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We calculate the smectic order-parameter contribution to the nematic elastic energy near a second-order
nematic-smectic-A phase transition and show that the elastic behavior is nonlinear for large strains. We
show that the Fredericksz transition in a magnetic field becomes first order to a highly strained state within

0.1 C of the phase transition under typical experimental conditions.

I. INTRODUCTION

de Gennes' has predicted a dramatic increase in
the bend and twist elastic constants of nematic
liquid crystals near a second-order nematic-
smectic-A phase transition. For the renormalized
bend elastic constant he finds

mKT
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where K33 is the bare bend elastic constant, d is
the smectic interplanar spacing, and g, is the
(longitudinal) smectic correlation length. A simi-
lar expression holds for twist elastic constant K».
This effect has been observed experimentally by
Rayleigh light scattering, ' ' Fredericksz transi-
tion, ' ' and other methods. " In the Fredericksz
experiment one orients the liquid crystal homeo-
tropically (director normal to the glass surfaces)
by a suitable coating of the glass slides and applies
a magnetic field perpendicular to the director. One
can show easily from the free energy, Eq. (3), that
above a critical field H, the liquid crystal tilts
over in the direction of the field. The transition
is second order with

where X, is the anisotropic part of the susceptibili-
ty and l is the sample thickness. The tilt angle at
the center of the sample is given by

8(—,'l) = const. && (H- JI )' '.
This second-order behavior is observed when one
is not too close to the nematic-smectic-A phase
transition, and this experiment is one way of mea-
suring K»/y, . However under typical experimental
conditions within 0.1 K of the phase transition, the
liquid crystal does not behave in the expected man-
ner. Bather than a uniform tilted condition, one
observes a "striped" texture" in the microscope

. and the elastic constant measurement fails.
In this paper we examine the elastic behavior

near the nematic-smectic-A phase transition theo-
retically and show that, while Eq. (l) is correct
for weak deformations, for large deformations the
elastic behavior is nonlinear. Cladis and Torza"
have already discussed this nonlinearity in physical
terms. The transition temperature is reduced in
the presence of a bend distortion and substitution
of the reduced Tz~ into Eq. (I) gives the nonlinear
elastic behavior. Our derivation (Sec. II) shows
that this procedure is correct to within a numerical
constant. We then show that near the phase transi-
tion the FrederiCksz transition becomes first or-
der to a state with 8(~l) =2m. These nonlinear ef-
fects become important about 0.1 K above the phase
transition. However the tilted state is still spa-
tially uniform, and the theory does not explain the
appearance of the striped texture. Cladis and
Torza explain the "stripes" as a corrugation of the
smectic-nematic interface which should appear
below T» in pure material.

II. NONLINEAR ELASTIC BEHAVIOR

We first study the elastic behavior of a nematic
liquid crystal near a second-order nematic-smec-
tic-A phase transition and derive an expression
for the elastic free energy in the nonlinear regime.

We begin with the free-energy expression used
previously by de Qennes' and McMillan. " The
Oseen-Frank nematic free energy is

d'rf ,'K (V ~ n)'-+-,'K„[n (&x n)]'

~-2K„[nx (Vx n)]' ——,'X, (n H)'},

where n(r) is the nematic director, K», K», and

K33 are the unreno rmal ized sp lay, twist, and bend
elastic constants, and H is the magnetic field. The
smectic-A free energy is
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+c„
I
(n ~ iq, )y I'+c,

I
n «y I'],

(4)

The function X„(z) is centered at z =k,/q, e.
Writing

., k„,kP..k„,k, ( )
n, k, k

(9)
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where ((r) is the complex smeetic-A phase order
parameter, q, =2m/d where d is the smectic in-
terplanar spacing, and one assumes a =a'(T —Tzii)
with the other constants independent of tempera-
ture. The total free energy is the sum of Eqs. (3)
and (4). We want to calculate the way in which the
elastic behavior in the nematic phase is affected by
smectic order-parameter fluctuations just above
T». We will therefore calculate the free energy
of the fluctuations in the presence of a fixed bend
distortion of the director. We assume n=z+5n,
5n= Ezy, which gives a uniform bend distortion of
magnitude ln&& (& x n) I=k near the origin (r=0).
Then writing g(r) = P(r)e "0' we have

we have

F, = Z IC„„„., I'E„, , (10)
y

assuming that Q„k k are normalized.
y

We now integrate over the smectic order-param-
eter fluctuations to find the partition function:

nkT
Jhsl En, krak n, k, k

The partition function is a function of E, and we
find a nematic elastic free energy due to smectic
order-parameter fluctuations

(5) F, —= —kTlnZ = —kT g ln E (12)
We neglect the i'' term in the nematic phase. We
next find the eigenfunctions and eigenvalues of the
operator in the square brackets. The solution is
well known from the Landau diamagnetism prob-
lem:

9 8 8
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The eigenvalue is independent of k„and we have
Zk =q,a/2v. The free energy is then

F, = ' ' in[a+2(n+ k)(c„c,)' 'q, e+c,k„'].kTqoe dk„
71' 7t'

(13)

with

(z)e ik~+ik y

=Z ~ (8)n, k~, kyi n, k~, k
The integral

kTqoe dkxdx "ln[a+2x(c„c,)'~'q, e+c, k„']

(13a)

The eigenvalues are

, =a+c, k'„+(2n+1)(c„c,)'~'q, E. (8)

is a constant (independent of e) and after subtract-
ing (13a) from (13) we obtain a convergent expres-
sion for F,.

kTq, e ' ~ dk„a+2(n+&)(c„c,)' 'qoe+c, k„'
(14)

Performing the k„ integration we have

1

F, =const. + ' dx g([a 2(n++ )(c„kc„)' 'q, e)' ' —[a+2(n+x)(c„c,)' 'q, e]' '],
277 cg o n

(15)

which is still exact. We will evaluate Eq. (15) in
two limits. First, if the bend distortion is small
[k «a/(c„c, )'i'q, ], we can expand the second
square root in Eq. (15) in powers of x, keeping
terms up to second order. We then find

kTq2E2 cF,=const. + 48o48m a

a «a/(c„c,)'i'q, (16)

which is de Gennes' result since g„=- (c„/a)' '.
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This result is valid only for weak bend distortions.
For large bend distortion [&»a/(c„c)' 'q, ] we can
neglect a in Eq. (15), and we find

Q+$2f 2 g l/ 2

E, = const. +

~»s/(c„c,)"'q., (17)

where

g-I/2 —24 g [(/ + L)l/2 2(n + 1)3/2+ 2 g3/2]
n=p

= 1.4613.

We show that near the phase transition the Fre-
dericksz transition is strongly first order to a
state which is highly distorted. We simplify the
problem somewhat by neglecting the unrenormal-
ized elastic constants K;;. Near the phase transi-
tion K33 in an order of magnitude larger than K33 so
this approximation is justified. The undistorted
state has free energy I' =0. In the distorted state
the distortion is large, and we use Eq. (11) for the
free energy

F = d'r [-,'K,',
~
n x (V x n) ~'/' ——,

'
y.(n ~ H)'],

Thus we find that for large bend distortion the free
energy increases as &' '. A suitable interpolation
formula between these two limits is

E2= const. + (18)
48m g+ gjc e

where

kTqo '(c„/c,)' '
33 24~gl / 2

(21)

Note that a =a'(T —Tz//), so that nonlinear effects
become important at smaller distortions near the
phase transition.

The bend distortion E has dimensions of an in-
verse length which is physically the distance over
which the director rotates by 1 rad. The present
calculation is valid provided it is carried out in a
box of linear dimensions greater than the correla-
tion length. In order to have a uniform bend over
a box of this size, we require e)„«1, which sets
an upper limit on the bend distortion. The cross-
over from linear to nonlinear elastic behavior oc-
curs at a much smaller value of bend distortion

-d/g, ', 'so that the nonlinear calculation is valid
over a wide range of E.

The transition to the smectic phase in the pre-
sence of a bend distortion occurs when the lowest
eigenvalue of (8) goes to zero. This occurs for

T = T~„-(c„c,)"'q,~/a'.

Substituting this transition temperature into de
Gennes' expression, Eq. (1), gives the nonlinea, r
free energy, Eq. (18), except for the numerical
factor g.

For twist distortion a similar calculation yields

kTq06 ciF, = const. + 0 ', (20)
487/ C„Q+gciqoE

where & = ~n ~ (V x n) ~. There is no contribution for
splay distor tion.

III. FREDERICKSZ TRANSITION

In this section we calculate the Fredericksz-
transition behavior including the nonlinear elastic
behavior. Far from the phase transition the Fre-
dericksz transition is second order, the distor-
tion near the critical field is weak, and H, is not
affected by the nonlinearity at large distortions.

Writing

n = cos0 z+ sin8 x,
and H =ax, the free energy per unit area is

Bsin8 ' '
f= —,

' If",, — dz —o. sin'8 +
p 88

(22)

(23)

8(z) = g 8„sinn@.
n odd

(24)

We can find the free energy as a function of the
parameters 8„. Since we seek the state of lowest
free energy, we can treat the H„as variational
parameters and minimize the free energy with re-

m/2

I.O
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'0 I

0.5
z/g

1.0

FIG. 1. Tilt angle 0(z) versus position at the critical
field (e =1.018) and at higher fields.

Where f is the sample thickness, and o. =y, H'E'/'/
K3'3n' '. The boundary conditions on the tilt angle
8 at the glass surfaces are 8(0) =8(p) =0. Expand. -
ing 8(z) in a Fourier series,
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spect to the 8„. Theminimizationproblem is a non-
linear one, and we use the standard trick of guess-
ing a trial solution, linearizing the equations for
the H„about the trial values 8'„, and solving the
linearized problem. We then take the new solution
as a trial solution and iterate this procedure until
it converges. Keeping ten terms in the Fourier
expansion, we find that the dis tor ted state has
negative free energy (and is thermodynamically
stable) provided n&o.,=1.018. Thus we have a
first-order critical field

and rises discontinuously from zero at H =H, .
When H, &H, one will not observe the second-

order Fredericksz transition and the elastic-
constant measurement fails. This occurs when
$„=0 4(ld. )'~' (using c„/c,=4). For CBOOA' g„=24/
(T/Tz~ —1)'~'A and d = 35A; so for a sample thick-
ness of 50 p. the crossover occurs 0.07'C above
the phase transition. Thus the nonlinear elastic
behavior explains the appearance of anomalous
behavior in the Fredericksz experiment =0.1'{.
above the phase transition.

(25)

which is a function of material parameters but in-
dependent of temperature. The tilt angle 0(z) in
the distorted state at H =H, is shown in Fig. 1.
The tilt angle in the middle of the sample is =&m

IV. CONCLUSIONS

We have derived the nonlinear elastic behavior
of a nematic liquid crystal near a second-order
nematic-smectic-A phase transition and have
shown that the Fredericksz transition behavior is
modified.
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