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particle is treated explicitly, provides a means for
the accurate calculation of the total electron-loss
cross section for the H™ ion at high energies. The
method applied to the specific examples of H and
He targets gives results which are in good agree-
ment with experiment. The nonleading correc-
tions, which are important at lower energies, ap-
pear to be inadequate based on the very limited
data available in that energy region. This tenta-
tively suggests that contributions from the second
Born amplitude are required to accurately describe
the cross section there. Similar conclusions have
been reached by Kim and Inokuti for the case of
the detachment cross section for H™ due to electron
impact.!?

The leading contribution to the total elastic cross
section calculated in this paper gives results which
are physically reasonable, but as yet no experi-
mental data on this cross section have been pub-
lished in the asymptotic region. The total nonde-

tachment inelastic cross section, as calculated in
the modified Bethe theory, gives results which are
suspect. An examination of this cross section
within a different theoretical framework, or an ex-
perimental determination of the ratio o., .,/(0-;,,
+0.,,,) at various energies is suggested for some
future work.
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