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The ground-state wave function of an infinite system of fermions is approximated by the state-independent
Jastrow ansatz. In order to optimize the pair correlation function, the Euler-Lagrange equations of the
variational problem for the energy expectation value are derived. The short- and long-range behaviors of the
optimum pair correlation function are discussed. Application of graphical techniques and use of rigorous
results on the connection between the slope of the static structure function as k ~0+ and long-range Jastrow
correlations allow one to prove that the optimum pair correlation function behaves like 1+ O(r ') as r~ 00.
A connection is derived between the weight of the long-range correlations and the Landau parameters. As
simple examples the limit of Bose statistics and the electron-gas problem are considered. The consequences of
these investigations on numerical calculations and their relation to alternative expansion methods are
investigated.

I. INTRODUCTION

& =&(tlril it&/&i(ly&, (2)

but also the radial distribution function, the static
structure function, and transport coefficients. In
a first generation of work aiming at this point,
cluster-expansion techniques have been established
in close analogy to the cluster expansions of clas-
sical statistical mechanics. ' " A second genera-
tion of work carries out partial summations of

Jastrow theory has turned out to be a powerful
tool for the computation of the ground-state prop-
erties of many-body quantum systems. Application
of Jastrow theory to the Bose system 'He" and
the so-called homework problem' have yielded
convincing results and hopefully even allow the
prediction of a phase transition. "'

The current interest in a detailed and quantita-
tive description of neutron-star matter makes it
desirable to achieve an elaborate state of the the-
ory of Fermi systems which is comparable with
that of Bose systems. As long as we do not want
to go beyond Jastrow theory (by introduction of
n-body (n =3, 4, . . . ) correlations' or by use of
nonorthogonal perturbation theory'), the require-
ments of such an elaboration can be focused in

two steps.
(a) For a given Jastrow ansatz

A

0=++, F=-.... f(~;,), (1)
jc j

for the wave function (where the model wave func-
tion C is taken to be the ground-state function of a
system of 4 independent fermions) we need a
method. to calculate physical quantities in which
we are interested, i.e. , first the energy expecta-
tion value

infinite series of cluster contributions, which have
a well-tested analogue in classical statistical me-
chanics and in the theory of Bose fluids. " " Two
of these methods, the first of which retains order
by order special features of the Fermi system,
take Fermi statistics systematically into ac-
count. "'" This has recently been extended" to a
systematic method for obtaining the radial distri-
bution function and the liquid structure function.
It has been demonstrated to be well suited for the
incorporation of long-range correlations and the
study of the liquid structure function in the regime
of low momenta. It will be shown below to be most
appropriate for further investigations.

(b) Having found in step (a) a reliable approxi-
mation for the required physical quantities with
respect to some given test wave function (1), we
must now find a way to determine the 0Ptin&um

pair correlation function f(r) in the sense that it
minimizes the energy expectation value (2). This
problem, which is the subject of the present paper,
throws light on a number of difficulties which have

up to now not been solved in a satisfactory way.
We consider the energy expectation value (2)

with respect to the correlated wave function (1).
For simplicity we assume the Hamiltonian to be
of the form

e2
Vj + V

Pj's

m

with a state indePendent ce-ntral potential v(r)
Our system is assumed to contains. fermions in a
volume 0 with the number density p = A/0 = vkz/6m',

where v is the degree of degeneracy of the
single-particle states and k„ is the Fermi wave
number.

Assuming that the Hamiltonian is bounded below,
the variational problem
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5E[f]/ 5f='0 (4)

has a solution which gives an upper bound to the
ground-state energy. For practical reasons solv-
ing the full variational problem (4) is impossible
and one is therefore forced to use approximations
for E[f] which generally arise from a cluster ex-
pansion. (Here we neglect the possibility of
Monte Carlo calculations'" in combination with a
Feenberg expansion, " since the oPtimum Bose
correlation function may be a g«d correlation
function for Fermi systems, but will probably not
be the best one. ) The cluster-expansion techniques
available up to now have the disadvantage that they
break down for sufficiently long-ranged pair cor-
relation functions f (r) if they are truncated after
a finite order. It is easily shown that for this
reason the truncated expansion for the energy is
generally no longer bounded below, forbidding the
optimization of f (r) by means of a free variation. "

To overcome this difficulty, subconditions on the
pair correlation function have been introduced in
order to keep f(r) short ranged, i.e. , to keep the
"smallness parameter"

finite. "" Such a procedure is reasonable, since
it can be assumed that the main contribution to
the energy expectation value arises from the short-
range correlations in the system, and it is neces-
sary as long as no method is available to incorpor-
ate pair correlations which violate the condition

The method of enforcing a sufficiently fast
"healing" off(r) (i.e., approach to unity) is, how-
ever, to a certain extent arbitrary; the value of
& (or some related quantity") cannot, for example,
be fixed from first principles, but must be
estimated by convergence arguments. This free-
dom in the type of subconditions used therefore
results in an uncertainty in the numerical values
for the physical quantities to be computed which is
apparently not too large for the ground-state en-
ergy, but which can be enormous for example for
the compressibility.

Recent investigations of the Iwamoto- Yamada
(IY) expansion" have uncovered a special feature
of the Fermi system"'. By combination of finite
sets of cluster contributions it can be proven that
all divergent portions cancel for correlation func-
tions with an asymptotic behavior such as
f'(r) —I r' Fur-therm. ore, it has been shown that an
r healing of f(r) is necessary in order to affect
the slope of the static structure function in the re-
gion of small momenta. " Experimental results on
'He"" make it therefore most likely that long-

range correlations are necessary to give a satis-
factory description of Fermi fluids. It is the aim
of this paper to consider the variational problem
(4) and show that the oPtimum pair correlation
function is in fac t long ranged and of the r ' type.

Because of the unboundedness of the energy ex-
pectation value in a truncated expansion we are
not allowed to start our considerations with such
an approximation, but are rather forced to con-
sider the full variational problem (4) and try to
find features of the opti«u«pair correlation
function. These can be used to restrict the class
of test functions in a numerical calculation with
a A'uvcated expansion for the energy.

In order to do this we start in Sec. II by giving
a number of useful definitions required for the
further considerations. Section III is devoted to
the derivation of the Euler-Lagrange equation and
the study of the short- and long-range behavior of
the optimum pair correlation function. We will
see that the optimum f (r) has an r ' healing which
ensures us that the state of Jastrow theory
achieved in preceding publications is sufficient to
use the optimum pair correlation function.

Section IV gives the connection between the
asymptotic term of f'(r) —I derived in Sec. III to
quantities to be obtained in a cluster expansion.
To this aim we briefly outline the graphical repre-
sentation of the IY expansion. In order to obtain
general results we strictly follow the concept of
reducing all quantities of interest to expressions
of the highest possible connectivity. We will give
a connection between the weight of the long-range
correlation, the slope of the static structure func-
tion for small momenta, and the Landau param-
eters.

Although we are mainly interested in the study
of Fermi systems, we can consider the corre-
sponding Bose system by the simplification 4 =1.
Thus we are able to compare results for the
oPtimum Jastrow function derived from the varia-
tional problem with features of the true ground-
state wave function of the Bose system. We will
see in Sec. V that the asymptotic behavior of the
optimum Jastrow function coincides qualitatively,
but not quantitatively with the long-range part of
the wave function of the Bose system as given by
Feenberg. "

II. GENERALIZED DISTRIBUTION FUNCTIONS

In this section we strictly follow the methods
invented by Feenberg" in order to obtain a com-
pact representation of all quantities of interest,
modifying some definitions to make the descrip-
tion more appropriate for Fermi systems.

From the identity
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4*ED,.I'"4 +c.c.=@*I"'A,4 + c.c. will be useful later.
Starting with the generalized normalization inte-

gral I(P) we define generalized distribution func-
tions

which holds for any (not necessarily Jastrow) real
local correlation operator I", we obtain for the
energy expectation value

E=E,+ ) lyl'V*dr " dr

with

V*=g IV&1nEI + Z t)(r&y)
g 2~ g&g

E, being the kinetic energy of a gas of free fer-
mions. (In the definition of V* we deviate from
that given in Ref. 16.) In the case of a Jastrow
correlation operator (1) the quantity V* reduces
to a sum of effective two- and three-body poten-
tials:

Pi "i(r„~",r„;p)
—= —— ', I (p)

+1 A

(15)

which reduce for p =0 to the familiar distribution
functions. They obey the sequential relations

(4-m+1)p'" ')r, "r„„)3)= jd'rp' '(r~ ~ ~ "r„;),I)

(16)

In the special case n = 2 we define the g eneralized
radial distribution function

g(r„;p) = p 'p"&(r-„r„p)
i . . 1

V+ = — w, (i,j) + — Z w, (i;j, k),i' 2 jwjwk

with

(6) and the generalized liquid-structure function

S(k; p) I+p=-[g(r; p) g(;-p)]e'"' d*r (»)

u, (i,j)= v(re)+(k'im)-iV~ Inf(rw)~',

w, (i;j, k) = (5'/m)V; lnf (r&&) V, lnf (r&q).

(9a)

(9b)

(The symmetrization of w, (i;j, k) is possible and
generally performed, but is not useful for our
purpose. ) We are now ready to introduce the
generalized normalization inteI, ral

Pi"'(r r ) ~P& "&(r, r„; 0),

j)i "&'(r ~ r ) =- —p&"'(r r p)i
(19a)

reducing for P =0 to the familiar radial distribu-
tion function g(r) and the liquid-structure function
S(k), respectively. For brevity we write

I())) fs r; ~ a'=-r„.lt)l''8"~ .

and the generating function
S(k) =- S(k; 0), S'(k) -=—S(k; p)

a

8=0
(19b)

8 9E E= —lnI (P) — = —G(P)0
ep 8=0 ep 8~o

and the squared norm of the wave function

(12)

The obvious decomposition of E -E, into

with

(14a)

Ef,l-=d'r, ~ ~ d'r„)g~' g w, (rg), (14b)
I

2I(0

E[ 3 2 (0)
d r) d rAI)t)l' Z w(t j k),

(14c)

G(p) = ln I (p),

from which we obtain the energy expectatlon value
by means of

' (r) =g(r; 0), g (r) —= —g(r; p)
9

a=A.
(19c)

III. VARIATIONAL PROBLEM

From the energy expectation value (2) we obtain
by a straightforward variation with respect to f(r)
the Euler equation for the optimum pair correla-
tion function f (r). Using the definitions of Sec. II,
we can write it in the form

The low-momentum behavior of the liquid-struc-
ture function S(k) [which has been measured by x-
ray scattering in 'He (Refs. 22 and 23)] and the
quantity S'(k) will turn out to be of crucial impor-
tance for the discussion of the long-range behavior
of the optimum pair correlation function.

Throughout this section we have assumed that
all spin (and eventually isospin) summations have
been performed.
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(20)

pwr(r„) p~+(=r„)w, (r„) r fp'r, pw(r„r, r,)[w,(r„)+w(r„),]

lf ( 12) p(2)( ) td3 lf ( 13)p(3)(~ ~
)

—p(2) (r )1 Or 12 3 Or 12 2j 3 12

(We have dropped the functional argument f'(r) from P ', P(', and P(' .) This equation has been obtained
by Lee and Broyles, '4 with the explicit representation

+ —
~I d'r, d'r, [p(')(r„r„r„r,) p—( ()r») p'(()r 3~)]w 2(r„)

+ d'r3p' r» r» r, a3 r„r» r, +c.p. + d'r3d'r4p' r» r2 r3j r4 3 1 3 4 +c p.

+ — d'r3d'r4d'r5~ 1 2 3 4 5 p 12~ 3 4 ~3 r3 4 5 ' (21)

The latter representation (of P'(r)) enables us to
study the short-range behavior of the optimum
pair correlation function: We observe that all the
distribution functions P " occurring in Eqs. (20)
and (21) have a common factor f '(r») to cancel an
apparent divergence of v(r) and Vf (r)/f (r) for
r- Oorr-r, wherer, isanassumed hard-core radi-
us. Dividing Eq. (21)by this factor, we can collect all
the remaining divergent contributions. They are
contained in the first and fourth terms of the
right-hand side of Eq. (21). We end up rewriting
Eq. (20) in the form

()]t'/)n)V[Vf'(r) g(r)] =f'(r)[g(r)v(r) +H(r)], (22)

where g(r) =g(r)/f 2(r) and H(r—) are bounded func-
tions and Ip(r) does not in general vanish for van-
ishing f(r). Clearly, Eq. (22) reduces to the radial
SchrMinger equation for r- 0+. Since Eq. (22) is
only a rewriting of the Euler-Lagrange equation
(20), it can be used with a reasonable ansatz for
g(r) (in the lowest order it is the radial distribu-
tion function of a system of independent fermions)
and H(r) to determine the shape of f'(r) in the in-
teraction-dominated region. "'" If we want to im-
pose a subcondition of f(r) in order to optimize
only the short-range behavior, and introduce this
subcondition to our variational problem by means
of a Lagrangian multiplier, we should make sure
that the structure of Eq. (22) is not destroyed.
For example, it turns out that the condition

[P" (r) -P" (")ld'r =o (24)

as a first property of the optimum pair correlation
function. However, as we shall see below, this
relation is fulfilled by any pair correlation func-
tion in a Fermi system.

To proceed further we assume that the potential
v(r) is well behaved everywhere in order to guar-
antee that the Fourier transforms of all quantities
exist. We stress, however, that this assumption
is made only to make the calculations more trans-
parent and to allow us to work with the familiar
quantities introduced in Sec. II. The final results
do nest depend on our assumption. Thus we could,
for example, cut off an infinite repulsive part of
the potential at a certain level V„and take the
limit V0-~ at the end of the calculation.

The discussion of the long-range behavior of the
solution of the Euler equation (20) is most effi-
ciently performed in Fourier space. We define

f0(r) —etl(P)/2

and obtain, Fourier transforming Eq. (20),

(k'/2n2)[-k'u(k)S(k) +D(k)] = p 'S'(k),

(25)

(26)

equation as given in Eq. (20). From the fact that
the left-hand side of Eq. (20) is a gradient we con-
clude that the right-hand side vanishes asymptot-
ically (and does not tend to a constant of order A ',
as could be expected), yielding the relation

K:p [f(r) —1]' d'r & w0, (22) where the quantity D(k) is the Fourier transform
of

originally suggested by Jastrow, "hurts the short-
range behavior of f(r) as indicated by Eq. (22),
whereas Pandharipande's" generalization of the
separation method" does not.

Returning to the main point of our considera-
tions, the determination of the long-range be-
havior of f'(r), we again start from the Euler

&(r„)=p-'V. (Vu(r„)[p(')(r„) —p']

+ d'r3Vu 13 ~ rl 2 3 + 23

(27)

The important relation
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k ~D(k) - 0 (k 0+) (28) IV. DIAGRAMMATIC METHODS

S'(k) =S'(k)B (k),

the function B(k) being well behaved for short-
ranged potentials, and

(29)

8(k)- k (k 0+) (30)

for any pair correlation function in the case of
Fermi statistics. We therefore obtain, dividing
Eq. (26) by 8'(k),

k'p . k'u(k) . 8'(k)
(31)

which yields u(k) -P/k (k 0+) corresponding to
u(r)-P/2m'r' (r-~). Thus we have to be aware
that we may obtain an x ' behavior of the optimum
pair correlation function. A similar result has
been obtained for Bose systems: The t«e ground-
state wave function contains long-range correla
tions (LRC's) of Jastrow type

usL'„"(r) - —mc/m'If pr', (r -~), (32)

where e is the velocity of sound. We will see,
however, that the optimization of the Jastrow an-
satz yields for constant c a value which is slightly
different from (dp/mdp)'~'. Nevertheless, the con-
sideration of the variational problem and the com-
parison with rigorous results for the Bose system
give strong arguments for the existence of long-
range correlations in Fermi systems, although a
direct physical interpretation is not yet obvious.

An equation of type (26) has been obtained by
Pokrant and Stevens, "using the convolution ap-
proximation' for the higher distribution functions,
in which case 8'(k)-8'(k) (k 0+) for short-ranged
potentials and correlations such that jr'I(r)

~

&~

(r -~). Application of graphical techniques allows
one to prove that the same features are present in
an exact treatment and shows the results of
Pokrant and Stevens to be rigorous. The proof of
this is the subject of Sec. IV.

is easily proven to be a consequence of the sequen-
tial relations (16).

At this stage of our theory more information is
required on the behavior of 8(k) and S'(k) in the
region of low momenta. This information can,
for example, be provided by assumptions on the
small-k behavior of S(k) (one would assume a lin-
ear slope at least for the oPtimum Jastrow wave
function) together with a reasonable ansatz for
S'(k)." However, a careful study of the cluster
expansion has provided us with more information
on S(k) and S'(k), which will be derived in Sec. IV.
Our results are

Having obtained a general formula governing the
asymptotic behavior of the optimum pair correla-
tion function, we now turn to an analysis of the
quantities 8(k) and S'(k) with the aim of computing
the right-hand side of Eq. (31). To this end we
start with a cluster expansion for the generating
function G(P) at ti =0. The rules governing the ex-
pansion can be expressed very effectively in a
diagrammatic way, "originating from the Yvon-
Mayer technique for classical systems and gener. -.
alized by Gaudin et al."for Fermi fluids. A
systematic analysis of the expansion has been
given elsewhere, "so we can restrict ourselves to
surveying the graphical elements and the rules
governing the expansion.

The basic elements of any diagram are (i)
"internal" and "external" points (solid and open
dots), (ii) "correlation lines" (dashed lines), and
(iii) oriented "exchange lines" (oriented solid
lines) .

(i) An internal and an external point label the
coordinates r, of the ith particle. An internal point,
furthermore, indicates a factor p and integration
over the coordinate space of the particle involved.

(ii) A correlation line connecting the points r,
and r& represents a correlation factor

n(Iri —r; I) =f'(IrI —r; I) —1.
(iii) An exchange line represents the exchange

factor

l(kz~ r, —rz~) .[l(x) —= 3x '(sinx -x cosx)j.

Typical diagrams are given in Figs. 1 and 2.
The general rules which determine the graphical

construction are as follows:
(1) The cluster expansion for the generating

function is the sum of all biconnected (or "irre-
ducible") diagrams built from the graphical ele-
ments given above.

(2) Each point of a diagram is joined by at least
one correlation line.

(3) Each point of a diagram is joined by at most
one incoming (and one outgoing) exchange line. The
exchange lines form closed loops, each loop con-
necting P points of the diagrams, contributes a
factor (-v)' ~, defining the sign of the diagram.

FIG. 1. Three diagrams without external points
occurring in the graphical representation of the cluster
expansion of (0).
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FIG. 2. Diagrams with t4o external points. They are
all contributions to g (~) with one correlation line. The
three diagrams in the second line form al1. contributions
to L(x) with one correlation factor.

2

Ei,l
=

2
d'x, d'r, g(r,2),(r„) (33)

the radial distribution function g(r) It is shown.

FIG. 3. Simplest example of equivalent diagrams.

(4) The weight of each diagram with n points is
given by its topological multiplicity divided by n'I .

There is no need for the introduction of further
graphical elements representing certain combina-
tions of the lines defined here. We would end up
only with more complicated rules governing the
expansion and less transparency in our further
considerations.

Attention should be paid to the occurrence of
"equivalent" diagrams, i.e. , diagrams with dif-
f«e"f topological structure which have the same
value because of momentum conservation in the
uniform extended medium. An example of equiva-
lent diagrams is given in Fig. 3, and a general
discussion may be found in Ref. 17 (see also Refs.
10 and 12). We obtain the final —but not always
useful —graphical representation of G(0) by col-
lecting all equivalent diagrams.

From the graphical representation of G(0) we
now construct the energy expectation value as fol-
lows'.

(1) The contribution Ei» is obtained from G(0)
by replacing in turn every correlation line by a
"two-body effective interaction" line, representing
a function f'(r;, )w, (r „).

(2) The contribution Ei» is obtained from G(0) by
replacing in turn every connected pais of correla-
tion lines q(r, &)q(r&~) by a pair of "three-body ef-
fective interaction" lines f'(r„)f'(r, „)su,(r;.; r&, r~)
before collecting the equivalent diagrams.

From E&» we obtain by comparison with

to be the sum of all irreducible diagrams with two
external points ("irreducible 1-2 diagrams") which
are permitted by the rules given above. "

The method of obtaining compact expressions
for the radial distribution function has been de-
scribed elsewhere '4 thus we can restrict our-
selves to giving the necessary definitions and the
main results. For the definitions of graph theory
we refer to Ref. 31. It is useful to define the fol-
lowing quantities:

g-(r), the sum of all diagrams contributing to
g(r) with no exchange lines joined to the external
points. (The trivial diagram representing the
unity function is not included. )

B(r), the sum of all basic diagrams with more
than one correlation line and «exchange line
joined to the external points.

P(r), the same as B(r), but with exchange lines
joined to one selected external point (say r,), times
a factor of p. By symmetry, P(r) is —,

' of the sum
of a)i basic diagrams with exchange lines joined to
any of the external points.

L(r), b(r) plus p times the sum of all basic dia-
grams with exchange lines joined to both of the
external points.

The sets of diagrams contributing to the func-
tions B(r), P(r), and I (r) are formed from the
"renormalized correlation line" g-(w) rather than
from g(r) The .definition of basic diagrams has
been extended in the sense that a basic diagram does
not contain any proper 1-2 subdiagram, with noex-
change lines joined to its external points except
the single line gDD(r;&).

For the Fourier transforms 8(k), P(k), and L, (k)
the important relations canbe shown(see Appendix):

IB(k)l &-

Ik-'P(k)I &

(k-0+),

(k-0+),

Ik [L(k) Sz(k)]I&" (k 0+)

(34)

(35)

(36)

Here, Sz(k) is the liquid-structure function of a
system of independent fermions. " It is the lowest-
order contribution to the function L(k).

With an analysis similar to that given in Ref. 31
(see al.so Ref. 32) for classical gases we obtained
the generalized hypernetted-chain equations for
Fermi systems":

g (r) =f'(~) exp[a(r)+N(~)] —1, (37)

N(k)=g (k)f1-[1-P(k)]'}/[1+pg (k)L(k)].

(38)
Equation (38) may be used as a definition of the
redundant function N(r) [or N(k)j. For its diagram-
matical interpretation see Ref. 31.

In terms of the quantities defined above the sta-
tic structure function can be written
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S(k) =L(k)[1+pgnn(k)L(k)]/[1 —P(k)]' (39)

In the regime of low momenta the behavior of S(k)
depends crucially on the long-range part of q(r)
From Eqs. (34)—(39) we obtain

nected bye, (i;j, k) with the constituents of the
radial distribution function. Suppressing technical
details we obtain for the right-hand side of Eq. (31)
(with y=ynn+2az yns+az ysn)

r-'Z(r)-p/2v' (r- )

~k 'S(k) - ar/(I —P par) (k 0+) (40)

lim 2
= py+ lim k'u'(k).

0+ m ~ to+
(44)

[ar—= 3/4k+ is the slope of Sr(k) as k- 0+] F.or cor-
relations rg(r)- —y (r-~), which might be ap-
propriate for the investigation of the electron-gas
problem, the only consistent solution of Eqs. (34)-
(39) yields

r'g (r) - -1/2m'pa, (r - ),
k 'S (k) - 1/4v py, (k- 0+),

(41)

gDD(k) ynn

k 'Fag(k) ynn &-
k 'gas(k)-yss &"~

(43)

The function g'(r) is now obtained by summing
all possible combinations of the quantities gnn(r),
g~(r), and gzs(r) and the pairs of diagrams con-

where Eq. (41) ensures that the quantities B(r),
P(r), and L(r), which have been defined to be dia-
grams in terms of the "renormalized" line gnn(r),
exist.

The graphical representation of the function g'(r)
[and therefore S'(k), which ean be represented more
easily] is obtained from the radial distribution
function g(r) by analogy with the derivation of the
energy from the generating function G(0). We must
(1) drop all contributions to g(r) which contain no
correlation line, (2) replace in turn each correla-
tion line by a two-body effective interaction line,
and (3) replace (before collecting equivalent dia-
grams) each connected pair of correlation lines by
a pair of effective three-body interaction lines.

Consequently, we can represent g'(r) as a sum of
nodal and non-nodal diagrams. In each diagram,
only one non-nodal subdiagram containing effective
(two- or three-body) interaction lines can occur,
or two connected non-nodal subdiagrams, contain-
ing the effective three-body interaction lines
(k'/m)f(r, ~)V, f(r,~) ~ V,f (r,~)f(r;,), where r& is a
field point of one subdiagram, r~ of the other, and
r& the node between them.

We denote the sum of non-nodal subdiagrams of
g'(r), which contain effective two- (or a pair of
effective three-) body interaction lines and ex-
change lines joined to none, one selected, and both
of the external points, by g~~(r), g~(r), and gnus(r),
respectively. Along the same lines as in the proof
of Eqs. (34)—(36) we can show for the Fourier
transforms of these functions (k 0+)

A set of useful formulas for the computation of
y», y~~, and y» is given in the Appendix.

In combination with Eqs. (31) and (40) we find
for the strength P of the long-range correlations
an equation

P' —2p/par = my jk'p (45)

or, solving for the slope e of the static structure
function as A', - 0+,

a '=ar'+4pym/0'. (46)

In general, the quantity y does not vanish. Equa-
tions (45) and (46) give us therefore, together with
Eqs. (30), (40), and (43), a tool for the calculation
of the long-range part of the optimum pair cor-
relation function.

The physical interpretation of the slope a of
S(k) as k-0+ has been subject to several discus-
sions. "'" An interesting relation to Landau theory
can be established if we neglect the dependence of
the optimum f (r) on the quasiparticle distribution
function: In this case, cluster expansions for the
Landau parameters

Fl —g (gas )

can be derived in analogy to the expansion for the
energy expectation value. A direct comparison of
the cluster contributions (AE))„and the expansions
for y», y», and y~~ given in the Appendix yields

(48)

with

Pi=-(2f —2)t/[2" '(I —1)i(1+1)i],

and therefore

(49)

4E& —- Z/2

(5o)

A more detailed derivation of expressions for
Landau parameters within our framework will be
given elsewhere.

Using the experimental values E0=1P.8, E;
=6.25 given by Abel et aI,."and neglecting all E;
for I & 2, we obtain from Eq. (50) a/a+ =0.582, in
excellent agreement with the result a/ar =0.575
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given by Widom and Siegel, who obtained it by a
completely different formula, but also by applica-
tion of Landau theory. The agreement with the
experimental value o/nr = 0.4 is, however, not too
satisfactory. The reason for the deviation may be
the neglect of more complicated correlations by the
simple Jastrow ansatz (1) [which apparently causes
Eq. (50) to have a simple form] and the neglect of
the dependence of f (r) on the density.

(~)
n n

(51)

where e„-=(~)„/p" 'p depends on density only via
the density dependence of the pair correlation
function f(r). The function g'oo(r), which is the
only surviving contribution in Eq. (43), is now

easily obtained from the energy expectation value:
To obtain all n«-«d«n-particle diagrams with
two external points we have to make in all &&«-
ducible n-particle diagrams two points external.
This can be done in —,'n(n —1) ways. Fourier trans-
forming and taking the limit k 0+, which is equiv-
alent to integrating over coordinate space, leaves
us with n(n —1)/20 times the original diagrams. We
therefore obtain from Eq. (51)

~ n(n —1) (aE)„
yDD ~ 2p

~ n(n —1)
~n~

n~2

and therefore

(52)

PyDD = —P ——=- mQ+,
Bp Bp

defining the quantity c*, which has the dimension
of a velocity. For the partial differentiation in

V. DISCUSSION

To get a feeling for the importance of the density
dependence of f(r) and the limitations of the
Jastrow ansatz (1) we consider the simple limit of
Bose statistics. Here, it is known that the true
ground-state wave function contains long-range
correlations of Jastrow type" Isee Eq. (32)].
Furthermore, the limit o. =lim~, +k S(k) is
known to be n = 5/2mc.

Within our framework, we obtain a theory of the
Bose system by dropping all contributions which
contain exchange lines, or, equivalently, taking
the limit k~-0, v ~, p fixed. The energy ex-
pectation value is now the sum of all irreducible
diagrams with one effective two-body (or a pair
of effective three-body) interaction lines. Class-
ifying with respect to the number of Particles in-
volved, we can write the cluster expansion in the
form

Eq. (53) with respect to p we understand that f (r)
is kept fixed.

From Eq. (46) we now obtain in the limit of Bose
statistics (i.e. , ar -~)

S(k) - 8 k/2mc * (k 0+),

or, equivalently,

u(r) --mc*/v'hpr' (r-~).

(54)

(55)

The quantity c* is immediately seen «t to be the
velocity of sound c = (dp/mdp)' '. Recalling that
we have optimized f(r) for any density, i.e., that
we have the conditions 5E/5f=0 and

(d/dp)5E/5f =0, we obtain

O'E, df(r, ) df(r, )
dP dP

(56)

i.e., c* is larger than the velocity of sound under
the weak assumptions that the Jastrow state is
@tabb~& and that the gptjm~m pair correlation func-
tion is density dependent. The latter holds, as we
can see from Eq. (55), provided that the equation of
state in the density region under consideration is
not of the special form P -P,- p'. We find that our
simple Jastrow ansatz (1) for the wave function
gives qualitative, but not quantitative, coincidence
with rigorous results on the static structure func-
tion. Obviously, this is merely an effect of the
simplicity of our ansatz (1). The difference
c*'—c' may, however, indicate a region where our
approximation is reasonable and give a feeling for
the density regimes where more complicated cor-
relations become important. Furthermore, Eqs.
(53) and (54) may give a consistency test for opti-
mization procedures which have been developed
for Bose systems'" and appear to be easier to
use for numerical calculations than the method
presented here.

An iterative optimization procedure, which is
similar to the paired-phonon analysis (PPA)" for
Bose systems, unfortunately does not yet exist for
Fermi fluids. The method presented here seems to
be an attractive way to obtain an optimum f (r)
without running into the difficulty of the unbounded-
ness of the energy expectation value or having to
argue about subconditions which cannot be derived
from first principles. The asymptotics of the cor-
relation function are fixed by Eq. (45); its short-
range structure may be optimized either by Eq.
(22) or by a Ritz variational approach. The expan-
sion (52) for Bose systems may give an estima. te
for the distinct contributions to the cluster expan-
sion of y. Because of the factors —,'n(n —1) we have
to take account of a considerably slower conver-
gence of the series. In particular, truncating the
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expansion (52) after the lowest-order contribution
(bE)„we obtain

first of the equations (43) is no longer valid, and
the lowest-order contribution to g~v~v(r) if of the
form

o.(,') = ~r'+4m(bE), /Ak' (57)
(58)

For 'He, (bE),/A is the leading contribution to the
binding energy and should be negative in order to
guarantee a sufficiently fast convergence of the
expansion for the energy, which yields e&n~. We
see that the lowest correction to ~ is of the wrong
sign and has to be overcompensated by the higher
contributions. In view of the relatively bad con-
vergence of the cluster expansion of y, summations
of infinite partial series are highly desirable.
However, having adopted the scheme of incorpor-
ating exchange contributions properly, these sum-
mations seem to be purely technical. Because of
the close relation between y and the Landau param-
eters the same argument holds for the latter, too:
Computations of transport coefficients in the low-
est order of our cluster expansion may be com-
pletely misleading. "

We emphasize that our result on the asymptotics
of the optimum pair correlation function depends
essentially on the features S(0+) =S'(0+) =0. These
features can be shown to be present order by order
in a cluster expansion for g(r) or g'(r), if we
classify with respect to the number of correlation
lines involved" [power-series (PS) classification"].
However, a factor f'(r) =q(r) +1 is needed in the
radial distribution function in order to cancel a
strong repulsive part of the potential. Any approx-
imation for the radial distribution function ex-
tracted [by use of Eq. (33)] from a, truncated ex-
pansion for the energy will therefore not rigorously
yield S(0+) =0. Even in a reliable approximation
for the energy expectation value, which is bounded
below and allows therefore for a free variation
with respect to the pair correlation function, we
can not hope to determine the optimum f (r) by
means of a variation of the energy expectation
value. We are, on the other hand, not forced to
extract S(k) via g(r) from some approximation for
the energy, but may rather use more suitable ap-
proximations (e.g. , the PS expansion). We are
therefore able to compute lim, „[S'(k)/S(k)'] order
by order without any assumptions on the potential.
An additional summation of the perturbation
series, as suggested by Talman" (who arrived at
our results in the lowest order of the PS expansion,
but unfortunately does not give relations to physi-
cal quantities), seems therefore avoidable in our
context.

The fact that after the generalized hypernetted-
chain summation is performed our expansion is
even applicable for r ' correlations allows us to
consideration the electron-gas problem. Here, the

yielding

+ k'u'(k) (k 0+).S(k)' k' '
4m (59)

[In all higher-order contributions to g~~(r), and in

g~~(r) and gs~s(r), the potential v(r) is multiplied
with functions which decrease sufficiently fast
asymptotically. ]

Now, Eqs. (31), (41), (42), and (59) give

u(r) =e'/(2hur»r) (r -~), (60)

with ~» =—(4ve'p/m)'t' being the plasma frequency.
We thus have reproduced the results obtained by
Bohm and Pines" and those of several other ap-
proximation methods. "

The analysis presented in this paper gives not
only a tool for the computation of the optimum
pair correlation function in Fermi systems (and
therefore of all physical quantities of interest),
but also allows for a critical investigation of dif-
ferent cluster-expansion techniques from the point of
view of their suitability in an optimization procedure.

A considerable amount of work has been
done to renormalize the IY expansion in momentum
space."" This type of renormalization yields an
expansion which can be considered as an analog to
the activity expansion of classical statistical me-
chanics"; it is also so far the only cluster-ex-
pansion technique for Fermi systems for which
rigorous results on the convergence behavior have
been derived. " Restricting ourselves to the Jas-
trow ansatz for the correlation function, this
means that our expansion is no longer irreducible
in coordinate space. Therefore this renormaliza-
tion aims in just the opposite direction to what is
experienced in classical statistical mechanics and
in the theory of Bose systems, namely, that an
expansion converges better with higher connectiv-
ity of the distinct contributions. In Fermi systems
we even lose one more advantage of the irreducible
expansion: There is no longer a cancellation of
divergent portions in the case of long-range cor-
relations. It is therefore impossible to use the
optimum Jastrow function in this type of renormal-
ized expansion. These arguments are supported
by an extensive numerical study by Nitsch. "

The situation becomes less clear if we admit
more complicated correlation operators. " Here,
it is still open whether one should prefer an ir-
reducibility in &&~entu~ space rather than in
coordinate space. But even in this case the un-
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renormalized IY expansion fulfills automatically
order by order exact properties [as g(r) - 1

+0(Q ') (r-~), and, after some reordering in
analogy to the PS scheme, fulfills S(0+, P) =0],"
whereas the renormalized version does not.

Other approaches perform distinct summations
of partial series in order to reduce all quantities
to diagrams of higher connectivity in coordinate
space. All these methods have originally been
constructed to treat short-range correlations
only. "'" In particular, in the method of Fantoni
and Rosati" the possibility of incorporating long-
range correlations has not been investigated. It
would be interesting to see whether these alterna-
tive techniques —which might be of equal usefull-
ness as long as only short-ranged pair correlations
are considered —are also suitable for the full, un-
constrained variational problem.

For the computation of y~ we consider a dia-
gram with exchange lines and at least one correla-
tion (or interaction) line joined to one of the ex-
ternal points (say, r,). It can be written in the
form

G((r—, r, ),) = fd'rG tr„r„r)l(k r„): (A2)

With the same weight the contribution

D.(Ir, —r.l)

d'r, d'r G»(r„r„r,)l(kyar»)l(kyar„) (A3)
y

occurs in our expansion for gddkdd(r), which has +o
correlation line joined to the external point r, .
From the relation
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APPENDIX: PROOF OF THE RELATIONS

(34)-(36) AND (43)

The two proofs follow the same linis. The
only difference is that the diagrams forming
the sets g~~(r), g~~(r), and gss(r) contain effec-
tive interaction lines, wherea, s B(r), P(r), and
1.(r) do not.

The evaluation of

ydkD= lim g''DD(k)
k~ p+

is trivial. By definition we have

we obtain that the sum lim» „[D,(k)+D, (k)] van-
ishes. The quantity of interest, d/dk[D, (k)

~ +D,(k)]I„„,is most efficiently computed intro-
ducing cylindrical coordinates in Fourier space.
After some elementary manipulations we arrive at

„—[D,(k) +D,(k)]I,.„
=~+ d'r»d'r, Gg~ r~ r2 r3)or13~F

The computation of y» is similar: We start
with a contribution to gz'z(r) with exchange lines
and correlation lines joined to both of the external
points. It can be written as the form

G„((r,—r.)) =f G ir„r„r„r)

&& I (kyar»)l (kyar 2d) d'r, d'r, . (A6)

yg)g)
= d rgb)gp 1 (A1) With the same weight the contributions

D»(Ir, —r, I) = ——
It Gss(r„r„r„r,)l(k~r»)l(kyar»)f(kyar„) d'r, d'r, d'r, ,

G ((r, —r I)= — fG (r„r„r„rJl(k r )ltk r )l(k r„)d'„rd'r„d'r, ,

2

D»(I r, —r, I) = —', G»(r„r„r„r,)l(k~r»)l(kyar»)l(k~r„)l(k„r„) d'r, d'r, d'r d&r (AV)

occur in gsd2(r), which has no correlation line joined to r„r„or both, respectively. The computation of
limk, -(), k '[D„(k) +D»(k) +D»(k) +D»(k)] is again elementary and most efficiently performed introducing
cylindrical coordinates in Fourier space. After some lengthy calculations one arrives at



VARIATIONAL PROBLEM IX JASTRO% THEORY

lim k '[D„(k) +D„(k) +D„(k) +D„(k)]
%~0+

=n 'P (- )('( S)+ ))
I' f G r(r„r„l„r)j (r„S )j (r„S )j', (rrr S (r„,r„l'td'r„d'r d'r, , (AS)

with

4 0
xP, (x) dx. (A9)

The J',(x) are the Legendre polynomials. The coefficients b, are found to be

b
1

0 27

l odd,

(A10)

for /) 2.
The proof of the properties (34)-(36) is the essential step in proving by induction the existence of the

power- series expansion for long-range correlations.
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