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Effects of the transition zone on the surface tension of Ar near the triple point
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The effect of the transition zone on the surface tension of Ar near the triple point is reexamined. The surface
tension is calculated from the Kirkwood-Buff formula for the cases of a linear density profile and also a cubic
profile and the formulas differ from those previously obtained by Fitts. The realistic Barker-Fisher-Watts
potential is used and the radial distribution function in the bulk liquid is taken from experiment. Several
approximate representations of the distribution function in the transition zone are used. The results indicate
that the surface tension is a slowly varying function of the thickness of the transition zone, and that Fowler's
step-function profile does not introduce substantial error. When this value is combined with the three-body
nonadditivity contribution, the total tension is significantly smaller than the experimental value.

I. INTRODUCTION

Recently Present and Shih' extended the Kirk-.
wood-Buff (KB) molecular theory' of surface ten-
sion to include the three-body interactions. As-
suming a step-function profile (Fowler), '

a, super-
position triplet-correlation function (Kirkwood),
and a triple-dipole interaction (Axilrod-Teller), '
the nonadditivity correction y, to the surface ten-
sion was expressed as an integral containing the
radial distribution function g(r) of the liquid as
the weighting factor. Taking the neutron diffrac-
tion data of Yarnell et al. ' for liquid Ar at 85 K to
represent g(r), the resultant y, for Ar at 85 K was
estimated to be -4.5 dyn/cm. This value is in
good agreement with the value of -4.0 dyn/cm at
84'K calculated by Lee, Barker, and Pound' using
a completely different Barker-Henderson (BH)
pe rturbation theory. '

However, difficulties arise when the nonadditiv-
ity correction is combined with y„ the surface
tension computed in the Kirkwood-Buff-Fowler
(KBF) approximation from realistic pair potentials
for Ar using the same g(r) data. ' The total surface
tension (y, + y, ) gave 9.2 dyn/cm for the Baker-Fisher-
~atts potentiaie and 10.5 dyn/cm for the MSV-III po-
tential of Parson, Siska, and Lee"as compared to the
experimental surface tension of 13.1 dyn/cm. This
difficulty is nevertheless absent in the calculations
of Lee, Barker, and Pound. ' Their estimation of
the two-body contribution was 16.87 dyn/cm based
on the Baker-Fisher-Watts potential and the BH
perturbation theory, and 16.18 dyn/cm based on a
Monte Carlo model using a Lennard- Jones 12-6
potential. The total surface tension of 12.88 dyn/
cm at 84'K based on the BH perturbation theory
is much closer to the experimental value of 13.45
dyn/cm than that of the KB theory. A more recent
Monte Carlo calculation by Miyazaki, Barker, and
Pound" based on a direct evaluation of free energy

leads to a larger value of 18.3 dyn/cm for y, . And
the Monte Carlo calculation by Chapela, Savilla,
and Rowlinson" leads to an even larger value of

13

Both the BH perturbation theory and the Monte
Carlo method possess a smooth transition zone
between the liquid and vapor. It is, therefore,
desirable to extend the KBF calculation to a more
realistic profile for a possible conciliation of the
difference between the estimations of y, . Calcula-
tions along this direction already exist. Using
the incorrect extensions of the KB formula for the
smooth profile by Fitts, " Freeman and McDonald
calculated the dependence of the surface tension on
the transition zone with a linear, a cubic, and an
exponential profile. " From a Monte Carlo numer-
ical integration with a Lennard- Jones 12-6 poten-
tial, their resultant surface tension gave 13.7
dyn/cm at zero width (Fowler step-function ap-
proximation). ' For the linear and the cubic pro-
file, this value remained constant when the total
width of the transition zone d was less than d„
the distance of closest approach of the molecules
in the liquid [g(do) =0]. It then rose rapidly to a
maximum of 16-17 dyn jcm for d in the region be-
tween d, and 2d, . This feature did not exist for
the exponential profile. By contrast, the surface
tension mostly decreased slowly as d increased.

In the following we shall calculate the surface
tension y, for several liquid density profiles. In
order to probe the structures of the transition
zone, we shall also introduce several phenomeno-
logical radial distribution functions in this region.
The latter extension increases considerably the
algebra in calculating the traditional superficial
densities in the KB formulations. It is preferable
to develop a shorter alternative algebraic proce-
dure bypassing the Gibbs dividing surface and the
superficial densities. Our resultant formulas in-
clude the terms that Fitts" has obtained but there
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are additional terms that he has omitted. As a
consequence, the dependence of y, on the width of
the transition zone is also different from that of
Freeman and McDonald. "

~ 0 to be effectively zero. The density of the liq-
uid Ar is taken to be a constant p, for z & d. In
between the two layers the liquid density profile
is taken as either a linear profile

II. EXTENSIONS OF KIRKWOOD-BUFF-FOWLER FORMULA
P(z)/P, =zjd, 0&z &d

or a cubic profile

(2a)

Starting from the Kirkwood-Buff formula' for the
two-body contribution to the surface tension

oo 2 2

y, = — dz, p(z, ) d~„p(z,)
~oo 12

&(
~ ») g (2)(z

du&/'

12

we shall take the vapor-phase density occupying z

P(z)/P( =3z'jd' —2z'/d', 0 &z &d . (2b)

When both z, and z, are in the bulk liquid, there is
no ambiguity for the radial distribution function,
g, (r»), which we take from the neutron diffraction
data of Yarnell et al. ' When z, and/or z, are in the
transition zone, the g ' is, however, uncertain.
Because of possible mixing of the liquid and the
vapor, we shall therefore parametrize it in the
following ways:

no-mixing,

g (zg&z2$») g j( 12)

linear-mixing, "
g, (r„)+ [1 —(z, +z,)/2dj[g„(r„) -g, (r„)],z „z,&d

g«z z
. g, (r») +(1 —z,/d)[g„(r») -g, (r»)], z, &d &z,

quadratic-mixing,

a(»)+(l-,z.jd')[g. (r») -a(r»)], z„z, d
g (2) z z

g (r,.)+(l-z,/d)[g. (r,.) -g (r,.)], z, - d-z.

(3b)

(3c)

where g„(r») =exp[-u(r„)/kT] is the radial distribution function of vapor Ar. We shall outline briefly the
algebraic procedure and leave the details to the Appendix, for the interested readers. Instead of introduc-
ing a Gibbs surface, we shall first rewrite Eq. (1) in terms of the spherical coordinates of r» as follows:

oo oo 1

y, =— dz, p(z, ) dr„r3»u'(r») d&u(1 —3v')p(z, )g(2)(z„z„r»),
0 max(0, z 1-d) max(-1, -Z1/~ 12) (4)

where w =z»/r„Here .a spherical region r» & max(0, z, —d) is deleted because of the symmetry between
x 12 and z 12 Interchanging x» and z, and replac ing u by z, we get

m
+ 12+4 Z +T

y, = — dr»u'(r„) dz, p(z, ) dz, p(z, )[r'„—3(z, -z,)']g'"(z„z„r„).
0 0 max(0, Z 1-&12)

The explicit symmetry between z, and z, can be restored if we calculate the difference between y2 and yz
(Fowler) associated with the step-function profile p(z) =p„z ~ 0, with

p
yr = 6' dr„r»u'(r»)g, (r») . (6)

The final expression which can be readily evaluated is then
DO d Z +y 12

y, —yr =w dr»u'(r») dz, p(z, ) dz, p(z, )g(')(z„z„r»)[r2» —3(z, -z,)']

In this equation the integration over z, and z, can be carried out explicitly. We shall omit all the lengthy
algebra and simply state the resultant formula:

wp d
y, -yr =

1'6 dru'(r)g, (r)s,(2r/d) + [g„(r) -g, (r)]a,(2rjd)) .
0

For linear profile and no mixing,

(6)
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b, ,(x) =(=8 + —,', x —~9, x')x'[1 -e(—,'x)] +( —,', ——,
' x')e(ax),

where

0, x&1
e(x) =

(8a)

For linear profile and linear mixing we need in addition to (8a), the function h, (x)

a,(x) = (——,', + 9', x) x'[1 -8(-,'x)] + ( —,', ——,
' x')e(ax) .

For linear profile and quadratic mixing we need in addition to (8a), a different a, (x),

b, ,(x) = (- —,', + ~g, x —„'„x')x'[1 -e (ax)] + ( —,', —~» x')e(ax) .
For cubic profile and no mixing, we need instead

a,(x) = (--,' + —,',x —
~70 x'+ ~2~x' —„,'„x')x'[1 -e(-,'x)] + (+, , —~ox')e(-,'x) .

For cubic profile and linear mixing, we need in addition to (8d), the function 6,(x),

Z,(x) =(-,—;+—„', x'- —„',x'- „,'„x')x'[1 -e(-,'x)]+(g,—', x')e(-,'x) .

And for cubic profile and quadratic mixing, we need in addition to (8d), a different b, ,(x),

&.(x) = (-+i ~ ++x+ 7+ox '-+78 x'+ F02.0 x'-2ss'aoox') x'[1 -e('x)]+ (+i ~ —.oo x')~(-'") .

(8b)

(8c)

(8d)

(8e)

(8f)

Note that Eqs. (8a) and (8d) are different from
those of Refs. 11 and 12. There the r»&d (x & 2)
terms are the same, but the r, &d (x &2) terms
are absent. Whenever d is less than d„ the radial

distribution function suppresses the x»& d term
completely, leaving the other term as the sole
contribution to the surface tension. A careful re-
examination of the situation corresponding to the

TABLE I. Dependence of surface tension of Ar y2 (dyn/cm) at 85 oK on the transition-zone
width d [Baker-Fisher-Watts potential (Ref. 9)).

Width
a'(A)

No
mixing"

Linear profile
Linear Quadratic

mixing mixing
No

mixing

Cubic profile
Linear Quadratic
mixing mixing~

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

13.7o
13.71
13.74
13.77
13.81
13.83
13.82
13.74
13.58
13.34
13.05
12.71
12.35
11.99
11.63

13.7O

13.67
13.59
13.44
13.22
12.93
12.55
12.07
11.50
10.93
10.41
9.96
9.56
9.20
8.86

13.7o
13.7O

13.69
13.66
13.61
13.53
13.39
13.17
12.86
12.46
12.02
11.59
11.15
10.74
10.34

13.70
13.71
13.72
13.75
13.78
13.80
13.82
13.82
13.79
13.72
13.60
13.44
13.25
13.03
12.79

13.70
13.68
13.62
13.51
13.36
13.17
12.92
12.63
12.28
11.90
11.54
11.21
10.91
10.63
10.37

13.70
13.70
13.71
13.72
13.73
13.74
13.73
13.70
13.63
13.52
13.37
13.17
12.94
12.69
12.43

The bulk density of Ar is taken to be 0.021 25 atoms/A3.
"Equation (8a).
c Equations (Sa) and (Sb).

Equations (Sa) and (Sc).
Equation (8d).

~ Equations (8d) and (Se).
~Equations (Sd) and (Sf).
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TABLE II. Dependence of surface tension of Ar y& (dyn/cm) at 85'K on the transition-zone
width d [MSV-III potential (Ref. 10)].

Width
d(A)

No

mixing

Linear profile
Linear Quadratic

mixing mixing
No

mixing '
Cubic profile

Linear Quadratic
mixing mixing g

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4 5
5.0
5.5
6.0
6.5
7.0

14.99
14.99
14.99
14.99
14.97
14.92
14.84
14.69
14.47
14.17
13.82
13.45
13.05
12.66
12.27

14.99
14.95
14.82
14.62
14.32
13.94
13.47
12.90
12.26
11.64
11.08
10.59
10.17
9.78
9.42

14.99
14.98
14.94
14.86
14.75
14.59
14.37
14.07
13.69
13.23
12.75
12.27
11.80
11.35
10.93

14.99
14.99
14.99
14.99
14.98
14.97
14.94
14.88
14.80
14.68
14.51
14.31

14.07
13.81
13.54

14.99
14.96
14.87
14.73
14.53
14.27
13.96
13.60
13.19
12.76
12.35
11.9S
11.64
11.33
11.04

14.99
14.99
14.98
14.96
14.94
14.90-
14.84
14.75
14.63
14.46
14.26
14.02
13.75
13.46
13.16

The bulk density of Ar is taken to be
Equation (8a).

'Equations (8a) and (Sb).
Equations (Sa) and (Sc).' Equation (8d).
Equations (8d) and (Se).

~ Equations (8d) and (Sf).

0.021 25 atoms/A'3.

linear and cubic profile using the alternative meth-
od of superficial densities leads to the same for-
mula for Eq. (Sa) and Eq. (Sd).

III. NUMERICAL RESULTS AND DISCUSSIONS

The results of the numerical integrations of the
above expressions using the Baker-Fisher-%atts
potential for u(r) and the Yarnell data for g(r) are
tabulated in Tables I and II. Note that for d&d„
the surface tension generally varies slowly start-
ing from the value 13.'I dyn/cm for Barker's po-
tential and 15.0 dyn/cm for the MSV-III potential.
Since there are some indications that d is close to
do for Ar near the triple point, " the Fowler step-
function profile does not lead to severe error. For
large d, the surface tension becomes substantially
smaller. This behavior is consistent with that of
the exponential profile in Ref. 14 using a Lennard-
Jones 12-6 potential. None of the behavior shows
any dramatic increase as a function of d. The

surface tension y, is in all cases insensitive to the
width of the transition zone. However, y, is sensi-
tive to the repulsive region of the intermolecular
potentia. l (Table III).

Since the surface tension y, estimated by the BH
theory and the Monte Carlo method are 16.8V and
16.18 dyn/cm, respectively, at 84'K the differ-
ences between the different estimates of y, are not
removed. " According to the KBF formula, tion, the
total value of the surface tension y, +y, is also
much smaller than the value from BH perturbation
theory. Extension of the KBF formula to include
a transition zone only reduces further its value.
This disagreement could be due to the approximate
nature of the radial distribution function used in
the transition zone or to the BH values of g(r) dif-
fering from the Yarnell data. By using the phe-
nomenological Yarnell data in the KBF formula,
many-body interactions are implicitly included.
As for the Monte Carlo calculation using I.ennard-
Jones 12-6 potentials, although the I.ennard-Jones

TABLE III. Contributions of surface tension of Ar y& (dyn/cm) at 85'K from the repulsive
and attractive regions of intermolecular potentials with step-function density profile.

y2 (repulsive) y2 (attractive) Total

Baker -Fisher-Watts
MSV —III

—12.02
-10.73

25.72
25.72

13.70
14.99

The bulk density of Ar is taken to be 0.021 25 atoms/A3.
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FIG. 1. Regions of integration. Particles 1 and 2 are
all in the bulk liquid phase for region 2.
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12-6 potential seems to mock up the many-body
effects to g(r) in the bulk li(luid, it does not follow
that it will do so near the surface of the liquid.
Another source of difference may be due to a dif-
ference in the effective value of d0. Since the con-
tribution to y, from the repulsive region of the
intermolecular potential is negative (Table III) a
larger value of d0 in the KBF formula would lead
to a larger value of y2.

The difference between the experimental value of
the surface tension and the theoretical value from
the KB theory may not be due to an underestima-
tion in y, . It is possible that the use of the triple-
dipole interactions overestimated the three-body

FIG. 2. Regions of integration in variable z~ and z&

with a given r&2&d. (For the case of r&2&d, the inter-
section of z2 =z& + x&2 line to the zq axis would be lower
then the z2 =d point. The shape of the regions is other-
wise the saxne as the one before. )

nonadditivity correction (y, ) or else n-body inter-
actions with n & 4 are also important.
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Starting from E(I. (1), with z„z2~ 0

r2=—
1

1
dz) p(z, ) dr„r'„u'(r„)

0

APPENDIX

OO 2 2

12 12

d8„sin8„p(z, )g '(z„z„r„) dQ„(sin'8„cos'Q„—cos'8„),

(A1)

where z, =z, +r„cos8„.
The region of integration can be split into regions 1 and 2 (Fig. 1),

1 OO e max

r, = — dz, p(z, ) J' dr„r, s'(r„) dz„zisd„p(z„)dpi(z„z„r„)
0 max(0, » 1-d) 0

2r
dy„(sin'8» cos'(i) „—cos'8„)

0

1 oo g ~d 21r

+ — dz, p(z, ) dr»r'„u'(r„) p(z, )g, (r„) d8» sin8» d(i)»(sin'8»cos'P» —cos'8»), (A2)
d 0

where cos8,„=max(-z, /r», -1).
Integrating ov'er the solid angle of the second part vanishes, because both particles are in bulk liquid
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phase, where the density p(z) and gi'i function are independent of the solid angle.
Setting e =cose», and integrating the first term over P»

OO

d~(1 —3&v') p(z, ) g('&(z„z„r») .
ax(-1, -z 1/r 12)

(A3)y, = — dz, p(z,)
0 max(0, « 1-d) m

This is Eq. (4) in the text.
The integration over x» depends on phenomenological functions, and cannot be carried out analytically.

But the integration over z, and z, can be done explicitly. We therefore interchange r» and z, and keep r»
as the last variable to be integrated. This leads to

77
r 12+d

y, =— dr„r'„u'(r „) dz, p(z, )

Replacing + by z„
ax(-1 -«1/r 12)

d(o(1 —3(o') p(z, ) gt2l(z„z„r„) . (A4)

r 12+d

dr» u'(r») dz, p(z, )
Z

ax(0 z -r )
dz, p(z, )[r'„—3(z, -z,)']gi'(z„z„r„) . (A5)

This is Eq. (5), and the region of integration over z, and z, is given in Fig. 3 as the shaded area. Note that
this region of integration is not symmetric with respect to z, and z, . The calculation can be greatly sim-
plified if we restore the symmetry. This can be done by subtracting from y2 the well-known expression y~
of Eq. (6) written explicitly as

m

yr =
2

dr„u'(r„)
r12+d «1+r12

dz, p,e (z,/d)
ax{0,« 1-r 12)

dz, p, e(z,/d) [r'„—3(z, -z,)']g i'l(z„z„r„), (A6)

where e(x) is the usual step function.
The region of integration of the difference Ay =y2 —y~ now consists of two parallelograms symmetric

with respect toz, =z, axis, i.e.,

where

m
d

0 0

1 12
dZ2+

'2+"12
dZ1 IZ„Z2, r, 2 (AV)

f(z„z„r„)=p( z)p( z)[r'„- (3,z- z)'] g&(( „z„zr„).
Since f(z„z„r»)=f(z„z„r»), the two integration terms are identical and can be reduced to Eq. ("f).

The rest of the algebraic procedures leading to the explicit expressions of Eq. (8a) to Eq. (8f) are
straightforward. They are, however, much less tedious than the calculations based on the superficial
density functions.
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