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The effects of thermal fluctuations on the convective instability are considered. It is shown that the Langevin

equations for hydrodynamic fluctuations are equivalent, near the instability, to a model for the crystallization
of a fluid in equilibrium. Unlike the usual models, however, the free energy of the present system does not
possess terms cubic in the order parameter, and therefore the system undergoes a second-order transition in

mean-field theory. The efFects of fluctuations on such a model were recently discussed by Brazovskii, who

found a first-order transition in three dimensions. A similar argument also leads to a discontinuous transition
for the convective model, which behaves two dimensionally for suAiciently large lateral dimensions. The
magnitude of the jump is unobservably small, however, because of the weakness of the thermal fluctuations

being considered. The relation of the present analysis to the work of Graham and Pleiner is discussed.

I. INTRODUCTION

There has been recent interest' in the effects of
thermal fluctuations on a, fluid near the Rayleigh-
Benard instability. ' Zaitsev and Shliomis cal-
culated the velocity-correlation function using a
linear theory which corresponds to mean-field
theory in a phase transition at equilibrium. They
found a sharp continuous transition to the con-
vective state, with a diverging "static susceptibil-
ity" and critical slowing down of the characteristic
frequency. They also calculated exponents de-
scribing the correlation length, etc., which are
typical mean-f ield exponents.

One may then pose the following question: How

does the nonlinear coupling of fluctuations change
the above mean-field result? Does it leave the
transition sharp and continuous, but with different
values of the exponents? Alternatively, will the
transition become sharp but discontinuous, or will
the sharp transition be smeared out?

In an early work, Graham4 has attacked the above
problem in a case where the plates between which
the fluid is confined are of finite lateral dimension.
Graham found that fluctuations smear out the
sharp mean-field transition, as in a "zero-dimen-
sional" problem" with only a. finite number of
modes, e.g. , a laser. The region over which this
smearing effect is apparent is extremely narrow,
however, because of the smallness of the thermal
energy compared to the typical energy of a con-
vective cell. Thus the exact behavior of the
fluctuating system is unlikely to be observed ex-
perimentally, and the problem under considera. -
tion is of theoretical interest only.

In the present work we consider a Benard sys-

tern of arbitrarily large lateral dimension and

study the effect of fluctuations on the onset of con-
vective motion, using the same statistical starting
point a.s in Refs. 3 and 4. We show that for an in-
finite system the Benard problem is equivalent,
very near the instability, to a. time-dependent
relaxational model' near equilibrium, which under-
goes a "crystallization" from a liquid to a, solid.
Unlike the usual freezing transition, however, the
"free energy" of our model does not contain any
terms cubic in the order parameter, owing to the
symmetry of the problem. Thus we are dealing
with a transition which is second order in mean-
field theory, unlike the usual crystallization. '

A similar model was recently considered in
equilibrium by Brazovskii, ' in connection with the
study of weakly anisotropic antiferromagnets, and

certain liquid crystals. The important new fea-
ture of this class of models is the high degree of
degeneracy of the ordered state, since one is
dealing with broken translational and rotational
symmetries. This is in contrast to the usual
antiferromagnetic transition in a crystal, where
the periodic structure characterizing the spins
is determined, at least in part, by that of the
underlying lattice. As we shall see below, the
present model does not belong to any of the uni-
versality classes" previously considered in the
study of critical behavior.

In the weak coupling limit, which is certainly
applicable to the Benard case, Brazovskii' used
perturbation theory to argue that a first order-
transition would occur in three dimensions, as
a result of fluctuations. The model we consider
differs from Brazovskii's in the dimensionality,
since in our case fluctuations are totally sup-
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pressed in the vertical direction. Brazovskii's
argument can be repeated in the two-dimensional
case, however, and one again finds afirst ovd-er
transition (to a system with "rolls"'), as long as
the lateral dimension L is not too large [L/l
«A. ' ', where A. is the coupling constant and l

the plate separation]. In the case L/I » & '~' in
two dimensions, or for ~& 1 in any dimension,
the arguments break down, and the behavior of the
system is not known. It should be pointed out,
moreover, that Brazovskii's treatment is not
rigorous, and it is conceivable the sharp jump
he obtains will be smeared out slightly when a
more precise calculation is performed.

In Sec. II the equivalence of the Rayleigh-Benard
problem and Brazovskii's model is demonstrated,
following arguments which are close to those of
Hefs. 3 and 4. Section III discusses Brazovskii's
work, and the modifications which are necessary
in two dimensions. In Sec. IV comparison is made
with the treatments of Graham" and Graham and

Pleiner, "and the reasons for their disagreement
with the present results are discussed. The
mathematical details of our work axe contained
in Appendixes A and B.

II. PROOF OF EQUIVALENCE OF CONVECTIVE
INSTABILITY TO BRAZOVSKII'S MODEL

Let us begin with the equations of fluid dynamics
in the Boussinesq approximation' for a fluid
bounded by infinite horizontal plates separated
by a distance l, and at temperatures T, and T,
+ AT, respectively,

BU
+ u ~ grad u= —grad(P/p) + vV'u+

@@TED,

(1)
Bt

BT
Bt

+ u gradT = yV2T

divu=0,

where u(x, f) is the fluid velocity, T(x, f) the tem-
perature, p the pressure, p the density, v the
kinematic viscosity, v the thermal diffusivity, g
the acceleration of gravity, and n the thermal ex-
pansion. We introduce the variable

8(x, t) = T T, + (nT/I)x, - (4)

which describes the departure of the temperature
from the uniform gradient ET/I, and study the
coupled equations for 8 and u, (x, f). As is well
known, ' these equations have an instability at a
critical value of 4T, given by R=R„where the
Hayleigh number R is defined as

R =gtx PET/vK

The value of R, depends on the boundary conditions

on the horizontal surfaces.
In order to calculate the fluctuations in hydro-

dynamic variables new tkenn al equiBbxiurn
(R-0), it is convenient to add a I.angevin
force'2" 4 to the right-hand sides of (1) and (2),
representing the random effect of molecular noise:

B,u,.+u, s,u;+ 8, (p/p) —vB,.B~u; —goT6;, =8&s,, ,

(6)

('I)

(s,,(x, t)s, (x', f'))= 2(ksT/p)v6(x x')—

(q, (x, t)q, (x', t')) = 2(ksT'/C„)KB(x x')—
x 6(t t ')6, , ,

(q;(x f)s (x' f'))=(q (x f))

= (sj„(x,f)) =0 .

(6)

(10}

We wish to evaluate the fluctuations of hydro-
dynamic variables in the nonequilibxiurn situation
in which R is finite. Following previous work, "4
we shall assume that E|Is. (8)-(10) are unchanged
at finite R, since the departures from equilibrium
involve macroscopic disturbances, and these
should not affect the fluctuations of the forces q
and s, which have their origin in microscopic
molecular motion. The system of equations (6)—
(10) is now complete, and we may attempt to cal-
culate the correlation functions of the variables
T, u, and p for R -R,. In the case where the
equations of motion can be lineaxized in 8 and u
the calculation is rather straightforward, and was
carried out by Zaitsev and Shliomis. The im-
portant variables are u, (x, f) and 8(x, f), from
which two linear combinations can be formed,
with characteristic frequencies

(-) v(q', +p',) R, —R (q'-q', )'

(u, (p ) = v(qo+ p',)(I+P)/P, (12)

respectively, for R-R, . In Egs. (11) and (12),
whose derivation is outlined in Appendix A, p is
the three-dimensional wave vector conjugate to
x, and P = v/K is the Prandtl number. Writing p'
= q'+ p„where q is a, two-dimensional vector in
the horizontal plane, we fix p„q„and R, by the
boundary conditions on the top and bottom plates.

BtT + ug By T
—KBg8)T = —8 -q ~

where 8, = 8/Bt a—nd 8,. —= 8/Bx, For ET-O, the sys-
tem described by these equations will relax to the
usual equilibrium at the given temperature and
pressure if the fluctuations of the random forces
are given by"
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Let 20(x, t) be the linear combination of v, and 0

corresponding to the "slow" mode &u, (P). Then as
shown in Appendix A, the Fourier transform of
the correlation function of zo is equal to

(q' —q,')'/q, '(q,'+ P',) + (R, —R)/R,

ksT Pk~T V(q0+Pz) &dg

p Q„ t2.T/I &u'+ &o',

(13)

for q- qo, R R,. This correlation function dis-
plays the "critical slowing down, " and the di-
vergent "static susceptibility" char acteristic of
a second-order phase transition. " Moreover, the
exponents are clearly those of the mean-field and
conventional theories7 of critical behavior. The
correlation function in Eci. (13) is precisely the
one which would be obtained from a "time-depen-
dent Ginzburg-Landau" equation' of the form

where

t(1+P)
I 2 2x & ~l /q0

V'(go+ Pg)

(1+P)'q',+' = ~a~~o Xo ~(q0+P )

so that our model takes the form

duced to the study of a relaxational model given
by the general equation of motion (14), with the
free energy (15)-(18). This model contains a.

small parameter ksT/v2tp =10 ' (for l = 1 cm),
which is the ratio of the noise energy to the char-
acteristic energy in I', i.e., the viscous dissipa-
tion associated with one Bernard cell. Thus fluctua-
tion effects will only occur extremely close to R,.
In order to make the small parameter apparent we
introduce dimensionless variables

20[ ~(q0+Pz) Rl si ~ 2 2 2 3/2'
2!(I+P)

V Q'0+ P

620(xi, t) 6E
~04 6 (» t)

+ q(xi' t}

with the Gaussian "free energy"

(14) 8$ 66'
+g(x, t),~t

(g(x, t)g(x', t'))= 6(x —x')6(t —t'),

(19)

(20)

x 20(x, )

(2!(x„t)2!(x,', t')) = k3TI'0!f06(x, —x,')6(t- t'),

and with

I', = v(q20+P', )(1+P) ',
1 v(q20+P, )

' PT

(16}

(17a,}

(17b)

+ 41
d'x g'(x),

2'= (R, —R)/R, ,

k&Tq20 1 v(q20+P, ) 2 PT
gQ p2( 2~P2)2 P gT/I Q Pz

(21)

(22a)

(22b)
Nonlinear terms

The preceding analysis holds for R close to R„
where one can neglect the fast mode varying with
the finite frequency &u2(p), Eg. (12). Since the non-
linear terms in Eq. (6) were neglected in the
analysis, the results will not hold in the immediate
vicinity of the transition, where the linear theory
predicts diverging fluctuations. One must there-
fore include the nonlinear terms of Eg. (6), to the
extent that these affect the slow mode (11). As
shown in Appendix A, these terms lead to a modifi-
cation of the free energy, which takes the form

goP 2 4
4!ksT!t01'0a(I P)'

(18)

where go is a numerical constant.
The Bernard system near R, has thus been re-

reflects the smallness of the fluctuation effects.
The system defined by Eqs. (14) and (18) is very
close to the one studied by Graham, ~' with the im-
portant difference that the rotational symmetry of
the starting equations in the horizontal plane has
been preserved in our model.

III. PROPERTIES OF BRAZOVSKII'S MODEL

The free energy (21) is precisely of the type con-
sidered by Brazovskii in his study of the condensa-
tion of a liquid to a nonuniform state. The phase
transition involves a "condensation" from a uni-
form system (p) =0 or (20) =0, to a, periodic array
(density wave) characterized by one or more vec-
tors j,, such that ~q,. ~= q, . This model differs from
the usual model' for the condensation of a liquid in
that the free energy contains no cubic terms, which



322 J. SWIFT A5 D P. C. HOHENBERG

would lead to a first-order transition in mean-field
theory. ' The absence of such cubic terms in the
Benard problem is due to the special symmetry of
our problem (see Appendix A).

Our system also differs from the usual n-vector
model of critical points, "in that the order param-
eter of the latter model has a unique value of the
wave vector associated with it in the condensed
phase~

(4.(q)) = &.&(q- q.)&.,. . (23)

where q, =0 for a ferromagnet, and q, is any one of
a set of isolated points in reciprocal space for a.

typical antiferromagnet. In the system repre-
sented by Eq. (21), the condensation can occur for
an'y q on a cll'cle I ol", Illol'6 generally» a (d —1)-
dimensional sphere

~ q ~

= q, J. Thus the broken
symmetry of the condensed phase involves not just
the choice of a particular component n =1 of the
n-component vector ( (q ), as in (23), but also the
choice of a, vector q= q, out of the infinite set of
equivalent order parameters tc»(q) with ~q ~

=q, .
We shall refer to the usual case as a "discrete"
condensation, and to the system (21) as a "'con-
tinuous" condensation. In some sense the system
(21) is equivalent to an n-component spin system
with n= ~. An important difference, however, is
that in the discrete system there is a d-dimension-
al phase space of q values around q, which leads
to small energy differences and large Quctuations.
In the continuous model, the d-dimensional phase
space about q, involves partly fluctuations to
points q, on the "sphere" of condensation, which
are exactly degenerate ( ~q, ~

= q, ), and partly
points q away from this sphere ( q~4q, ), which
are only nearly degenerate. Thus the contin-
uous-condensatlon model does not have the full
d-dimensional phase space for Quctuations away
from the ordered state. It should be clear from
'tile preceding dlscussloll tllat 'tile systeIIl (21)
which was discussed by Brazovskii, ' does not
belong to any of the usual universality classes of
isotropic models" characterized by parameters
n and d. Indeed, this is true of any model de-
scribing the spatial ordering (crystalization) of a
liquid, but in most cases terms of third order in

lead to a first-order transition, and the question
of the universality class of the Quctuations does
not arise. The Brazovskii model is noteworthy
precisely becau. se such terms are absent, and the
transition is second order when fluctuations are
neglected.

Brazovskii's solution

Brazovskii has studied the properties of the
model in Eq. (21) in three dimensions, and has

argued that it will undergo a first-order transi-
tion, when fluctuations are taken into account. '
This transition, which occurs below the mean-
field value T =0, is obtained by calculating the
difference in free energy between the disordered
state and a state with periodic density. The tem-
perature at which this difference changes sign is
the first-order transition temperature. Since
fluctuations are important in suppressing the
second-order transition, it is necessary to take
them into account consistently in estimating the
free energy, and Brazovskii has attempted to do
this, in the weak coupling limit (see Appendix B).

Of the different ordered states which are pos-
sible for a scalar order parameter, Brazovskii
found that the state with the density varying in
only one direction will be most favorable ener-
getically. Since, however, such a state does not
have true long-range order in three dimensions, "
there will be no true difference of symmetry be-
tween the states above and below the transition.
(Such a difference of symmetry is of course not
necessary in a first-order transition. )

In attempting to generalize Brazovskii's work
to a two-dimensional system, with condensation
along a circle ~q ~

=q„one encounters certain
additional difficulties having to do with the absence
of true long-range order. Nevertheless, for a
system of finite but large lateral dimensions we
can repeat Brazovskii's argument, to show that
there will be a first-order transition to a state
with nonuniform density. As in the three-dimen-
sional case, the density varies in one direction
only in the lowest state, which corresponds to a
roll pattern in the language of convective instabili-
ties. ' The arguments, which are outlined in Ap-
pendix 8, are not rigorous, since they are based
on a rough estimate of the omitted fluctuation
terms. Moreover, they hold onlyUor weak cou-
pling (A.«1). The jump in the value of (p) is of
order A. '~', so that the jump in the value of (Iv)
(-I»q, X'~') will not be observable, in practice, in
the Bernard case, where A. -10 '.

Effects of finite lateral dimension L

As shown in Appendix 8, in the two-dimensional
case, the argument of Brazovskii breaks down
when the lateral dimension I. exceeds A.

' 'qo'. In
that case (I.» X '~'q, ') it is not clear whether the
transition wiQ be sharp or smeared. For I.
«X ' 'q, ' there appears to be a sharp transition,
as discussed above, until I becomes small enough
so that the system is "zero-dimensional. " This
occurs when the correlation length at the "tem-
perature" of onset of fluctuations (~ v ~= X'~') is of
order I, namely, for qoI. 6 A.

'~s (since $- ~7'~ '~').
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We therefore can identify three regimes, de-
pending on the relative size of the lateral dimen-
sion I, the coupling constant X (assumed «I),
and the wave vector qo = I ' (where i is the plate
separation in the Benard problem).

(i) I.q, » X 'i" Brazovskii's analysis does not
yield any estimate for the properties of the system
in the transition region in two dimensions, since
his perturbation series is in powers of X(q,L)'i'.

(ii) A. 'i'» Iqo» X 'i" Brazovskii's arguments
lead to a first-order transition at a reduced tem-
perature 7 = —X'i'.

(iii) X 'i'» Lqo: When r becomes small enough
so that fluctuations are important the correlation
length is already large compared to L, and the
transition is smeared by "zero-dimensional" be-
havior. This is the regime studied by Graham4
and by Smith, ' and as they point out, the rounding
will only occur very close to v=0 (i.e., at is i

y2 /3)

When the coupling constant X is not very small
compared to unity, Brazovskii's treatment does
not apply, and it is not clear how the system will
behave. It should be remarked that since we are
predicting a first-order transition with no strict
change in symmetry, there is no reason why the
behavior should be universal as a function of the
coupling constant.

We have not explicitly studied the time-depen-
dent problem defined in Eqs. (19)-(21). Neverthe-
less, it is clear that the characteristic frequency
of the order parameter will roughly follow the in-
verse susceptibility x, and will experience a jump,
if there is a first-order transition at w= —7,.

IV. COMPARISON WITH OTHER WORK

The first estimate of the effect of hydrodynamic
fluctuations on the Benard instability was that of
Zaitsev and Shliomis, ' who used the linear theo-
ry, and found a sharp "second-order" transition
with diverging fluctuations, and "mean-field" ex-
ponents. As in any mean-field treatment, they
found no rounding effect due to the finite lateral
dimensions of their system. As mentioned earlier,
such a. rounding was then discussed by Graham
and by Smith' using the nonlinear theory, in the
(zero-dimensional) regime where only one mode is
excited, as in a. laser. The range of values of
R —R, where this effect is significant is of course
very small, because of the weakness of the fluctu-
ating forces assumed in the model. We recover
the results of Refs. 4 and 6 from our model in the
zero-dimensional limit Lqo& X ' '.

For systems with large lateral extension one can
excite many nearly degenerate modes, and the
fluctuation effects will depend sensitively on the

B(v)[B(v)+-,v'vj' '=B,' '(1 —yv), (24)

where B(v) is related to a self energy by th-eir Eq.
(50),

Z,"'(v, 5 =0) = —B(v)/(P+ 1), (25)

symmetries of the system. Fluctuation effects in
a, large system were studied by Graham" using a
model very similar to ours. The main difference
is that Graham chose a particular direction for
condensation, and did not preserve the isotropic
symmetry of the disordered phase. This means
that he did not take into account the full spectrum
of fluctuations of the ideal system. The results
he found for finite but large systems with lateral
dimensions L„=L, have an asymmetry between x
and y which is unphysical, since the system is as-
sumed to be isotropic, at least for R(R, (7') 0).
We therefore disagree with the results of Sec. 4.2
of Ref. 5.

An analysis of the infinite system was given by
Graham and Pleiner" using a mode-coupling
formalism applied directly to the hydrodynamic
equations. As we explained earlier, we believe
that our model is completely equivalent to the
hydrodynamic starting point, insofar as one is
only interested in singular properties of the sys-
tem very near the instability. The differences be-
tween our model (or that of Ref. 4) and the more-
complicated one of Graham and Pleiner" have to
do with properties which are "irrelevant" in the
renormalization-group sense. ' Although we have
not made a detailed comparison between the work
of Graham and Pleiner" and our own, we believe
that the arguments leading to the equation between
(50) and (51) of Ref. 11 [GP (50a)] are parallel to
the arguments by which we proceed from the hydro-
dynamic equations to our Hartree equation (B2) of
Appendix B. Indeed the v;;„ in Eq. (29) of Ref. 11
are analogous to the v in our Eq. (A18).

An important formal difference between our work
and Ref. 11 is that we have separated the static and
dynamic problems, by first making the simplica-
tions of neglecting fast modes and considering a
problem involving the slow mode only. Equation
(29) of Ref. 11 corresponds to a diagram like that
of Fig. 1(a). If the dashed line corresponds to the
propagator for a fast mode, then its frequency
dependence is not singular at low frequencies.
Thus a fast-model propagator may presumably
be replaced by a constant" in Eq. (29) of Ref. 11,
which then becomes a Hartree self-energy [see
Eq. (B2) below].

Thus it seems to us that a central result of
Graham and Pleiner, "their Eq. (50a), is essen-
tially equivalent to our first-order Hartree approx-
imation Eq. (B2). Their equation reads
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a)

b)

Physics (where a portion of this manuscript was
written) for hospitality and the A. P. Sloan Founda-
tion for support.

APPENDIX A: EQUIVALENCE OF BENARD PROBLEM

AND BRAZOVSKII'S MODEL

Linear analysis

The linearized versions of Eqs. (6) and (7) for
u„ the z component of the velocity, and 8 are

a 2—V'u, —vV'V'u, —ngV', 8=f, , (Al)

8—8 —wV'8 -Pu, =f~, (A2)

c) where

P = hT/l,

Vx(Vx V ~ s),

f= —V q.
Solve by Fourier transformation for the correla-

tion function,
FIG. 1. (a) A diagram which appears in the formalism

of Ref. 11. The dashed line represents a propagator for
a "fast" mode, and the solid line a propagator for the
"slow" mode as discussed in the text. (b) Hartree dia-
gram. The dot represents a factor of X, while the solid
line represents a factor of gz(q) = [xz+(q —q&) ] . (c) A
second-order "anomalous" diagram which appears in
perturbation theory in the ordered phase. The wavy
lines represent factors of 2a cosq& 'xJ. (d) A second-
order diagram.

Q' d(d
u (x f) (), -

x e'~ ' ~& ""u(q, ~) sinp, z,
d2

8(x, f) =
(2v)' 2m

x e"" '~ ""8(q, (o) sinp, z,

(A3)

(A4)

with v=(R, —R)/R, . If we identify their B, with
our X' ' and neglect the yv term on the right-hand
side of (24), then our Eq. (82) corresponds to (24)
to within numerical factors. Equation (24) leads
Graham and Pleiner to predict a smeared transi-
tion as in a one-dimensional spherical model. "
Comparing with the discussion of Appendix B we
see that the effects associated with the ordered
phase have been left out of the analysis of Ref. 11,
which therefore misses the first-order transition.
Moreover, the contribution from higher-order
terms [for example, the one represented in Fig.
1(d)] will in general not be negligible sufficiently
far below v=0 (R&R,). In the range A.

' '«(I, qo)
'

«X' ' we have argued that these terms are neg-
ligible, but in general they are expected to in-
validate the Hartree approximation in Eq. (24).
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where we assume free-free boundary conditions
at the horizontal plate, ' and where p, = m/l; i.e.,
we restrict ourselves to the lowest vertical mode.
Note that the Fourier integrals (A3) and (A4) are
appropriate for a system of infinite lateral extent.

Define (where p'=q'+p', )

—~gq /p

-p vp'

For R near R, = 657.5 and
~ q ~

near qo (qo =p', /2),
Lo has sl ow and fast eigenvalues, (d, and o)„re-
spectively, given in Eqs. (11) and (12) of the text.
Let ze be the combination of u, and 8 which cor-
responds to the left eigenvector of L, associated
with the slow eigenvalue or„

av(q, &u) = u, (q, &u)+ (vp', /p) 8(q, &o), (A6)

where po=p', +qo. Then, by use of (A2) and (6)—
(10), a,nd

(k(q, (o)u)(q', &'),) =-2(2v)'6(q+ q')

x 6(a+ w')C„„(q, &a), (A7)
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we find that C (q, 0)) is given by Eq. (13}of the
text.

where 4 is a four-component column vector

Nonlinear terms

Write the full nonlinear equations (6) and (I) in a
matrix form,

(A9)

2 04 +V:4 4' =f, (AS) and where o is the matrix operator

—V' —vV V' —A@V2

et

8——1(V'
at

ng V' V' —V' —vV'V'
X Z Qt

(Al0)

—V' —vV' V
a

et

v 4%=

VgV;V2(uauj) —V2V&&V,u@;
—u' Ve

V„V,V2(u@, ) —V2V2V)(u„u,).
V2V)V2(u2u;) —V&)V2V;(u2u))

f is a column vector composed of the fluctuating
forces. The symbol v:C4' is used to denote the
four-component vector

We may invert Eq. (A15) to find 4'&)). This is so
because 4'4 contains only the second and zeroth
harmonics in p, and not the first." Hence cd
operating on the second harmonics sin2p~ and
cos2p, z will not be zero, and the inversion can be
performed. We also project 0"' in the nonlinear
term in (A15) onto the slow and fast eigenvectors
discussed above, and keep only the slow part.
Thus

and represents the nonlinearity in which we are
expanding. In (All), the summation convention is
used and the indices j and k range over the
Cartesian components x, y, z.

Let us introduce a factor & in front of the non-
linear term in (A8), do second-order perturbation
theory in z, and then set &=1." A small param-
eter appears later in the theory as discussed in the
text. Equation (AS) becomes

@(z) g-z .@(o)@(o)
0

and we have

(y(0 &+ f@(1) + f2@ (2 &)

f g().)l)(0 &)1&&0)~ q2().&l)(0&g-)().)l&(0)y(0&

~ ~2 .(g-1 .@(0)y(0))y(0)

(Alv)

(A18)
204+ &():44'=f . (A12)

Write

y(o)+ ~y(1)+ ~2@(2) (A13)

Then we obtain, from collecting the factors multi-
plying powers of & through &',

The right-hand side of Eq. (A18) contains response
in the zeroth, first, second, and third harmonics
of p, z. We retain the response only in the first
harmonic. To the order we are working we may
replace 0 "' by 4 in the last two terms in Eq.
(A18). If we write

g @&0) f (A14) u, (x, f) =u', (x„f) sinP, z, (A19)

e")+v e")e")=0

a e"'+ -e"'e" '+ e("e"'= 0

(A15}

(A16)

e(x, f) = 8'(x„ t) sinp, z,

then from (A18) we obtain, if we put e = 1,

(A20)



326 J. SWIFT AND P. C. HOHENBERG 15

—(v', —p', )+ v(v,' —p', )' u,'(x„ t)

——~(v —p )
9 2 2 8'(x„ t)

f (r t} d2q d2q d2q g qq q ) (0)
dgsinp, z — . . . — u, qtu, q', t 8 q", t e""""~"''~, A21f (r t) (2)))' (27()' (2)))'

where g(qq'q") is a complicated function, which may be obtained from (All). We have calculated g ex-
plicitly only in the limit of large Prandtl number, where we find

g(qq'q") = —,(1 —cos8„,)(2+ cos8„„+cos8...„)[lq+q' l'+ (2p,)']'P4 ee'
t) q+

Iq+q'l' ' 2V Iq+q' t'
hjq+ q'j =, + 8

Pp Pp
(A23)

and 8„, is the angle between q and q'. Note that the above expression satisfies the condition g(qq'q") «0,
but is dependent on the angles between q, q', q".

We take the linear combination of the two equations of (A21), which gives the time derivative of the slow
eigenvector of the linear problem, given in Eq. (A6). As mentioned above, we keep only the projections of
u, and 6j onto the slow eigenvector. The nonlinear equation for this eigenvector is then

Xrr „(,R, —R V', +4J
)(i

2 2 I 2 II

.f ' '). ' (R(qq'4")R(q, r)R(q', r)x(q", r)exp(((q+q'+q") x, ] +)(xq„),r(A44)

Bzv 5E
Xp
—+ '0

8t . 528

where E is given by Eq. (18) in the text.

(A26)

where

2

q(x, , r)=qf Rrxixpx ——,f (r, r)+ 'f (r, rl) .
Pp

(A25)

In order to obtain Eq. (18) of the text, it is now

necessary to neglect the q dependences in the inter-
action function g(qq'q"). This is in the spirit of
the simplest renormalization-group treatment of
field models, "where a constant interaction vertex
is assumed. In the present case, we are also
neglecting the angular dependence of g, which may
be "relevant" for the critical behavior. We believe
that this approximation is justified in the weak-
coupling limit, where the system has a first-order
phase transition, but a more detailed investigation
of the angular dependence of g would be necessary
in the strong-fluctuation regime.

If we assume g(qq'q") to be a constant —=go/3!,
we may write (A24) in the form

energy (21) in d dimensions, with a scalar order
parameter (n= 1), which we write as

q —q 7'+ q —qp

q, q2 q,

x (r)( qq q, q3) .
(»)

To relate (21) to (Bl), we note that (q' —q', )'
= (q —qo)'(q+ qo)' = (2qo)'(q —qo)' for the q's of in-
terest. We have also ignored some nonessential
constants and have written the free energy in
terms of Fourier transforms. The correlation
function for the field (!) is

g(x) = ((t(x)rP(0)),

and its Fourier transform g(q) is related to the
susceptibility in the usual way. In the disordered
phase (7 &0) the inverse susceptibility

APPENDIX B: ANALYSIS OF BRAZOVSKII'S MODEL

Let us briefly review Brazovskii's discussion of
the ordering in the system described by the free

may be expanded in powers of the interaction ac-
cording to the diagrams of Fig. 1. The first, or
"Hartree" term [Fig. 1(b)] yields, in d dimen-
sions,
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+H ~ ~H ~+ +H
-xi 2 (B2)

Z, = (o.X)'/qy „'~', (B3)

in any dimension d, if one uses Hartree propaga-
tors in the intermediate states. The neglect of
Z„and higher diagrams in calculating the proper-
ties of the disordered phase is justified as long as

where n =vS~q', '/(Rg)~, with S~ the surface area of
the unit sphere in d dimensions.

It may be noticed that Eq. (B2) is precisely the
result obtained for the one-dimensional spherical
model" (d= l, n= ~) in a discrete system; i.e. ,
different points on the condensation sphere act like
different components of the order parameter, and
the single degree of freedom perpendicular to this
sphere yields the fluctuations of a one-dimensional
system. This result is obtained regardless of the
dimensionality d of the starting system (Bl).

The higher-order terms, given in Fig. 1(d), are
of the form

error involved will be negligible, by assuming the
system to be finite and estimating the contribution
to the free energy from the omitted terms. These
turn out to depend only logarithmically on 1. in
three dimensions, and therefore should not con-
tribute for sufficiently weak coupling.

ln two dimensions we may repeat the argument.
Consider first the diagram (b) shown in Fig. 1, in
the ordered phase. The anomalous contribution of
this diagram comes when the argument of the in-
termediate propagator is near q, . This anomalous
contribution is

dk
(2v)' ~- k~'+(I'/2)'

where k=q -q, is a two-dimensional wave vector
over which we integrate. Choose a coordinate sys-
tem in which q, lies parallel to the k, axis. For a
finite system of lateral dimension I., we are then
integrating over the k-space region shown in Fig.
2. Note that

r„» (o.X)'/qy'„~',

i.e. , for

) 7( (( (~y)3f 5qll 5

(B4)

(B5)

iq, ~ k i'+ (-'k')'= k 'q'+ I-k'+ k')'

= k„'(q', + —,'k,'+ —,'0„')+-,'k,'
= k„'q,'+ —'k,'.

(P (x)) = 2a cosj, ~ x, (B6)

with jj,( =q, . Then one may estimate the free en-
ergy of such a solution, and compare it to that of
the disordered phase. The difference was evalu-
ated by Brazovskii'- to be

Note that according (B2) we have 7 negative for
small y„.

Similarly, one may use the Hartree self-consis-
tent-field method to estimate the properties of an
ordered phase. ' Let us assume a solution varying
in only one direction,

Therefore,

&„dk„p,dk,
~b

2 2 y2q2+ (B10)

5Z~= c,A.(q L)'~' (B11)

where c, is a numerical constant of order unity.

where A„, A, are upper momentum cutoffs.
The integral converges at the upper limits of

integration, so we extend these limits to infinity
and find

2 2

~4 =- ———g -=+—x~]2
2A, 2 ' 2l 2

(BV)

where x, is the inverse susceptibility in the Har-
tree approximation for the disordered phase (B2),
and x is the inverse susceptibility of the ordered
phase in the Hartree approximation, given by

x.= ~+ o.k/r'~ '+ Xa' .

It may then be verified that for r= 7', = -(o.'X)'~-',
the free-energy difference &4 will change sign.
Note that 7', = (uX)'~' is indeed smaller than the
right-hand side of (85), so the Hartree approxima-
tion is valid.

A difficulty with this argument is that the Hartree
approximation is inaccurate at very long wave-
lengths in the ordered phase, since it does not
yield the infinite susceptibility which must be pres-
ent by symmetry. ""Brazovskii argues that the

FIG. 2. The region of two-dimensional wave-vector
space being integrated over. We exclude the shaded
annular region of width 1. ~ about the circle of conden-
sation f qJ =qo.
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Similar considerations lead to a logarithmic depen-
dence of 5Z on L in three dimensions, in accord
with Brasovskii. '

Consider next the diagram (c) of Fig. 1. The
anomalous contribution 5Z, of this diagram may
be calculated as above and is

der A.
' '; hence we require

qg « g-2/2

We also neglect (B12); hence we require

yg c y(q L)2/ « yg

(B18)

5Z, = c,X2a2(q,L)'/2,

where e, is also a constant of order unity. Let us
finally consider the anomalous contribution 5Z„
from diagram 1(d). We find

d'kg d'k2 1
(2 )'(2 )' k' '+k' k' '+k'

5Z = c A.2(q L) '(q,L) '(q,L) ' '

&&(q.L) "'(q.L ') '
= c,/'(q, L)'= c,z(q,L)1/'~(q, L)"'

In order to be able to neglect (Bll) we require

y(q L)1/2 « / /y1/2 (B15)

since A./2' ' is a term occurring in Z which we
kept [in (B8)j. The minimum value of 2 is of or-

1

(k,„+k~) 2q~o+ (k„+k~)'

The minimum value for k]z or k~ is L '. The max-
imum consistent with the conditions k,„Sk,~o and
k',, & k~q„etc. , is k„& (q,L ')'/', etc. We there-
fore estimate that the part of the integral (B13)
which diverges most strongly as L- ~ is

as Xa2 is a term which occurs in Eq. (B8). We can
satisfy the above inequality if

2/5 (B17)

In that case the inequality of Eq. (B16) is satisfied
and also the term coming from Eq. (B14) is negli-
gible compared to that from Eq. (Bll), which itself
may be neglected.

The above argument is the generalization of
Brazovskii's discussion to two dimensions, and
indicates that in the range X' '«(Lq ) '«X' '
the effect of symmetry-restoring long-wavelength
fluctuations will be negligible and the transition
will be first order. Needless to say, this analysis
is only suggestive, and could easily be invalidated
by an infinite sum of higher-order terms. For
example, it may be shown by an argument analo-
gous to the one leading to (Bll), that the effect
of higher-order graphs is to add to the right-hand
side of (Bll) terms of the form

cP(q L)1/ [1+c yL / +c,(yL / ) +. . . ]

(B18)

where the c& are numerical constants. The series
is a sum of ascending powers of XL5 ', which we
have assumed to be small, but we have no informa-
tion on the c,. or the convergence of the series.
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