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It is pointed out that the Wigner function f(r, p) is 2/h times the expectation value of the parity operator that
performs reflections about the phase-space point r, p. Thus f(r, p) is proportional to the overlap of the wave
function { with its mirror image about r, p; this is clearly a measure of how much s is centered about r, p, and
the Wigner distribution function now appears phyrically more meaningful and natural than it did previously.

In 1932, Wigner! associated with the quantum
wave function ¥(#) a phase-space quasiprobability
distribution function

f(?’,l))=%fds eI My — s)¥h(r+ ), (1)

or, in terms of the momentum representative
Wp) =112 [ ar em7/hy(a)

=2 [ are i ip-n. @

This Wigner “representation” has proved useful - ¥

for studying the passage from quantum to classical
mechanics and establishing quantum corrections
to classical results, and generally it enhances un-
derstanding by favoring the use of classical in-
tuition in quantum problems.?

At first sight the constructions (1) and (2) seem
rather ad hoc and devoid of any deep physical or
mathematical significance. A somewhat more
meaningful expression for f(#,p) was provided
by Moyal,® namely

f(»r,p)=h-zfdk fds gilkresp)/n (d)lei(kmsﬁ)/ﬁ'w ,
(3)

where Rand P are the position and momentum
operators, respectively, satisfying [I?,P] =in.
The form (3) is conspicuous to statisticians:

(@ |ei*R+sP)| 4y appears as a “characteristic func-
tion,” being the expectation of the operator that
corresponds to the function e?**s? in Weyl’s rule
of association.*

Here we wish to point out that f(7, p) has a much
more direct physical meaning, in that it is the ex-
pectation value of the parity operator about the
phase-space point 7, p.

To show this, let us first rewrite

Flr,p)=(2/n)| L, |9, (4)

where the operator IT,, has the following three
equivalent expressions in view of (1)—(3):

Hrpzfds e'zi”s/"{'r—s>('r+sl , (5)
=fdke-2£'kr/h|p+ k)(p_kl s (5')

=2—lil-fdkfds exp{(i/ﬁ)[k(ﬁ,-'r)+s(13_p)]}’

(5)

where |7) and |p) are eigenstates of R and B,
respectively. Let us now consider the special
case »=0, p=0, and denote II,_, ,,=II; we have

= fd*rl—r)(rl , (6)
= fdp IpX-p1 (6")
=_zlh_fdkfdsei(k§+sﬁ)/ﬁ. (6”)

From (6) or (6’) it is immediately apparent that II
is the parity operator (about the origin): it changes
¥(7) into ¥(-#) and J(p) into P(-p), or equivalently
(note that I =11),

NRN=-R, NPN=-P. (7

We now observe that II , may be obtained from II
by a unitary transformation

I1,,= D(7, p)IID(7, p)™* ; (8)
here
D(7,p)= ot RPN (9)

is a phase-space displacement operator, intro-
duced by Glauber® in connection with a different,
though related, type of phase-space representa-
tion of quantum mechanics, the coherent-state

representation. We have the actions
D(r,p)'BRD(r,p)=R+7
p : p . ’ (10)
D(v,p)*PD(7,p)=P+p,

and more generally
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D(», p)*F(R, P)D(v,p) = F(R+7,P+p)

[F(R, P) being a power series in R and P], whence
Eq. (8), in view of (5”) and (6”) [and noting that
D(v,p)t=D(-7, -p)].
Using (7), (8), and (10), we readily verify that
I, (R -N1,,=~(R-7),

I,,(P - p),,= ~(P-p);

(11)

that is, II,, reflects about the phase-space point
7,p and is thus the parity operator about that
point. Note that

(I,,)?=1. (12)

The Wigner function, Eq. (4), is thus 2/k times the
expectation value of the parity operator about 7, p.
Alternatively, f(7,p) is proportional to the over-
lap of ¥ with its mirror image about 7, p, which is
clearly a measure of how much ¥ is “centered”
about 7, p.

Let us now discuss some simple implications
of the preceding considerations.

We first observe that II,, has eigenvalues +1
[in view of (12)], and its eigenfunctions ¢ satis-
fying

L, |5 = |0k, (13)

are functions that are either symmetric or anti-
symmetric about »,p. They may be obtained by
displacing in phase-space functions of the same
symmetry about the origin, i.e.,

|¢2y=D(r,p) |09, (14)

where ¢* and ¢~ satisfy H|¢>*)= il¢)*>, or equiva-
lently ¢*(~7)=£¢X(r), $*(-p)=+d*(p).

Let us define projectors P;, and P}, on the spaces
of functions symmetric and functions antisymme-
tric about 7, p, respectively:

&
p?

Py =3(1+11,,) (15)

=D(7, p)P*D(7,p)*,

where P*=3(1+1I) projects on the space of func-
tions symmetric (antisymmetric) about the origin.
We have

(PL)*=P%,, (16)
P+ P,,=1, 1)
Py —Pp,=T,,. (18)

Let us now separate ¥ into components symmetric
and antisymmetric about 7, p:

B=hp+ Uy, (19)
where

Lz, =P, |4) . (20)
By (16) we have

@1 P[00 = 3 020 = 93 12 (21)
Then by (4), (18), and (21),

For, ) =@/, 12 = Nz, 112 . (22)

That is, the Wigner function equals 2/% times the
difference of the squared norms of the symmetric
and antisymmetric (about 7, p) parts of ¥. By (17)
and (21) we further have

@ly=1= vz, 12+ o5, 112 (23)

This implies [¢%,]<1, implying in turn, in view
of (22), that f(r,p) is bounded by the values -2/7
and 2/h:

~2/h<f(r,p)<2/n. (24)

This result was previously obtained by means of
Schwarz’s inequality.® We can now be much more
specific: the lower equality in (24) is realized if
and only if ¢ is antisymmetric about 7, p, i.e., of
the form (14) (-sign), and the upper equality if and
only if  is antisymmetric aboutr, p. One may, in
fact, construct  such that the corresponding f (7, p)
equal any preassigned value finside the interval
[-2/n,2/n). Indeed, given any two novmalized
functions ¢* and ¢~, respectively symmetric and
antisymmetric about the origin, set

l4y=D(r, p)c, | ¢ +c o). (25)

We then have (¥ | 1 [#)=c2 —c?and (|v)=c?+c2
We thus simply require that ¢, and c. satisfy
(2/m)(c%-c?) =fand c?+c2=1.
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