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One-dimensional gravitational gas
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The Schrodinger equation for a system of N mutually gravitating particles is solved in one dimension.

Solutions are constructed out of a product of Airy functions. The eigenvalues are shown to be the zeros of the

derivative of the Airy function. The total energy of the system is found to be proportional to N " for a boson

system.

I. INTRODUCTION —GRAVITATION IN ONE DIMENSION II. A CLASSICAL SOLUTION TO THE N-BODY PROBLEM

In one dimension, the gravitational interaction
between two particles is given by

V= 2mGm2 m21x2 —x2
I

where Ix, -x,
I

is the distance between the two

particles, and G is the gravitational constant. m,
and m, are the masses of the two particles.

The physical picture of this system is that of two

parallel infinite sheets, each with a mass per unit
area my or ~2 The sheets move along a line per-
pendicular to each other. This system is the grav-
itational analog of the electrical system of two

parallel capacitor plates which are free to move
along a line perpendicular to them. The gravita-
tional sheets are allowed to penetrate each other.

The N-body problem may be considered as N
self-gravitating sheets which pass through each
other. This model of a self-gravitating system is
quite old. It was first used in stellar dynamics to
model the behavior of halo stars. ' ' In spiral ga-
laxies which are essentially two dimensional, there
is nevertheless a galactic component of stars
moving perpendicular to the galactic plane while

they partake of the more general three-dimension-
al motion. The motion perpendicular to the ga-
lactic plane is approximated by assuming that the
stars move as sheets parallel to the plane of the

galaxy, oscillating to and fro about this plane.
In this study, we will consider the problem as

an N-body problem in one dimension, calling the
sheets as particles, moving along a line, and in-
terpenetrating when the pa'rticles meet. In Sec. II,
we will present the problem classically, and point
out that no more than trivial solutions seem to be
available. Sections III-VI will show the quantum
solution to the problem, and in Sec. VIII, we will
discuss the nonthermodynamic nature of this sys-
tem.

The approach usually taken in stellar dynamics is
to use the collisionless Boltzmann equation with a
self-consistent field. Even for this approach of
solving for the distribution function, there are no

exact time-dependent solutions. There are, how-

ever, interesting numerical studies. " In this sec-
tion, we will show an exact solution of the Liouville
equation for the case of homologous collapse and

expansion.
Let us consider an N-body system of identical '

particles. Put y=2mGm' where m is the mass of
each particle. l'hen the Liouville equation for this
system is

ef p sf—+Q-t +y Qe(x,. —x,.) — f =0,9 8

Bt
&

pl ex;&& ~P~ ~P;

if x]&x,.

e(x, —x,) = 0 if x, =xj

if x;&x,

(2)

x 5(p. y(N 2j+1)t),

where a is the distance between two adjacent par-
ticles, 5 is the usual Dirac 6 function, and it is
assumed that all the particles are at rest for t
=0. The solution above corresponds to homologous
collapse. For (a/y)'~'& t & 2(a/y)'~', the system
undergoes homologous expansion. This is the
simplest solution for the classical problem, and

there does not seem to be known other exact time-
dependent solutions.

where f=f(x„x„.. . , x~,p„p„.. . ,p„, t) is the N-
particle distribution function. The P's are the mo-
menta of the particles. For t &(a/y)'j', the col-
lapse time of an initially homogeneous system, an

exact solution of the Liouville equation is

f(i) =fil(x,. —x, —( j —l)a+ —y(2( —2 j+ 1)i)'
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Stationary solutions of the problem have also
been studied, mostly to predict the density and
probability distribution. " Some studies have gone
so far as comparing the theoretical results with
actual stellar density distributions and velocity
distributions for some stars in our galaxy.

then the Schrodinger equation in momentum space
becomes

(p' —2m&)p(p) = —2ihmF —p(p),

so that

III. QUANTUM PROBLEM

It turns out that the quantum-mechanical problem
is simpler than the classical problem. Basically,
this is due to the fact that in classical mechanics,
one must keep track of where the particles are
when they exchange positions. In quantum me-
chanics, only symmetry rules are observed when
particles exchange positions. The following solu-
tion is a detailed discussion of a Letter announce-
ment. '

Let us now consider an infinite system of N par-
ticles with equal masses. The total potential en-
ergy is

P &P

where a is a normalization constant. To find a, we
normalize the wave function by setting

dp V(p, ~)V'*(P, e') = 26(e —~'), (12)

whichgives ~aP=(2(F(k) '. Thefs, ctor2comesfrom
the fact that we are just solving the problem for
the half space x &0. The case when F = 0 corre-
sponds to a free particle and is discussed later.

In coordinate space, we have

P 6 x
6mFh FS

P=y x;-x

The Schrodinger equation for this problem is

(5)

for x&0.
For x&0,

(13)

+y2' dx (6)

This simplification was used by Baxter" in study-
ing the one-dimensional plasma.

Let us put

4 = $[g,(x,.), E=ge., E =y(N —2j+1).

Then we get the separated equation

tt' d'ttt, .
,' + (E,x, +a, )P, = 0. .2' dx~

Equations of the above type were solved by Titch-
marsh. " Instead of using Titchmarsh's notation,
we will show the solution using a method described
by Goldman and Krivchenko" for a related but
different problem. We restrict our solution to the
center-of-mass coordinate system.

We first show the solution for x&0. Let us sup-
press all j indices. Let

0(x) —
(2 @)1/2 dP P(P)e

where 4 is the N-particle wave function and E is
the total energy.

In one-dimensional systems, the procedure of
ordering particles is quite standard, ' ' and we use
this simplification. Consider the region x, &x2 &xs

&x„, then we can write the potential energy as
N N

g ~x,.-x,. ~=-yg(X 2j+1)x,.

2

(2 IF I
a)"2

P 6 x
6mFS FI Sp ~

'

The nature of the solution depends on the signs
of x and F. By inspection, we find that the solu-
tion may be put in the form

(3a) '~'mAi(-. (3a) '~'x) = cos(at' —xt)dt,
0

(16)

which allows us to write the solution in final form.
Putting the j index again, we have

ty(x, )=[(2m ~F,. (h ')'~'/(2 ~F, ()'~']

x Ai(- (2m ~E, (ti' ')"'(~;j~F;
~

+ x .sg», )).

The solutions for the two regions x&0 and x &0
must be matched at x = 0. Matching logarithmic
derivatives, we find that

P E x
6mlF II- lF lh @

(15)
where the + sign is used for x &0, and the —sign
for x&0.

Now we use the definition



ONE-DIMENSIONAL GRAVITATIONAL GAS

Ai'(- (2m ~E, (8.
' ')'~'6, / ~E,

~
)

=-Ai'(-(2~)E,. )a--')"'~,./]EJ]), (i8)

so that the zeros of Ai(- z) determine the eigen-
values &,. Thus,.. =(y a /2m)" ~N 2j+I~'"b, , (19)

where the b, ar.e the zeros of the function Ai'( —z).
The first few zeros of this function are tabulated
by Abramowitz and Stegun. "

The total energy of the system depends on the
symmetry chosen for the wave functions. For
bosons, the particles could have the same quantum
number, which in this case is a zero of Ai (- z).
For fermions, no two particles can have the same
quantum number. This will be discussed in Secs.
IV and V.

The solution shown here is valid for even N. For
odd N, Eq. (8) simplifies to a free-particle Schro-
dinger equation for j =&(N+I). Physically, this
means that there are an equal number of particles
to the left or right of the middle particle. The
force on any one particle is just the number of
particles to its right minus the number of par-
ticles to its left. This does not mean that the mid-
dle particle couM have any energy and therefore
make the energy spectrum continuous. The middle
particle must still be quantized because of the
symmetry requirement that any permutation of the
particles must still result in the same total energy.
An example is shown in Sec. IV.

IV, EXAMPLE —'I'HE THREE-BODY PROBLEM

To illustrate the solution, we let N = 3, and con-
sider the wave functions for this case. Ke have for
for the ordered region X,&X,&x

g, (x,) =-,'(4myh 'Ai( —(4my8' ')'~'(2&, ~x,)),

g ( )
'0 /ri -iA jh (20)

(21)

P, (x,) = z(4myIf ')'~'Ai(- (4myh ')'~'(-,'c, +x,)),

where b'/2m =a» t, =(y'k'/'m)b, , and E=e, +z, + e,.
For a boson. system, the total energy is

e(x„x„x,) = Q6 g, (x„)(,(x,)g,(x,),1& 2P 3 y31 P l 1 2 2 3 3 (23)

where 5~ is positive or negative depending on
whether the permutation of the particles is even or
odd.

V. GROUND STATE FOR 1V-BOSON SYSTEM

Using the first zero of Ai'(- z), we have the
ground state of the N-boson system:

ye@2 ~/3
E„= (1.0188) g ~N-2j+1~'~', (24)

which for large N may be approximated by E,
=0.49(y'8'/m)N'~'. It is interesting to compare
this with a heuristic estimate based on a calcula-
tion by Levy- Leblond. "

The energy of an N-particle system is approxi. -.
mated by E=(Np'/2m)+ zyaN(N —1) where p is the
average momentum of the particles and a is the
average distance between the particles. Now from
Heisenberg's uncertainty principle, Pa =5 and so
E is approximately N(I'/2ma')+ , yaN'. Minim—i-

zing this expression with respect to a, we find
that the ground state is (y' h'/2m)' 'N' '
[—,(2)' '], which is quite close to the exact result.

VI. GROUND STATE OF W-FERMION SYSTEM

There does not seem to exist an asymptotic ex-
pression for the zeros of Ai'( —z); so we merely
write down the ground-state energy of the fermion
system in the following form:

For the boson case in this example, we are un-
able to calculate the normalization constant for
the middle particle. This difficulty persists for
any odd number of particles. This technical prob-
lem does not exist for even N.

In the fermion case, no two particles can have
the same energy. The simplest way of viewing
the low-lying energy levels of a three-particle sys-
tem is to consider the first three zeros of Ai'(-z).
Then the ground-state energy of the fermion sys-
tem is E,(2y'5' /m)( b, + b, + b, ) where the b's are
the first three zeros.

The wave functions are found using the Slater
determinant. '4 Thus

and the ground-state energy is E,= (2y'8'/
m)(1.0188).

The complete wave function should include all
permutations of the particles, and we get

(22)4'(x„x„x,) = —— Q g, (x,)g,(x,)g, (x.,),v'31 g

where Z~ represents the sum over all permuta, -
tions.

(25)

where it is understood that the b's are all different
zeros.

VIII. COMMENTS

The result of the calculations show that the total
energy of the gravitational gas is not proportional
to ¹ The system is not extensive. This means
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that the system can not be considered thermody-
namic. In the past, calculations were made using
the pressure ensemble partition function. " In fact,
other ensemble calculations could be made to show
that at some value of N and a confining length L,
the pressure will become zero and even negative.
This is interpreted to mean gravitational collapse.
As our quantum calculation shows, the system
does not really collapse to a point. However, the
N-body system behaves like a giant atom which be-
comes more compact as more particles are added.
Our result here highlights the inapplicability of
ordinary ensemble calculations to deduce the ther-
modynamics of a gravitational system. A straight-
forward thermodynamic interpretation is suspect
anyway because of the nature of the gravitational
potential. "

To study the physical characteristics of the sys-
tem, one must go back to the wave functions. It
would be interesting, for example, to go to the
classical limit of the density distribution, and
compare the results with suggested approximate
solutions of the collisionless Boltzmann equation
with self-consistent fields. We hope to study this
numerically in the future.
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