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We have investigated elastic deformations by external magnetic fields in flat samples of smectic -C with fixed
boundary conditions. In the calculations the internal parameters {tilt angle, density, interlayer distance) are
assumed to be fixed, distortions of the smectic layers are neglected, and only reorientations of the director
about the normal to the smectic layers are allowed. The problem is solved exactly assuming a one-dimensional

variation of the order parameter. Stability conditions and explicit expressions for the orientation of the
director as a function of position are derived for general orientations of the magnetic field. Solutions of the
variational problem can be classified according to the maximum deviation angle, 4, of the director. In general
there are several separated allowed regions of 4. When Freedericksz transitions occur, they are usually

discontinuous first-order transitions. The properties of the solutions are discussed and some special examples
are considered in detail. Transitions are investigated both as a function of the magnitude and of the
orientation of the magnetic field. Expressions for the free energy are also derived.

I. INTRODUCTION

The elastic theory of smectic C liquid-crystal
phases"' has been discussed by the Orsay group. '
It was shown there that nine elastic constants are
needed to describe the system when one assumes
that the interlayer spacing and the tilt angle are
constant. Rapini4 has used this theory to discuss
the behavior of single-crystal layers of smectic C
in magnetic fields. He has shown that the analog
of a Freedericksz transition should be observable
in this phase. Essentially these transitions involve
the rotation of the director on the cone, deter-
mined by the normal to the smectic layers and the
tilt angle.

The calculation of Rapini is patterned on the
nematic case. It is, in fact, equivalent to the de-
termination of a criterion for the stability of the
initial state when a magnetic field is applied along
suitable symmetry directions. We will show that
this procedure is, in general, inadequate. A
smectic C can have several locally stable configu-
rations in a magnetic field. In such a situation the
configuration resulting continuously from the ini-
tial state when the field is applied may remain lo-
cally stable (against small deformations} in spite
of the fact that configurations of lower energy are
available to the system. This gives rise to the
usual difficulties in interpreting experimental re-
sults when first-order transitions are involved.

Instead of checking for the stability of an as-
sumed state, we look explicitly for the solutions
of the Euler-Lagrange equations resulting from
the requirement that the sum of the magnetic and
elastic energies should be extremal. The mathe-

matical procedure in treating nematic slabs with
oblique boundary conditions is analogous to that
used by Onnagawa and Miyashita. '

We follow Rapini in restricting ourselves to flat
smectic layers and boundary conditions deter-
mining the orientation of the director at the two
boundaries of a parallel slab. Explicitly, we only
discuss Rapini's type-N geometry (see Fig. 1}
with layers parallel to the surface of the slab, but
the general case only differs in that it involves
different combinations of the elastic constants.

For simplicity, we assume that the magnetic-
susceptibility tensor is axially symmetric with its
unique axis defining the local orientation of the
director V. Experimentally this seems to be very
nearly the case, ' and the generalization of our re-
sults is straightforward. We discuss the solution
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FIG. 1. Schematic diagram of a smectic C single-
crystal layer.
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as a function of the orientation of the magnetic
field in the coordinate frame determined by the
boundary conditions. For most orientations meta-
stable states exist and first-order transitions have
to be considered.

It should be noted that the extension of these re-
sults to a situation with curved layers is not imme-
diate. It can be seen from the structure of the
elastic energy' that the orientation of the director
is coupled to the local curvature. When the layers
are not flat, this gives rise to volume-anisotropy
terms which complicate the calculation, and are
neglected in our calculation.

—,'X,H' sin'c. sin P

x [cos(Q —P }+cote. cot(]', (2.2}

where X, is the anisotropic part of the magnetic
susceptibility (assumed to be positive);

Xg X[) XL (2.3)

The total free energy per unit area of the slab (in
units of ,y jP—sin'c.sin'P) can then be expressed as

II. THEORY

The geometry, coordinate system, and notation
used in the calculations are described in Figs. 1
and 2. We consider a parallel slab of thickness
2L with boundaries and smectic layers parallel to
the xy plane. The director U is tilted by the tilt
angle P, and has an azimuthal angle P(U(P, Q)). As
boundary conditions we assume Q(0) = $(2L) = 0,
i.e., at the boundaries U, is in the xy plane. The
magnetic field has polar angles n, P [H=H(o. ,P }].
The only variable is then the azimuthal angle P,
which is a function of the position in the slab [Q
= P(z)]. The elastic free-energy density becomes'

(2.1)

and the magnetic free-energy density is

2 dzE 2 dg

—[cos(Q —P )+ cotn cot&]'],

(2.4)

where E is the sum of the elastic and magnetic
free-energy densities, and

$'=B,/(sin'o, sin'gy, H') . (2.5)

d 2
= [cos(O —P)+ cote. cot(]'

dg

The Euler-I. agrange equation obtained by re-
quiring that Eq. (2.4) be extremal, is

, —[cos(Q —P ) + cote cot/] sin(Q —P ) = 0,,d'P
dg2

(2.6)

which has a first integral;

Z

H

—[cos(Q —P )+ cote cot(]' =—G(4, Q) .
(2.7)

The constant of integration was obtained by ob-
serving that dQ/dz = 0 when Q takes on its maxi-
mum value 4. From symmetry, this maximum is
at z =L, i.e. , halfway between the plates.

From Eq. (2.V) we now obtain an expression for
the second integral of the Euler equation;

(2 8)

where (from Eq. 2.5)

h = (HLsinn sing)(y, /B, )' ' (2.9)

FIG. 2. Coordinate system for the smectic C phase:
xy is the smectic plane. The director in the undistorted
sample, Uo, lies in the xz plane at an angle + (the tilt
angle) to z. Pg) is the azimuthal angle of the (reoriented)
director U, and n, P are the polar and azimuthal angles
of the magnetic field H. The shaded area describes the
base of the cone of the allowed orientations of the direc-
tor.

is determined by the parameters of the problem.
For given h the energy is thus extremal when the
maximum tilt angle C is such that

dQk(4 ) [G( )gg (2.10)

Once we know the solution of Eq. (2.10) we can de-
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termine z as a function of P from

z(Q) 1 dP
L h 0 [G(4, p)]'~' (2.11)

For given Q we can substitute Eq. (2.8) into Eq.
(2.4) to obtain an explicit expression for the aver-
age free energy per unit volume E of the slab,

Since h is obviously real, one notes that Q is re-
stricted to those ranges for which

I L
dzl(z) dz =

0

dzdF (Q)
d@

dz
dP —.

G(e, y)-0; 0-y/C-l. (2.12) (2.13)

These restrictions and their dependence on P, o.
and P are discussed in Sec. III.

It is convenient to compute the energy as a func-
tion of C in the form

]„,(G(4, Q) —[cos(P —P )+ cotn cot)]']
t

(2.14)

This coincides with the true free energy when the
extremum condition [Eq. (2.10)] holds. In prac-
tice, it is convenient to solve Eq. (2.10) graphi
cally; we compute the integral h(C) as a function
of 4 numerically. Solutions are then given by the
points where h(4) has the specific value h. The
free energy for these solutions is then proportional
to E, computed from Eq. (2.14}. When several
solutions exist for given h (i.e. , 8 and L} it is pos-
sible to compare their energies. Some examples
are discussed in Sec. IV.

Our derivation yields only a small number of
stationary configurations for a given field, namely,
those given by the implicit expression (2.11),
where 4 satisfies Eq. (2.10). The lowest-energy
configuration is always of this type. In general,
however, these are not all the solutions of the
Euler-Lagrange equation [Eq. (2.6)]; stationary
configurations of higher energy do exist. There
are two points where our derivation can be gener-
alized.

(i) In choosing the integration constant in the
first integral [Eq. (2.7)] we assumed that there is
a maximum angle 4 for which (dP/dz)o = 0. This
excludes twisted configurations (analogous to cho-
lesterics) which are of course possible but always
have a higher elastic energy without any decrease
in magnetic energy.

(ii) A similar generalization is possible in pass-
ing to the second integral [Eq. (2.8)]. In the form
given we have assumed that dP/dz has a unique
sign, so that P(z) is a monotonic function of z from
Q = 0 to 4 [condition (2.12)]. Additional, nonmono-
tonic, solutions can be obtained if one allows more
than one extremum (dQ/dz = [G(4, p)]'~'= 0] where
one can pass between two monotonic branches
(dQ/dz = [G(4, Q}]'~') of the solution. Such solutions
necessarily have nodes (@= 0,z w 0, 2L). Thus,
one has solutions of the type we have considered
between any two nodes. The requirement that dQ/
dz should be continuous at the nodes then implies:

= [cos(4, -P )+ coto. cot&] = const. ,2=
noae

(2.15)

where the i, are the extremal values of Q in the
different intervals. This, together with the inte-
gral condition (2.8) for the interval between any
two adjacent nodes, determines the solutions.

III. NATURE OF THE SOLUTIONS

Before presenting some results of numerical
calculations for specific values of P and

a = —cotn cot&, (3.1)

P(P) = [cos(P -P ) —a]',
where

G(4 (jb)=P(4) —P(Q) .

(3.2)

(3.3)

The condition (2.12), 0~ P/4 1, then implies

P(@)—P(0)
P(4) has extrema when

dP(4)
d

= -2[cos(P —P) -a] sin(P —P) = 0 . (3.5)

For ~a ~&1 there are two minima [cos(Q -P) -a= 0]
and two maxima [sin(P -P)=0]. Examples of the
function P(P) for two special values of ~a~&1, are
shown in Fig. 3. When

~

a
~

& 1, there is only one maxi-
mum and one minimum.

The allowed ranges of 4 follow immediately from
Eq. (3.4), and the requirement that Q vary contin-

I

we want to discuss the general features of the func-
tion h(4) defined in Eq. (2.10). As noted in (2.12),
we require G(C, Q)& 0 for Q varying continuously
from zero to C, thus limiting the allowed ranges
of C.

To determine these ranges and the limiting values
of k(C) at the ends of the allowed regions, consider
the function
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FIG. 3. Schematic plots of
P(P) [Eq. (3.2)] for two val-
ues of a =-cote cot+. In
each case plots are given
for two values of the angle
P. The allowed regions are
drawn with heavy lines and
are separated by dashed
vertical lines.

0 7f'/2 -3v/2 -7f -7f/2 7f/2

uously from zero to 4. They are listed in Table I,
and for the cases shown in Fig. 3, are indicated
by heavy lines. Clearly the problem is invariant
under the transformation P - -P, 4- —4. Also,
since a reversal of the field (H- —H) cannot change
the torques, this transformation (a- -a, P -P —m}

does not change any results. It is therefore suffi-
cient to consider only the range a -0, 0-p&s.

We wish to investigate the behavior of h(4) [Eq.
(2.10)] as C approaches the limits of the allowed
ranges. The integrand in (2.10) diverges when

P(@)-P(4). This always happens when Q -4, but
can also happen at other points in the range of in-
tegration. There are three types of these poten-
tially divergent contributions to the integral h(4)
near the end points.

(i) Consider a region & near some point X in the
range of integration so that:

At the end point, A - 0. The relevant contribution
to h(4) is:

dx 2

t&+P'(X)x]'" tP'(X)]'"

x

c(4, y) =A+-,' lP'(x) lx',
and again'-0 at the end point. We have

(3.3)

(3.7)

which is finite as A-0. It follows that h(g) re
mains finite. Any general point within the allowed
range is of this type. Also the two points X = 0 and

I pl~ y'=
I
-m+ 2PI f» a=0 (see Fig. 3) belong

to this class.
(ii) P'(X)=0, so that

G(4, 0) =P(4) P(0) =&+P-'(X)x,

x=lX pl=~ and P(X)~0.

TABLE I. "Allowed" ranges of 4' lEq. (3.4)).
=arccos(2a —1)+p; @"=—arccos(2a-cosp)+p; p
=arccos(a); O~p&m.

(3.6} dx

(~ —.'IP"(x) I
')'"

Z/2

I~'x
~

(a) p&y

(b) p&v
I2a —cospl &i

(c) p&y
i 2a —cospi &1

0(a~g
(A) (P-~) -4"
(B) 0 —P
(c) c —p+~

{A) P —m 0
(B) C" -P
(C) @& ~p +g

(A) p —x 0
(B) 2P P+&

~ IP'(x)I '"
~, IP'(x)I '"

(3 9)

so that the integral diverges logarithmically (as
ln A) as 4 approaches the end point. The contri-
bution from the maximum at p near the end point
4' for a= cosP, P = m in Fig. 3 is of this type.

(iii) P(4) has a maximum at X, e.g. , X =P, for
a = 0 in Fig. 3. We want h(4) as 4- X:

(A) P —x 0
(B) 2P -P+~

G(4, 0) = -2 lP'(x) l(x'-x'),
X=X-4; x=X-Q; X&x&&,

so that the contribution to h(4) is

(3.10)
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j&'(x) ~
(~'-&')'"

~
&"(x)

x ln —+ (3.11)

which again gives a logarithmic divergence as
@-x.

Finally, there is one special case. When a= —1
and P =0,

For each plane the integrals Eqs. (2.8) and (2.14)
were computed for selected orientations of the
magnetic field by numerical integration in the re-
gions of allowed 4 values. The results of the
computations are presented as plots of h. and of F
vs C. Based on these plots we then discuss the
possible distortions in the director's alignment
and phase transitions.

A. Magnetic field in a plane perpendicular to Uo

P(C) = (cosa —1)'= —,'O' (3.12) For this configuration we have H U =0 l.e ~

for small 4. Thus

k4 =2
(4 4

C 4)1 /2

and one sees that

2/l 4I ((h(e)(4/~ e
l

(3.13)

(3.14)

so that there is a very strong 1/~ C
l

divergence as
4- 0. It should be noted that 4 = 0 is not really an
end point. However, for P = 0 as g- -1, two end
points converge towards 4=0. The 4

~

' diver-
gence is the limiting behavior of the logarithmic
divergence (for a& -1) in this limit.

IV. RESULTS AND DISCUSSION

In the following we analyze and discuss in some
detail a number of geometries. We first consider
a geometry in which the magnetic field is in a
plane perpendicular to U„ the direction of the
undistorted director. We then discuss three other
geometries, one in which the magnetic field lies
in the smectic (xy) plane, and two cases in which
it lies in a meridian plane with a constant azimuth-
al angle I8 = 0 and 130', and varying values of the
polar angle n.

a = —cotn cot/= cosP, (4.1)

and thus a is fixed by the value of p. Plots of I1

and E for selected values of P between 0 and v are
shown in Fig. 4. Note that plots for 11 -p are ob-
tained from those of P by the transformation C- —4 as expected for this geometry. It is clear that
4= 0 is always a solution (C,) in this geometry,
for any field, however, above a certain field one
obtains additional solutions.

As an example, consider the case P = 30' in Fig.
4. In addition to C, there are two concave branches
of solutions in the h(@) plots. The one for large
positive 4 corresponds to much higher energies
and is therefore not interesting. In the other
branch we have defined three "critical fields, "
h, „and h, . To understand the meaning of these
diffei erent solutions we consider the energy as a
continuous function of the maximum angle 4 which
is taken as an order parameter. Implicitly this
implies that 4 is somehow determined externally
and the Euler-Lagrange equation is, in general,
not obeyed at z(C). The solutions we have derived
are the stationary points of these E(C) energy pro-
files and can be minima, maxima, or inflection
points. In Fig. 5 are shown schematic diagrams
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FIG. 5. Schematic diagrams of the average free-
energy density as function of the maximum deflection
of the director @ at z =I.. (a) The magnetic field is
perpendicular to U0 at P = 30' and the various diagrams
correspond to increasing values of h. (b) The magnetic
field is in the smectic plane with h = 3.0, and the various
diagrams correspond to different values of P. The F val-
ues at the extrema are solutions of the Euler-Lagrange
equation and were taken from Figs. 4 and 7, respective-
ly, while the lines connecting the extrema are qualita-
tive. The motion of the "ball" represents phase transi-
tions that "must occur".

of F profiles for p = 30' and various h values. The
extrema in the plots are taken from Fig. 4, while
the smooth curves connecting them are qualitative,
and represent the expected trend in F as C deviates
from these extrema. Clearly in a11 cases, for
large

j
C ~'s the energy becomes large and positive.

Thus at low fields where 4, is the only solution,
this solution must be a minimum. As the field is
increased a point is reached, h„at which one
other solution (4'- -75') is obtained. Since the
energy at 4, is lower than that for O', C, must
correspond to the stable configuration and the
second solution must correspond to an inflection
point in the free-energy profile (see Fig. 5).

Above k, there are, in general, three solutions
for 4 (excluding the second high-energy branch)
and from the plots of F it follows that as long as
A, k,40 corresponds to a local minimum. The
other two solutions correspond respectively to a
local maximum (C„~) and a local minimum (C „).
As h increases the energy corresponding to 4
decreases until at k= h, the free energies of both
minima become equal. We define the value of C

at this point as O'. Above this value of the field
the energy corresponding to 4 „is lower than
that for 4, and a first-order phase transition can

d —sin'P P'+ sinP cosP Q'
dz

—(~ —~7 sin'P )P'+ (4.3)

occur. However, the transition may be hindered
by the barrier corresponding to C and there-
fore will not necessarily take place. As the field
is increased further a point is reached, A,„at
which 4,„=4,=0. This point corresponds to an
inflection point; the configuration becomes un-
stable and a first-order transition must result by
an abrupt slip of 4 from 40 to 4

g
We define

4 „at this value of I as O'. As the field is in-
creased above A;, there are again three solutions
for this branch, but now 4p is a maximum in the
free-energy profile and the local minimum at neg-
ative 4 's remains the more stable configuration.

There are two special directions for the mag-
netic field in this plane. When P = 0 the two
branches of solution are symmetrically located
with respect to 4, as expected, since positive and
negative distortions are equivalent. The field h,
corresponds to 4'= +114'and h, to 4'= +148'.
However, the critical field h, is infinite and a
phase transition does not necessarily occur. This
configuration was studied by Hapini for a nonaxial
magnetic susceptibility. Since we have assumed
uniaxiality, the second-order phase transition
found by him is not obtained in the present treat-
ment.

The second special geometry, also studied by
Bapini, corresponds to P = &v. Here k, = k, = h, = ~m,
and the phase transition is clearly second order,
with a critical field

H; (
—') — (4.2)

To sum up the results for the orientation in
which the magnetic field is in a plane perpendicular
to Uo, we plot in Fig. 6 the critical fields h„h„
and h„as well as the corresponding values for 4'
(in units of P -n) versus the angle P. It is seen
that for field orientations not too close to the y
direction there is an abrupt first-order change in
the director bringing C close to (-m+P), i.e. , to
the direction that minimizes the magnetic energy.
However, when the magnetic field lies near the y
axis (P -90'), the transition is second order (or
very nearly so) and the director will change
smoothly from the undistorted configuration as the
magnetic field is increased above the critical field.

It is instructive to discuss these results in terms
of an expansion of the free energy in the "order param-
eter" C as in l,andau's theory. For small Q we
can expand the free-energy density

d
&(~)= k' — f cos(e 0) c—osP j'-—

dz



E. MEIROVITCH, Z. LUX, AND S. ALEXANDER

0.75

We can thus determine h, from the coefficient of
(c',)';

II, =m/(2 sinP), (4 8)
0.50

I

0.25

2.25

since the expansion certainly gives the local sta-
bility of 4, exactly. The presence of a finite term
in (4')' assures that the transition is generally
first order.

For the special case P = 2m the coefficient of
(4')' vanishes and the transition is continuous with
critical field at

II =-,'m(= h,), (4.7)
2.00

l .75

as in Eq. (4.2).
When P = 0 the cubic term also vanishes. In this

case the coefficient of (C')' remains positive for
all fields (II,-~). The quartic term is, however,
negative and, as is seen in Fig. 4, the transition
is first order.

l .50 I

7l/6 m/2
B. Magnetic field in the smectic plane

For this plane n=&7t and

To satisfy the boundary conditions we can ex-
pand;

p(z) =QC, sin
k

It is clear from the form (4.3) that an instability
of the most unstable mode k= 1 is necessary if
one wants to get solutions other than It!=0. Re-
taining only this mode one has

(4.4)

4
+—sinP cosP(C, )'

—k(l —-,'sin'P )(C,)'+ ~ ~ (4.5)

FIG. 6. Plots of the critical fields h &, 52, h3 and the
corresponding angles @,4, @3 [in units of (—x+P)] vs
the azimuthal angle P for a geometry in which the mag-
netic field lies in a plane perpendicular to Uo.

a = -cote cot/ = 0 (4.8)

for all orientations of the magnetic field. Some
representative plots of h and E vs 4 are shown in
Fig. V. It is sufficient to consider the range 0 P
~ —,'g because, for g=0:

P(C',P)=P(4, m+P)=P( 4', m -P) -(4.9)

For general P, h(4) has two branches, a monotonic
branch increasing from zero for 4=0, which di-
verges atP, and, in the range -m+2P & 4!& -m+P
a concave branch which is finite at the upper end
and diverges at the lower end of the range (see
Fig. 3). Thus, for a finite magnetic field 4=0
is not a solution of the Euler-Lagrange equation
and there is a continuous distortion of the director
along the first branch as the magnetic field in-
creases from zero. Two special orientations are
P = 0 for which C = 0 is a solution and is, in fact,
the only minimum of the free energy for all finite
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4 for the magnetic field in
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(cotn cot+= 0),
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values of H, and P =-,'v, which is identical to the
case P =-,'v for a= cosP discussed above (Fig. 4).

As before we define the critical field h, as the
lowest field for which two solutions for 4 are ob-
tained. This corresponds to an inflection point in
the free-energy profile [see Fig. 5(b)]. Just above

k, there are three solutions for 4 . A minimum at
0& 4 &P, another local minimum but of higher en-
ergy at 4 & -m+P, separated by a maximum at
C 2 ~+ 2tl. As h increases the free energies at
the two minima approach each other but do not
cross. Consequently no abrupt jumps in 4 will oc-
cur at finite fields (except for P = —,'g when there is
a second-order transition).

One notes that the "third" solution describing the
maximum which moves to -m+ 2P as the field is
increased, disappears above some h value. Physi-
cally there must be a metastable maximum which
separates states which decay into the two minima.
Thus a third solution of the Euler-Lagrange equa-
tions must exist for all fields with a 4 between the
two minima. In fact it can be shown that the orig-
inal maxima deform continuously into symmetric
solutions with two nodes (C = 0), i.e. , belonging to
the second generalization b described in Sec. II.
These solutions are not drawn in Fig. 7, but for
the simple case p = 0 they can readily be derived
from those already drawn:

K(C)=h(4)+2k(-m+2P —4), -v+P&4&-m+2P .

(4.10)

An abrupt jump in 4 may, however, be effected
by the following experiment. The magnetic field
is oriented in the smectic plane at some angle
0&P& am and its strength increased to above the
critical field H, [Eq. (4.2)]. The director will then
lie along the positive branch with 0&4&P. When
the magnetic field is rotated in the smectic plane
to P = —,m, 4 will remain on the positive side of the
solution, but as P is increased beyond —,v the posi-
tive solution of 4 becomes metastable since it now

corresponds to the local minimum in the concave
branch of higher energy than that for the negative
4 solution and an abrupt jump to the negative
branch may occur. However, this process re-
quires activation energy since the two minima are
separated by an energy barrier. If the flipping
over of the director does not occur, it may still be
affected by increasing P to the orientation for which
h corresponds to the critical field h, . At this ge-
ometry the positive solution for 4 corresponds to
an inflection point in the free-energy profile and a
flip over to negative 4 must occur abruptly. The
changes in the free-energy profile on rotation of
the magnetic field in the smectic plane are sche-
matically illustrated in Fig. 5(b).
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FIG. 8. Same as in Fig. 4 for the magnetic field in the
meridian plane with P = 0' and varying values of
coto. cot+.

C. Magnetic field in meridian planes

In this section we consider geometries in which
the magnetic field is confined to planes with a con-
stant azimuthal angle P. A particularly interesting
case is the plane with P = 0, i.e. , the xz plane. For
this case with 0& n&-, m (cote. cot/&0) there is only
one solution for the Euler-Lagrange equation, i.e.,
4= 0 for all z, and therefore no reorientation of
the director on application of a magnetic field is
expected. However for n& ~w (negative cotn cot/)
more solutions are possible, and depending on the
magnitude of cotn cot/ the system might undergo
a first-order phase transition. In Fig. 8 are shown
h- and E-vs-4 plots for three negative values of
the parameter coto. cot). Clearly for all orienta-
tions in this plane C = 0 is a solution and the addi-
tional branches of solutions are symmetric about
zero as expected from the symmetry of the prob-
lem. The plot for cote cot/= -0.75 is typical for
orientations for which this parameter is between
zero and -1. The two limiting values 0 and -1
are special orientations of cases A and B, and
were discussed before. As in the discussion above
we may define a critical field h, corresponding to
the appearance of inflection points, and 0, which
the energies of the minima at 440 equal the en-
ergy at 4 = 0. For h values larger than h, the
minima at 4 4 0 are lower than the local minima
at C =0. However, there is no finite field corre-
sponding to A,, at which the energy surface at 4=0
becomes an inflection point or a maximum so as
to force the system to undergo a phase transition.

When cotn cot/ & -1 the situation is quite different,
as may be seen from the example corresponding
to cotn cot/= —1.25. It is easy to see, using a,

similar analysis as that described in connection
with Fig. 4, that in addition to h, and k, there is a
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FIG. 9. Same as in Fig.
4 for a meridian plane with

P = 130'.

finite field h, for which the energy at 4= 0 becomes
a maximum. Consequently in magnetic fields cor-
responding to h, a first-order transition must oc-
cur by either a right- or a left-hand twist of the
director around the z direction.

For geometries in which the magnetic field is
oriented in a general meridian plane (P 0 0) the
situation is more complicated. Examples of h-
and E vs diplo-ts f-or P = l30' and varying coto.'cot/
are shown in Fig. 9. For a fixed tilt angle P these
plots correspond to change in the polar angle n
from close to the z direction to -z. Although the
analysis of these plots is more involved than those
of the previous planes, the general picture is quite
similar. In particular it may be seen that it is
possible to effect an abrupt flip of the director by
rotating the magnetic field from, e.g. , a large
positive value of coto. cot( down to sufficiently low
values of this parameter. In this case the magne-
tic field strength is adjusted so that k&h„where
h, is the (first) critical field in the geometry cor-
responding to cotn cot/= -cosP (+ 0.64 in Fig. 9).
It may be shown by similar arguments to those

presented above for case B, that when the direc-
tion of the magnetic field (i.e. , o.) is changed
through this value of coto. cot/, a geometry may
be reached for which h will correspond to h, . At
this point the orientation of the director becomes
unstable and a flip over must occur.

As yet no direct measurements on layered sin-
gle-domain structures of smectic C were made to
check this theory. Some measurements, however,
were made on bulk multidomain samples. ' It was
found that the distortions caused by high magnetic
fields were irreversible, i.e. , after decreasing H,
the original orientation of the director was not re-
covered, contrary to the prediction of the present
theory. It seems that in these bulk samples, other
factors, such as the curvature of the smectic
plane, must be taken into account in order to ex-
plain the experimental observations.
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