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Electron-impact excitation of carbon and silicon in the distorted-wave approximation
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The I' D electron-impact excitation cross section within the ground configuration of
both neutral carbon and silicon is calculated in the distorted-wave approximation of the two-
state Hartree-Pock coupled equations. An essential element of the present treatment is
that we do not assume orthogonality to core orbitals in deriving equations for the scattering
orbitals. A local adiabatic polarization potential is also added to the di.storted-wave equ-
ations. Both elements are necessary in getting good agreement with close-coupling results
for carbon to low impacting energies. The agreement is sufficiently good that our predic-
tions for silicon should be accurate to within a factor of 2.

I. INTRODUCTION

In recent years interest in the theoretical as-
pects of electron-impact excitation of atoms and
ions has been stimulated by advances in observa-
tional astronomy' and laboratory plasma research. '
In particular, considerable effort has been made
in studying the electron excitation between spectral
terms of the ground configuration 2P' and 3P'
(where q =2, 3, 4) of various atoms and ions. ' Opti-
cal deexcitation of these levels gives rise to the
forbidden lines found in gaseous nebulae and quasi-
stellar objects. Opacity calculations for stellar
atmospheres4 also rely heavily on accurate values
for these electron-impact excitation cross sec-
tions.

At incident electron energies within a few volts
of threshold, the generalized Hartree-Fock or
close-coupling method' has been applied quite suc-
cessfully to the calculation of electron-impact
cross sections of atoms and ions. In intermediate-
energy regions for atoms where many channels
are open or in energy regions for highly charged
positive ions where many closed-channel reso-
nances' are present, a full solution to the Hartree-
Fock coupled equations becomes impractical. We
believe the distorted-wave method is a reasonable
approach to which additional. modifications may be
systematically inc luded.

In this paper we calculate the 'I' -'D excitation
cross section within the ground configuration of
both carbon and silicon using the distorted-wave
method in the manner developed by Mott and
Massey' (see Sec. II}. In deriving the Hartree-
Fock coupled equations from the Kohn variational
principle, we do not assume orthogonality of the
same symmetry core and free orbitals. This gives
rise to specific exchange overlap potentials in the
distorted-wave equations as well as important
overlap terms in the distorted-wave 5 matrix. At
energies near threshold it becomes important to
include an adiabatic polarization potential in the

distorted-wave equations. Results from this
adiabatic-exchange approximation for carbon and
silicon are given in Sec. III. Section IV contains
a brief summary.

II. DISTORTED-WAVE METHOD

Although the general aspects of the distorted-
wave method are well known, the specific tech-
niques are multifarious. In this paper we shall
use the approach of Mott and Massey' which is a
very natural approximation of the close-coupling
expansion. In the two-state approximation, the
total wave function 4 for the electron-atom sys-
tem equals the sum of the initial state g, and the
final state (,. Both the initial and final states
may then be expanded'in a representation
(nL„S„k„f„sLSM,I,), in which the orbital and spin
angular momenta of the scattered electron (k„l„s}
and the atom (nI.„S„)are coupled together. One
assumes that the total and component orbital and
spin angular momentum quantum numbers L, S,
M„M„aswell as the parity II, are conserved
during the collision.

The initial state @,( ,L}Sand the final state
(4,L)Sof the atom or ion may be calculated in

the Hartree- Fock self-consistent-field appr oxima-
tion. The single-particle spin orbitals are as-
sumed to have the form

(r~nlm, m, ) =[I'„,(r)/r] I; (6, P)X, (m, ), (1)

where I; (8, P) is a spherical harmonic and X,(m, )
is the electron spin function. By taking suitable
linear combinations of spin-orbital determinants,
the free electron may be coupled to the atomic
states to form eigenfunctions g, and g, of the L',
M„S',and M, operators. '

The generalized Hartree-Fock coupled equations
for II are derived' from the Kohn variational prin-
ciple, which is equivalent to

(&@~H E~@)=0, -
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[T„—2Vr, (r) +k', ]F,r (r) =.2Vr (r)F,",, (r),
[T„—2Vr (r) ~k,']Fr, (r) =2Vr (r)Fr, (r),

where

d' l,.(l;+1) 2Z
li dy2 y2 y

(8)

(4)

(5)

The potentials V,r. (r) in Eqs. (3) and (4) contain
both direct and exchange integrals, while g in Eq.
(5) is the atomic number. The Sr matrix asymp-
totic form of the F„.(r), where i' specifies the
initial conditions, may be written as"

F,", (r)„„=(1/~k, )(&,, e '"
~ —S,; e'" & ),

where

x,. =k,r ——,'l,.w+(.q/k, ) ln(2k, .r) ~g&,

(6)

(7)

q is the residual charge on the atom, and 0,. is
the Coulomb phase shift. For neutral. atoms,
q = 0 and 0,. = 0. The distorted-wave equations for
the system of Eqs. (3) and (4) may be written as

where the variation is made on the free electron
radial function in both the initial and final states.
No orthogonality restrictions are made on core
and free orbitals of the same symmetry. In Eq.
(2), II is the nonrelativistic Hamiltonian for the
electron-atom system while the total energy E =E,
+k', /2 =E, +k', /2, where E, is the energy of the
atom and k; is the momentum of the scattered
electron. We will use atomic units throughout this
paper (1 a.u. =27.21 eV).

For a fixed set of conserved quantum numbers
I" =LSII, the radial coupled equations derived
from Eq. (2) have the general form

citation cross section v (in units of va', ) for the
transition nL, S, -n'L2S2 is given by

c= P v(l, l, -l ),
I S lgl2

(12)

where

(2L+ 1)(2S+ 1)
2k'(2L + 1)(2S + 1) !

III. CALCULATIONS AND RESULTS

A. Carbon

+ —,'(e,k
——,'k', )I, ] kO+', J fk,k(r) =0, (14)

In this subsection we apply the distorted-wave
method of Sec. II to the calculation of the 'P-'D
elect:ron excitation cross section of neutral carbon.
The ground configuration 1s'2s'2P2 of carbon
couples to give three spectral terms: the 'P
ground state, the 'D excited state with a thresh-
old for excitation of 1.264 eV, and the 'S state
with a threshold of 2.683 eV." The single-par-
ticle core orbitals for the initial ground atomic
state 4, ('P) were calculated numerically in the
Hartree-Fock approximation using only the single
configuration 1s'2s'2p'. " The largest partial-
wave contribution to the 'P-'D excitation cross
section for neutral carbon was found to be
o('O', P-P) of Eq. (12). Equation (8) for the initial
(:('P k,p'D') scattering orbital is given by

[T„-2V,",(r)+.k;].f,'., (r) =0,

where the free orbitals fk, (r) are given the nor-
i

malization

where

(15)

fr , (r) = sin(x,. +. 5,.),
y~ OO

(9) J„,f»(r) = dr, P„,, (r, ) „+,f»(r),K
{", r,"

40 V)
(16)

and ~,. is the non-Coulomb phase shift.
The distorted-wave S matrix using the normal-

ization given in Eqs. (6) and (9), takes the form'
and the integral terms, symbolized by K and I
above, are explicitly

where

S„)2i &g

( Sr
+nl 'f kl (r)

0

~K
dr, P„,.(r, )f„(r,) „;,P„,.(r),

V)

(17)

I„,f»(r) =
J dr, P„,(r, )f„(r,)P„,(r),
0

(18)

The various differential as well. as total excitation
cross sections are then found' using the form of
the S matrix in Eqs. (10) and (11). The total ex-

and r& = min(r„r) and r& ——max(r„r). The radial
exchange overlap integral I~ of Eq. (14) is a
consequence of the nonorthogonality of the 2p core
state and the k,P scattering orbital. The Har-
tree-Fock equation for the 2P core state is used



15 ELECTRON -IMPACT EXCITATION OF CARBON AND SILICON ~ ~ ~

in attaining the form expressed in Eq. (14). For
the single-particl. e core eigenenergy E~, how-
ever, we used the experimental removal energy in
order to have the threshold agree with experi-
ment.

The 2P core orbital for the final atomic state
4, ('D) was calculated in the Hartree-Fock ap-
proximation by using the 1s and 2s orbitals of
4, ('P) as a fixed core. Equation (8) for the final
C('D k,P'D') scattering orbital is then given by

[T~ —2[ V,',,=„'+2Z,—' ——,', J,—' + —,'Ko —„K',p—+ —,'(eg —,'k,')I,—~]+k,'] f, p(r) = 0. (19)

Using Eqs. (11) and (13), the a('D', P-P) partial-wave contribution to the 'P-'D excitation cross sec-
tion for carbon is written

v( O', P -P) = (80/9k', k, )[ ——,'( k P 2P l e '
l 2Pk P) ( 2P l 2P) + —,', ( k P 2P l v 'l 2Pk P) ( 2P l 2P)

- -'(e;, - -'k;)& 2p I k,p& & k.pl 2p& & 2p I2p&+~(2p, 2p)]',

where
00 + 00 ~K

( k, lnl
l

& "l mlk, l) = f»(r, )P„,(r, ) „;,P, (r, )f„,(r, ) dr, Cr„

(20)

(21)

(nl l k, l ) = P„,(r, )f„,(r, ) dr„ (22)

and &(2P, 2P) is discussed below. The various
Coulomb matrix elements found in Eq. (20) follow
from the form of the coupling potential V„de-
rived using Eq. (2). One should note that the ma-
trix elements are exchange integrals due to the
spin forbidden nature of the 'P-'D transition.
Convergence of the partial-wave expansion should
thus be rapid. At incident energies from 0-20
eV the first and third matrix elements are the
largest terms. The third term arises from the
nonorthogonality of the scattering orbitals with
the core orbitals. Since at low energies the first
and third terms are of opposite sign, neglecting
the orthogonality term would lead to a quite large
o('D', p- p) partial cross section near threshold.
In fact, at an incident energy of 3 eV, the partial.
cross section goes to zero due to the cancellation.
With the addition of an adiabatic polarization po-
tential. , which will be discussed below, this min-

imum in the o(2D', P-P) cross section disappears.
The b (2P, 2P) in Eq. (20) is symbolic of a series

of terms which only fail to vanish because 2P and

2P are not identical. . If the 1s and 2s orbitals
were allowed to vary in the exit channel. , there
would be additional 6 terms. Since ( 2P l2P)
=0.9995 for carbon, we expect L(2p, 2p) to be
quite small for al. l energies and thus have ne-
glected its contribution in subsequent cross-sec-
tion results. In fact at an incident energy of 5
eV the contribution of the 6(2p, 2p) terms is 0.6 pp

relative to the first matrix element in Eq. (20).
Hartree- Fock phase shifts obtained from Eq. (14)

are given for ten values of the incident energy in
column three of Table 1. The o(2D', p- p) partial
cross -s ection r esults in the Hartree-Pock dis-
torted-wave approximation are listed in column
four of Table II.

At low incident energies it is known that induced

TABLE I. Phase shifts (in radians) for carbon P ground-state scattering orbitals.

rtial
ave

g(pp 2Do) 6(kP 'P') g(Ps 2P') g(Pd 2y ~)

H HFb AEc HF AE HF AE HF AE

2.0
3.5
5.0
7.5

10.0
15.0
20.0
30.0
40.0
50.0

0.204
0.468
0.766
1.150
1.357
1.520
1.568
1.579
1.562
1.539

1.584
1.775
1.781
1.745
1.711
1.666
1.642
1.616
1.596
1.578

2.193
2.107
2.034
1.948
1.892
1.826
1.789
1.745
1.713
1.685

0.645
1.187
1.365
1.438
1.449
1.446
1.445
1.451
1.454
1.452

1.482
1.686
1.700
1.673
1.645
1.610
1.594
1.581
1.571
1.559

5.369
5.111
4.922
4.687
4.510
4.252
4.066
3.804
3.619
3.476

5.537
5.278
5.087
4.847
4.665
4.397
4.202
3.925
3.729
3.577

0.012
0.016
0.020
0.032
0.050
0.101
0.161
0.281
0.382
0.459

0.068
0.106
0.138
0.187
0.231
0.309
0.376
0.480
0.554
0.608

Hartree approximation.
Hartree-Fock.

Adiabatic-exchange.
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TABLE II. Partial cross sections (in 7t'ao) for P —D electron excitation of neutral carbon.

rtial
ave

~('D', p-p)

B HO HF AE HF AE

0('&',p -p)

AE HF AE

2.0
3.5
5.0
7.5

10.0
15.0
20.0
30.0
40.0
50.0

1.341
4.996
7.316
8.393
7.765
5.493
3.654
1.651
0.807
0.425

1.912
2.609
0.333
0.000
0.020
0.102
0.104
0.055
0.026
0.013

7.298
0.035
0.428
0.635
0.586
0.367
0.215
0.078
0.032
0.015

0.754
1.215
1.192
0.953
0.712
0.383
0.210
0.072
0.029
0.014

2.399
1.657
0.067
0.329
0.317
0.203
0.122
0.047
0.021
0.010

1.274
i.048
0.834
0.575
0.406
0.215
0.121
0.044
0.019
0.009

0.000
0.006
0.020
0.053
0.083
0.114
0.113
0.075
0.043
0.025

0.001
0.011
0.037
0.091
0.131
0.152
0.129
0.073
0.039
O.{}22

0.000
0.002
0.003
0.004
0.004
0.002
0.001
0.000
0.000
0.000

0.000
0.003
0.005
0.005
0.004
0.002
0.001
0.000
0.000
0.000

Born approximation.
"Hartree-orthogonal ized.

Hartree-F ock.
"Adiabatic-exchange.

polarization effects are important in electron
scattering from neutral atomic systems. " Within
the diagrammatic perturbation theory for atoms
as developed by Kelly" we have calculated a local
adiabatic polarization potential V„„,(r) for the
ground 'P state of carbon. Only the dipole 2s-2P
and 2p- n, kd excitations were used to evaluate
the lomest-order expression, given by

4 [J, P„(r')(r'/r')P„(r')dr']'

[ fo P„,~(r')(r'/r')P~~(r') dr')'
n, k 2P n, kd

(23)

where g„,represents a sum over bound states
and integration over continuum states, mhile the
factor-, comes from averaging the angular in-
tegra, tions. The bound and continuum n, kd states
mere calculated numerically as fixed-core Har-
tree-Fock 1s'2s'2P kd'D functions. For 628 —c~
we used —0.3300 a.u. which is an average over
the experimental values" for the various final-
state couplings. One should note that V„,(r) of
Eq. (23) negiects contributions obtained when the
perturbing charge distance is less than the core
electron radius. This is in the same spirit as
the Call.away-Temkin potential as opposed to the
Bethe-Reeh potential. " Monopole terms in V„,(r)
were omitted since they tend to be cancelled by
short-range nonadiabatic effects. " Since as

V„„(r)——n~/2r4, the dipole polariza-
bility n„canbe extracted. Equation (23) yields
~d = 12.7ao for carbon. This lowest-order result
compares favorably, for our purposes, with the
more sophisticated many-body (10.4a', )" and
polarized pseudostate close-coupling (11.03a',)"
results. The polarization potential of Eq. (23)

was used to calculate new carbon scattering or-
bita, ls in both the initial and final states. The
adiabatic-exchange phase shifts for the C('P
kP'D') state, calculated by adding V „,(r) to the
potentials in Eq. (14), are compared in Table I
with the Hartree-Pock values (see columns three
and four). The v('D', P-P) partial cross section
in the adiabatic-exchange approximation is given
in column five of Table II at ten incident energies.

Other formulations of the distorted-wave method
of electron excitation of atoms have also been
made. "" One possible method is to ignore ex-
change terms completely in the distorted-wave
equations [ Eq. (8)] and then orthogonalize free
and core orbitals of the same symmetry by either
the addition of Lagrange multipliers or a simple
Schmidt orthogonalization. In column two of Table
I we present the Hartree phase shifts for C('P
kP'D') orbitals, obtained from Eq. (14) by ignor-
ing all. exchange terms. The difference between
the Hartree and Hartree-Fock phase shifts is an
indication of the importance of potential. terms
representing the capture of the colliding electron
into the unfilled 2P shell of carbon. After Schmidt-
orthogonalizing the incoming and outgoing Hartree
kP orbitals to the 2P and 2P orbitals, respectively,
the cross section using Eq. (20) is computed and

given in column three of Table II. The Hartree
orthogonalized v('O', P-P ) partial cross section
is found to differ in both magnitude and energy
variation from the Hartree-Fock and adiabatic-
exchange results. This result emphasizes the
need of including bound channel correlation
terms"' in the calculation when using any type of
same symmetry orthogonalized distorted waves.
Also presented in column two of Table II are Born
cross section results for v('O', P-P).

Radial equations similar to Eqs. (14) and (19)
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TABLE III. Phase shifts (in radians) for silicon P ground-state scattering orbitals.

artial
ave

b(kp 'D')

HF AE HF AE

5(kp ~P'}

HF AE

6(ks 'P')

HF AE

~(kd'Ze)

2.0
3.5
5.0
7.5

10.0
15.0
20.0
30.0
40.0
50.0

5.074
4.888
4.756
4.602
4.494
4.339
4.222
4.042
3.901
3.784

5.424
5.183
5.027
4.851
4.726
4.544
4.407
4.199
4.039
3.908

4.502
4.512
4,441
4.334
4.252
4.132
4.041
3.895
3.775
3.672

5.040
4.859
4.734
4.589
4.487
4.340
4.228
4.053
3.914
3.798

8.250
7.934
7.707
7.429
7.221
6.915
6.692
6.368
6.132
5.944

8.569
8.228
7.982
7.680
7.453
7.119
6.875
6.523
6.268
6.067

0.024
0.035
0.064
0.157
0.297
0.628
0.899
1.195
1.330
1.404

0.231
0.343
0.440
0.594
0.741
0.990
1.165
1.369
1.473
1.533

~Hartree-Fock approximation.
Adiabatic-exchange.

ample, the initial Si('P k,P 'D') scattering orbital
is obtained by replacing 2P with 3P in Eq. (4) and
substituting for V,',„'as follows:

0 2 2 0 1+ 6~2p —&2p —5&2p+ 2~3' —3&3&. (24)

It should be noted that it is a good approximation
to allow same symmetry free and core orbitals
to be orthogonal when the core orbitals occupy
a closed shell. " Thus there are no exchange
overlap terms arising from the 2P shell in Eq.
(24).

At energies near threshold an adiabatic polari-
zation potential was added to the distorted-wave
equations for silicon. The construction of the
polarization potential was similar to Eg. (23) with
the 3s- 3P and 3P -nd, kd excitations repl. acing
the carbon outer-shell transitions. For &3 63p

we used —0.2517 a.u. which is again an average

over experimental values. " The dipole polariza-
bility was found to be 48.8a„which is in accept-
able agreement with an uncoupled Hartree-Foek
(46.0a',)" result and a finite perturbation cal-
culation (36.3a', )."

Because of the lower threshold energy, the
partial-wave convergence in scattering from sili-
con is slightly slower than carbon and thus the
d waves are found to be more prominent. " Phase
shifts for various ground-state scattering or-
bitals of silicon are given in Table III. Results
for six different partial-wave cross sections in
both the Hartree-Fock and adiabatic-exchange
distorted-wave approximation are given in Table
IV. Cancel. lation effects due to orthogonality terms
are again found to be very important in the P- P
transitions. The total cross sections in the Har-.
tree-Fock and adiabatic-exchange approximation
are shown in Fig. 3. The Hartree-Foek cross
section has not been extended below 3.5 eV. The

TABLE IV. Partial cross sections (in 7t'ao) for P—D electron excitation of neutral silicon.

rtial
ave

~(2DO p p )

HF AEb

0('P', p —p)

HF AE

~('se, d- d)

AE

0.(2Pe d d)

HF AE

o.('Pe, s —d)

HF AE

g(2De d s)

HF AE

2.0
3.5
5.0
7.5

10.0
15.0
20.0
30.0
40.0
50.0

0.381
0.907
0.847
0.549
0.328
0.122
0.051
0.013
0.004
0.002

2.262
1.720
1.160
0.594
0.319
0.109
0.045
0.011
0.004
0.002

1.427
0.308
0.433
0.319
0.204
0.084
0.038
0.010
0.004
0.002

1.433
1.015
0.682
0.363
0.206
0.077
0.034
0.009
0.003
0.002

0.053
0.343
0.767
1.314
1.357
0.662
0.214
0.024
0.005
0.001

0.211
1.193
1.965
1.955
1.347
0.469
0.154
0.021
O. 004
0.001

0.008
0.065
0.158
0.264
0.241
0.097
0.032
0.005
0.001
0.000

0.036
0.237
0.398
0.353
0.214
0.069
0.024
0.004
0.001
0.000

0.025
0.068
0.085
0.071
0.040
0.006
0.000
0.001
0.001
0.000

0.052
0.121
0.122
0.064
0.024
0.002
0.000
0.001
0.001
0.000

0.067
0.088
0.084
0.064
0.042
0.012
0.001
0.000
0.000
0.000

0.130
0.133
0.108
0.064
0.034
0.006
0.000
0.000
0.000
0.000

Hartree-Fock approximation.
Adiabatic-exchange.
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FIG. 3. P ~D electron excitation cross section for
the neutral silicon atom:, adiabatic-exchange dis-
torted-wave method; ----, Hartree-Fock distorted-
wave method. The arrow indicates the threshold for
excitation.

FIG. 4. Differential cross section for the P D
electron excitation of neutral silicon in the adiabatic-ex-
change distorted-wave approximation at three different
incident energies.

energy variation of the cross sections is similar
to the carbon results, although the peak height
has increased. The magnitude of the 'P-'D total
cross section for silicon at low energies agrees
fairly well with a rough isoelectronie extrapo-
lation made of the same cross section for various
14-electron ions. " From our previous calculation
on carbon in Sec. IIIA, we feel. that our prediction
for the 'P-'D total cross section of silicon should
be accurate to within a factor of 2 at low energies.
Also shown for silicon in Fig. 4 are differential
cross-section results at 5, 10, and 20 eV in the
adiabatic-exchange approximation.

IV. SUMMARY

It has been shown above that the distorted-wave
method can be used quite effectively in calculating
electron excitation cross sections of compl. ex
neutral atoms to quite low incident energies. Ex-
change and polarization effects were found to be
extremely important for the 'P- 'D excitation in

carbon and silicon. Non-orthogonality effects be-
tween scattering and core orbitals of the same
symmetry were shown to play a critical role.

Fairly good agreement was obtained between the

adiabatic-exchange distorted-wave results for
carbon and the very sophisticated close-coupling
and correlation methods. It is hoped that with
more accurate target functions and a more in-
cisive distorted-wave function that the agreement
would improve even further.

The numerical simplicity and relatively small
computing cost of the distorted-wave method makes
it quite attractive for the compiling of atomic
data needed for astrophysical and laboratory plas-
ma research. In the future we hope to apply the
distor. ted-wave method to the ealeulation of elec-
tron excitation cross sections for positive ions.
Closed-channel resonance effects should increase
in importance relative to exchange and polariza-
tion as the charge on the target ion is increased.
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