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Statistical properties of a many-mode laser*
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Using a generalized version of the Volterra-Wiener functional technique, we study a model for a many-mode

laser action in which the coupling among modes takes place through the intensities. It is shown that the

coupled Langevin equations for the field amplitudes can be solved avoiding the infinities at the mode

thresholds. In particular, mean photon numbers, variances, and correlation and cross-correlation functions of
the modes can be computed. In order actually to carry out the computations, it is necessary to evaluate the
solution of a set of coupled deterministic first-order differential equations and to diagonalize a matrix whose

dimension is given by the number of modes envisaged. As an application, the two-mode case is treated in

detail and, besides a derivation of the stationary properties, in part already known, the transient photon
statistics, during the buildup of the two modes, is thoroughly studied. The advantage of this approach is due

to its simplicity and to the possibility of dealing with a large number of interacting modes.

I. INTRODUCTION

In a previous paper' (from hereon referred to as
I) we introduced a generalization of the Volterra-
Wiener method of functional expansion and showed
its power in nonlinear stochastic processes. As
an example, we applied such a method to the
statistical description of a single-mode laser,
deducing in a simple way results already known
either in the stationary' 4 or in the transient
regime, ' and furthermore giving the expression
of the photon number transient correlation func-
tion.

In this paper, we consider a many-mode laser
model, where the mode-mode coupling is due to
intensity interactions and give for it both station-
ary and transient statistical behavior. Some of
the results here reported were already given in a
series of papers. ' ' However, as in I, we give
further results on the transient correlation and
cross correlation of photon number, which have
a physical appeal and suggest simple experiments.

We have chosen the most elementary form of
mode-mode coupling because our aim, more than
giving a detailed treatment of the laser problem,
was to show the power of the functional expansion
method in problems with many degrees of free-
dom. This suggests the possibility of exploring
space-time dependent cooperative phenomena as,
e.g. , turbulence, chemical instabilities, and cri-
tical points of phase transitions.

In Sec. II we briefly summarize the many-mode
laser field equations and deduce the corresponding
photon numbers equations. In Sec. III we give the
solution for the photon numbers equations in the
steady state. In Sec. IV we show how to compute
mean photon numbers of the modes and in Sec. V
how to compute photon numbers, correlation func-

II. BASIC EQUATIONS

We start from the following equations of motion
for the field amplitudes a~ of a many-mode
laser' ":

«-» «+g&«« ~ ~ ~'~«=1'«

Here k and k' are mode labels, and y~ represents
the difference between linear gain and linear loss
pertaining to mode k. P», is a complex matrix
which characterizes the interaction among the
modes and the self-interaction of each mode.
is a complex forcing term accounting for the
stochastic noise sources. Besides we assume
that I'«(t) is a stationary Gaussian noise with zero
average and 5-correlated in time. That is

(2.1)

(r, (t)) =O, (r,*(t)r„(t)) =q, V„,I~(t-t ). (2.2)

In principle, Eg. (2.1) should also contain all oth-
er possible trilinear terms of the type a„*„,a~-a~. .
However, we suppose here that the interactions
among the modes take place via the intensities of
the fields only. This is perhaps a crude approxi-
mation, but in this way the mathematical treat-
ment simplifies to a great extent.

By considering the complex conjugate of Eq.
(2.1) and by adding to it Eg. (2.1), we have

2ri« —(y« -G«) n«+P»n« =c«(t), (2.3)

where n~ is defined as a~*a~ and represents the
number of photons pertaining to the k mode. y~,

tions, and variances in the steady state. Section
VI deals with the photon statistics during the build-
up of the modes. In Sec. VII, as an application,
we give results for the two-mode case both in the
steady state and in the transient regime.
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G», pkk, , and c„aredefined as follows:

y» = y„k=Pp„,n„,
k«k

pkk, = Rep„,ck =
k (a» I'» + rk*a») .

(2.4)

We may look at Eq. (2.3) as the photon number
equation of motion in a one-mode theory (I) in
which the gain yk has been replaced by yk —G, .
This modified gain, in turn, depends on the popu-
lation of all the other modes.

In Sec. III we solve Eq. (2.3) with a functional
technique which is the generalization of the one
discussed in I for the single-mode laser. It is
noteworthy that equations of the type [Eq. (2.3)]
are also encountered in the theory of cooperative
effects in chemical reactions. " In that case nk

represents the concentration of the 4th chemical
component, while ck accounts for the spontaneous
production of new molecules.

III. SOLUTION OF THE PHOTON-NUMBER EQUATIONS

IN THE STEADY STATE

Equation (2.3) can be solved once the term
k (a*„I"„+I'»*a»)is known. To this aim, as for the
single-mode case, we expand ak in a Volterra
series as

ako =o.kh(t) +B»h(t) coscot, (3.2)

where zk is the asymptotic solution for t-+~ of
Eq. (2.1) with I'„=0. B, is a real parameter to be
defined later. However, as we shall see in Secs.
IV and V, the final results do not depend on zk'

and Bk, which therefore need not to be actually
computed. In I the physical meaning of the choice
(3.2) for a» is explained thoroughly. Here it suf-
fices to say that the meaning of the term Bk cos&t
is that of simulating in a deterministic way the
effect of the noise I'k. In Appendix A it is shown
how the functional derivatives (5a, /5I', ) ~ rrl- c
(5a, /5rp) I z; = ~,' can be evaluated.

Equation (2.3) can be viewed as a stochastic
equation driven by a noise source term ck(t). To
solve Eq. (2.3) it is necessary to know the statisti-
cal properties of ck(t). In Appendix 8 it is shown
that

a, =a,'+Q J dt' , }r,—c}}
l o ~~l r =~l= l

t

l 0 l rl cl

retaining only the zeroth and the first-order terms.
We chose a,' as

0
nk =nk+4nk ~

We choose n,' to satisfy the equation

(3.4)

~ 0 0 O~Q 0ink +nk ~ +kk' nk'
yt

with the initial conditions n„(t)=N», N» being the
number of photons of the k mode at t=o. As a
consequence Ank must be the solution of the fol-
lowing set of equations:

(3 5)

1 ~ 0 0 0
2 +nk yk pkk nk' nk p» ~nk nk pkk'+nk'

k'&k

+tkn» Q pkk &nk =tkc», (3.6)

where L n»(0) =0 and t},ck(t) =c„(t}—k Q». As
a consequence of E~q. 3.3), we have

(«, (t)& =0,
(tkc»(t) tkc»i (t')& =

k Qk (nk&5»kk 5(t —t') .
(3.7)

Equations (3.5) and (3.6) can be interpreted as
follows: n„'(t) represents the "deterministic
evolution" of the photon number for the k mode
corresponding to a certain initial condition, b, nk(t)
represents a jitter motion due to the noise term
b, c»(t). The asymptotic value nk'(+~) can be looked
upon as the zeroth-order approximation to the
steady-state photon number. In addition it rep-
resents a generalization of the "quasilinear ap-
proximation" of the single-mode laser case.
For what concerns the two-mode case the func-
tions nk have been already introduced by Gross-
mann and Richter" recurring to the Landau the-
ory of phase transitions. Unfortunately it is not
possible to compute nk(t) analytically. It is pos-
sible only to solve Eq. (3.5) by the computer or,
whenever the modes are loosely coupled by means
of an approximate scheme. This happens when P
has small off-diagonal elements. Once nk(t) has
been obtained it is possible to define the coeffi-
cients Bk of Eq. (3.2) as

This result seems rather odd because the corre-
lation functions of the noise source term ck(t) are
expressed in terms of the average value of the
photon number (n„& in the steady state yet to be
evaluated. However, as we shall see later [see
Eq. (4.3}]we express n, as a function of (n, & it-
self. As a consequence we evaluate (nk& straight-
forwardly [see Eq. (4.4)]. In other words here we
supyose to know (n„)and then we deduce its actual
value by a self-consistent procedure.

Next we put

&c, (t)& =-.' Q„
&c,(t)c, , (t')&=-,'Q„Q,, +-,'&n, & Q, 5„,5(t-t ).

(3.3)
if n,'&[ u„'f'.

(3.6)
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This can be seen as a generalization of what was
done in I for the single-mode case.

Now we turn to Eq. (3.6) which can be formally
solved by means of the Volterra expansion as

t
~~, (f) =g df, d,",, (t, f, )~c„(t,)

0

+ —,p p )d), u), G,'„„(),)„),, )

x ac», (t, ) ac„„(t,) + ~ ~ ~,

(3.9)

where for simplicity we have put

(~) 5hn»(t)
kk'( ) f1) 5gc (f )

(3.10)

G„„)»)(t) t~) tk) =
5~c,„(f,) 5~c„(f,), ,

Jn Appendix C we compute G ' and 6 ' under the
assumption that Eq. (3.5) has no limit cycle. In
this case, for times long compared with the onset
time of the mode, we have

G'~ (f f ) ~ 2h(t-t, ) QB 'B e ~ki' "~

t
G»» «-(f) 4 4)„-QQ&P, «G»'»(f, 7') GP» (& f.)G'k'»-(&) 4)

e

t- g P P„d~G,",'(, ~) Gin„(~,f, ) Gi,~, (, , f, ),
e

(3.11)

where h(t) is the Heaviside step function and X»

are the eigenvalues of the matrix A defined as

an'+u' + 2+& (3.13)

and B ' is the matrix of the eigenvectors of A.
Here it is assumed that the real part of each X,
is positive. If this is not the case, the system
is not stable and the mode picture loses its mean-
lllg.

Gk', (t)v) ~ 25»k h(t —)v) e (4.2)

As a consequence we can easily compute G ~, put
it into Eq. (4.1) and after straightforward calcula-
tions have

neglected. Therefore every mode is viewed as
coupled to the other modes via average intensities
only. This can be looked upon as a "mean-field"
approach. %e have

IV. MEAN PHOTON NUMBERS IN THE STEADY STATE

&,) = ~;( -)-&&~,)q, e„/A;„. (4.3)

In this section we compute (nk) in the steady
state. By virtue of Eqs. (3.4), (3.9), and (3.V) we
have, long after the onset

Hence

) ~k (+ )
4~»«/ kk

(4.4)

(n») —n»'(+ )+lim
4 Qq», &nk, &'-'- 4 '

(4.1)

Then one should substitute in Eq. (4.1) the ex-
pression of Gi'~. As a consequence (n») would be
represented by Eq. (4.1) as a summation over six
indices. Even if the modes envisaged are few,
the evaluation of (nk) in this way requires lengthy
calculations. Thus, it is better to work out an
approximate expression for (n»). To do this we
neglect the effect of the coupling among the fluc-
tuations A$g~ of the modes in evaluating G . This
implies that the off-diagonal elements of 4 are

In this way, once the zeroth-order approximation
n»0(+~) has been computed, the average value (nk)
can be easily obtained, by virtue of Eq. (4.4) up
to the second order in the perturbative expansion.
We observe that the quantities n», B„,5ak /
51',

~ „,,o, and 5a» /51'P~ r, ,o need not be computed
actually. This happens because they do not enter
the expressions of G" and G ' and hence (nk). The
same applies for the photon numbers correlation
functions (see Sec. V) in the steady state.

It is seen that for what concerns mean photon
numbers, the computation labor is due only to
the evaluation of yg~. However, n~ can be easily
computed, for a number of modes up to 30 for
instance, by a digital computer. Therefore our
method is particularly suitable to deal with the
many-mode case.
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V. STEADY-STATE PHOTON NUMBER CORRELATION
FUNCTIONS AND VARIANCES

In this section we are concerned with the evalu-
ation of photon number correlation functions
(n~(t) n~ (t+v)& in the steady state, i.e., when t
goes to infinity. Once we know the correlation
functions, it is possible to compute the photon
number variances o„ofthe modes as mell as the
overall photon number variance o'. To do this,
by using Eq. (3.4), we have in the steady state

order calculation. In the steady state the motion
equation of Ln~(t) is found to be

& +~A ~A ya ~k' aa ~k ~ ~p ~k ka ++0
a'

+&n) Q P),„

t).n), =e.), +ac),(t), (5.4)

where E~ is defined as

(5.5)

+n„'(+ )(an, , (+ )&

+lim (an, (t)t n„(t+y)&.
g~+ oo

(5.1)

n, (t) =(n, ) +an„(t), (5.3)

where (n~& is computed according to Eqs. (4.1) or
(4.4) and tdn~(t) is chosen so that Eq. (2.3) be sat-
isfied. In this way the zeroth-order approximation
(n~& to n~(t) is chosen to coincide with the average
value (n, & computed with the accuracy of a second-

Next td n„(t)could be simply obtained approximately
as

t
n.n, (t) =p dt, ap', (t, t, ) t c„(t,) (5.2)

according to Eq. (3.9) neglecting terms of order
higher than the first. However, this choice is not
always satisfactory because while the average
value (an~(t)& as obtainable from Eq. (5.2) is zero,
the zeroth-order approximation n~o(+ ~) is slightly
different from the average value (n~(t)&. There-
fore this approximation is not entirely self-con-
sistent. To increase the degree of se1f-consistency
of the procedure me can do as follows. First me
write n, (t) as

We can observe that Eq. (5.4) is equal to Eq. (3.6)
once we change n~o into (n~&. We can also note that
e, must be a small quantity since if we replace
(n, ) with n~ in Eq. (5.5), e~ turns out to be exactly
zero [see Eq. (3.5) on the steady state, i.e. , when

n,'=0]. Equation (5.4) could be solved once again
using the Volterra functional expansion. Dropping
terms of order higher than the first in the expan-
sion, we have

dd, =Q f d(GP (ii,, )[a., , +dc, ,, (i,)],
yr 0

(5.6)

+g f di(:[',i(((,),dd„,((,,).
I'

(5.7)

The term in large parentheses is a correction to
the mean value (n~& as obtained before. The other
terms account for the fluctuations. We now turn
to the evaluation of the correlation function
(n), (t) n~d (t+v)& in the steady state It resu. lts from
Eqs. (5.3) and (5.7):

where G[~~), (t, t, ) is the kernel as given by Eq. (3.11)
with the replacement n~o- (n„). From Eqs. (5.6)
and (3.11) it results

(m ( )m(, (t+r)) &d ) &d )+(im PP fdi, f dt G['i(i, t, )G['i„(i+v)&de, (()dc, .(t )),
e e'

(5 8)

(5.9)

+ Q Z, .(0, 0') e ~)', (5.10)

with

1

Recalling Eqs. (3.7) and (3.11), we have

(n, (t)n, .(t+7)) ~ (n„&(8„&

where

Eg d (k, k') = - 2 Q Qd (nd & B), , i B, ~
e

(5.11)

The correlation functions among the fluctuations
are approximately equal to weighted sums of ex-
ponentially decaying terms. For the tmo-mode
case this has been already pointed out elsewhere
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recurring to the Landau theory of phase transi-
tipns pr tp the Fokker-Planck equatipn. Frpm
Eq. (5.10) we obtain the photon number variance
g~ pertaining to the mode k as

lor series as

n, (t,N)=n„(t,&N&)+P(N, -(N, )) o.„(t,&N&)

(5.12)o~ =Q E,, (k, k') .

As a consequence the overall radiation variance
0', defined as

+ 2Q Q (Nq —(N, )) (N, i -(N, .))

(6.1)

o2= &N'& &N -&'

where

No= n~,

is simply expressed as

(5.13)

(5.14)

where (N) is the vector representation of the mean
photon numbers before the gain switch and e~ and

q„,. are given by

Bng (t N)
CVpq

(6.2)

o'=go + P (&n„n ) -&n„)&n &). (5.15)
a11 pairs
u~a'

Analogously the overall photon number correlation
function results as

&N, (t)N, (t+~)&,—g P &ft„&&e„&

8' tN
BN~BN~. ~ &„)

As a consequence of the Bose Einstein character
of the photon statistics before the switch of the
laser gain we can easily compute &n~(t)&, &n~(t)&,

&n&(t)n&, (t+T)&, etc. As a result we have

+Q e ~~'Q QE, (k, k') .

(5.16)

VI. TRANSIENT STATISTICS

In this section we discuss the statistics of the
laser radiation during the transient with a pro-
cedure which proved to be successful for the
single-mode case I. During the transient the
system "remembers" the initial condition. There-
fore, to obtain the observable quantities as (n„(t)),
(n„(t)n„(t+v)&,. . . , we must carry on the averag-
ing operation also with respect to the initial photon
numbers +„+„.. . . It has been shown elsewhere'
for a single-mode laser that during the transient,
the effect of the noise can be neglected provided
that the laser operates well above threshold. We
presume that the same property applies to the
many-mode case. Therefore in the following we
perform the averaging operation with respect to
the initial photon numbers N„N„.. . , only, thus
neglecting the noise.

We define n~(t, N) as the solution of system IEq.
(2.3)] with c, =0. Here N is the vector representa-
tion of the initial values. Though n~(t, N) can be
evaluated easily by computer, it is impossible to
compute mean values as mean photon numbers,
variances, and correlation functions because pf the
great number of initial condition which must be
considered to perform statistical averages.

To overcome this difficulty we proceed as fol-
lows. First we expand n~(t, N) in a truncated Tay-

-&n, (t, N)& &n„,(t+~, N)) . (6.4)

As a result of the second part of Eq. (6.3) putting
k' =k and T = 0 we obtain the transient photon vari-
ances o~ as

o~ =K„~(t,0) . (6.5)

Analogously for what concerns the overall photon
number in the cavity No(t, N), defined as g, n, (t, N),
we have

(N, (t, N)) = Q n, (t, (N))

+
2 g g &N, ,&'q..., , (t, &N&), (6.6)

Ic(t, ~)= pgsc„,(t, ~),
Q

where K(t, g ) is the correlation function for the
overall radiation defined as

K(t, 7') = &No(t, N)No(t+v, N)&

-&N, (t, N)&&N, (t, t+~, N)&.

By virtue of Eqs. (6.5)-(6.'l) the overall photon

(6. l)

(6 3)

ff„,(t, 7) = g&N, &'e„,(t, &N&) o, ,(t+~, &N&),

where K», (t, 7), is the correlation function defined
as

K~I, I (t, v) = &n~(t, N) nI, I (t + T, N)&
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number variance o20(t) is given by

o2,(t)=go„'(t)+gx„,(t). (6.8)
k a&a'

From a numerical point of view it is possible to
compute both n», and qkk, k„by solving system
[Eq. (2.3)], with I'2 and therefore c2 set equal to
zero, in correspondence to different initial con-
ditions. Then nkk, and q».k. are computed accord-
ing to Eq. (6.2) as incremental ratios numerically.
As a consequence, for what concerns the transient
statistics the computation labor is due only to the
solution of a system of differential equations in
correspondence to a number of different initial
conditions which is equal to twice the number of
modes envisaged plus one.

Ql=Q2 Qt ~ll ~22 ~t tl12 ~21 (7 1)

where ] can be looked upon as the one coupling
parameter. We introduce the following dimension-
less quantities:

I~=2(P/Q)' '111 P =2r/(PQ)' '
(7.2)

t'=2 (&Q)' 't, 5 =[2/(PQ)' '] (r, r2), -
p is the pump parameter and 5 represents the
difference between the dimensionless gains of
the two modes. 5 also represents the threshold,
on the pump parameter axis, of the second mode
if the interaction were absent. From now on 5 is
referred to as the baze threshold in distinction to
the xenoxmalized threshold, defined in the follow-
ing. To see first qualitatively how the photons are
shared by the two modes, we look for the steady-
state solution of Eq. (2.3) for I' =0. In doing this,
we neglect the effects of the noise. Using Eq. (7.1)
and the dimensionless quantities of Eq. (7.2), we
have three different cases:

(i) If p&0 and p —6&0:

I) =I2=I~+I2= 0.
No photons in the cavity.

(ii) If P )0 and P &5/(1 - g), then

I, =P, I, =o, I,+I, =P.

(7 3)

(7.4)

Only the first mode oscillates even if p is greater
than the bare threshold 5 of the second mode.

VII. APPLICATION TO THE TWO-MODE CASE

In this section we specialize the method ex-
posed in the past sections for the two-mode case.
Here we obtain the mean photon numbers of the
two modes, the correlation functions, and the
variances both in the steady state and in the
transient regime. For simplicity we consider
here the case in which

(iii) If p&0, P&5/(I —g)t then

t(I-&)+&5 t(I-~)-5
1 1 g2 t 2 1 g2

(7.5)

I~~~ =&44& -&lg&&4&

of the two modes (A. , A.
'= 1,2) and of the overall

radiation (X =X' = 0) versus the pump parameter
p. It is seen that at the renormalized thresholds
the correlation functions undergo a pronounced
change. Our numerical calculations show that
Ky 2

=K2y with a very good accuracy and this com-
plies with general symmetry requirements. Owing
to the negative value of K» the photon number
variance Kpp for the overall radiation is smaller
than the sum K,~+K22. That is, there is an inter-
ference effect. This is essentially due to the fact
that ( is positive. However, one may suppose that

Both modes oscillate. It is seen that the quantity
5 defined as

(7.6)

plays the role of the effective or renormalized
threshold for the second mode.

Obviously, to have better physical insight, the
effect of the noise must be taken into account prop-
erly according to the analysis of Secs. IV-VI. In
the following we discuss some typical results.
Figure 1 shows the steady-state behavior of a
two-mode laser whose coupling parameter is 3

and whose bare threshold 5 for the second mode
is ten. Our results confirm analogous results
obtained elsewhere' ' with the Landau method.
Figure 1(a) shows the normalized mean photon
numbers &I~& of the modes (A. =1,2) and of the
overall radiation (X = 0) versus the pump param-
eter p. It is seen that according to Eq. (7.6) as
an effect of the coupling the effective threshold
of the second mode is 30 while the bare threshold
is 10. Figure 1(b) shows the effective intensity
fluctuation linewidths b. lo~„,of the modes (X,
X'=1, 2) and of the overall radiation (A, =A, ' =0) vs
p. 6+zz& is defined so that e»" fits the &-
dependent part [see Eqs. (5.10) and (5.16)] of
&ll~(t) ll„t(t+a )& (for Xt Xt = It 2) and of &N, (t)N, (t
+y)& for A, =Xt =0. We see that at the renormalized
thresholds of the two modes the phenomenon of
slowing-down of the fluctuations occurs. Much
above the second threshold, the slope of 6(Boo vs
p is 2 and it coincides with the slope of a single-
mode intensity fluctuation linewidth versus p much
above threshold.

Figure 1(c) shows the equal time intensity cor-
relation functions
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effects with a negative g.
To see what happens we have studied the case

in which g
= —a and 6 =30. Figure 2(a) shows the

normalized photon numbers (I~) vs p. It is seen
[according to Eq. (7.6)] that in this case the re-
normalized threshold of the second mode is re-
duced by a factor 3 with respect to the bare one.
Therefore, as expected, we have cooperation be-
tween the modes instead of competition. The first
mode helps the second to oscillate. Figure 2(b)
shows the effective intensity fluctuation linewidths
versus p. Here again we see the slowing down at
the two renormalized thresholds. Figure 2(c)
shows the equal time intensity correlation func-
tions Kz~, vs p. We see in this case that Kpp is
greater than K11+K,g owing to the fact that K» is
positive. Again we have, with a very good accur-
acy, that K»=K». Thus far, the two-mode anal-
ysis has given results already obtainable by the
Landau method, even though the application to the
negative coupling had not been shown previously.
It is more interesting, however, to investigate

120
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I I
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FIG. 1. Steady-state behavior of a two-mode laser
whose coupling parameter $ is 3 and whose bare
threshold of the second mode is 10. Figure 1(a) shows
the normalized mean photon numbers (I&) of the modes
P, =l, 2) and of the overall radiation P, =O) vs the pump
parameter p. Figure 1(b) shows the intensity fluctua-
tion linewidth bu&& vs P. Figure 1(c) shows the equal
time intensity correlation function K&&~ vs P.
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under special circumstances ( is negative. This
is the case when an absorber is placed within the
cavity. In that case if a mode is excited, the
transparency of the absorber is enhanced. There-
fore the loss of the second mode is lowered. This
phenomenon could be accounted for by a negative
coupling parameter $ between the modes. Recent-
ly the case of an atomic three-level medium with
two ad3acent allowed transitions almost equal in
frequency has been studied. '~ In such a case two
cavity modes can be fed by different transitions.
The presence of a common level between the two
transitions can give rise to intensity coupling

Koo

0
-10 0

12
I

20 40' 80

FIG. 2. Same of Fig, 1 with $ =—z and 5 = 30.
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the transient behavior of two modes. %e confine
ourselves to the case of high gains for both modes.
Further, to simplify the computations to the maxi-
mum extent we have disregarded q~« in Eq. ~ . &.. &6. i~.
This corresponds to the same approximation used
for the single-mode case I which gave a good
agreement with experiments. In this way to obtain
o.~, we must solve Eg. (2.3) with p„=0 in oorre-

spondence to three different initial conditions. In
the following we present some typical results.

Figure 3 shows the transient mean photon num-
ber (I~) of the two modes A. = 1, 2 and of the over-
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0
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FIG. 3. Transient mean photon number gz) of the
two modes P.=1,2) and of the overall radiation (A, =O)
forP =100, 6=20, (N&) = (N2) =40 in correspondence
of the following values for the coupling parameter g:
Fig. 3(a), )=0; Fig. 3(b), )=3; Fig. 3{c), $=-2.

0
0 t

FEG. 4. Transient behavior of the photon number
variances 0.2(t) of the two modes P =1,2) and of the
overall r d' tion P. = 0) in correspondence to the three
cases of Fig. 3.
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all population (X = 0) for p = 100, 6 = 20 in corre-
spondence to three different values of the coupling
parameter: Fig. 3(a), $ =0; Fig. 3(b), g

= —'„Fig.
3(c), t = ——,'. When $ is zero the two modes do not
interact, when g

=—', the two modes compete and
the second mode with a lower gain is depressed
in comparison with the uncoupled mode case. The
opposite happens when $ is negative and as a re-
sult the two modes help each other to oscillate.

Figure 4 shows the transient behavior of the
photon number variances o z(t) = (Iz(t) ) -(Iz(t))
of the two modes (A. = 1,2) and of the overall radi-
ation (A. =0) in the same three cases of Fig. 3. We
see that owing to the coupling there is a strong
interference effect for oo(f). Namely, with refer-
ence to the ease when $ =0 where o,(t) is just [see
Eq. (6.8)] the sum of gk(t) +o,(t), we see that when

g is positive, o', (t) not only is less than o', (t) +o,'(t)
but is smaller than o,'(f). The opposite happens
when g is negative. In this case co(t) is higher than
o', (t)+o2(f) roughly by a factor of 2 at the peak. For
what concerns the photon number variances of the
two modes, if $ is positive, the first mode lowers
the peak of the variance of the second mode which
in addition is flattened. If $ is negative, the vari-
ance of the first mode is depressed. We have
mentioned before for the two-mode case in the
steady state that, owing to symmetry require-
ments, K»=K». However, this does not apply to
the transient regime. Figure 5 shows K»(t', q')
and K»(t', v') vs t' in correspondence to four dif-
ferent time delays v'(w' =0; 0.01; 0.02; 0.03).

200- ' '

Kg);(t',7')

100-

200-
K) ), (t',T')

100-

0
0.02 0.1

0
0.02 t' 0.1

C200-
Ku:(t &)

100-

200- '~'

K) )„(t',T')

100-

0
0.02 t 0.1

0
0.02 t' 0.1

FIG. 5. Evolution of the correlation function
K&&(t', v') and E2&(t', v') vs t' in correspondence to four
different time delays v': 0, 0.01, 0.02, 0.03.
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APPENDIX A: EVALUATION OF THE FUNCTIONAL

FIELD DERIVATIVES 6ak/5I j ~r= co
AND 5a~/61 J*Ir ~0

By deriving functionally both sides of Eqs. (2.1)
with respect to 1 j(f, ) and Fp(t, ) we have

Apart from the trivial case r'=0 for which K» K»
always holds, for z'0 we see that the condition
K» =K» is fulfilled only at the end of the transient.
This is an interesting case of transient break up
of the time-reversal symmetry, which is well
established for equilibrium cases. "

8
—

&K» ykK»+ p»-(Kk, ak*ak+a„'P„*,ak+I ak, I'Kkj) =6kj6(t —t, ),

BEf +kj rkp»+ Pkk (J k ~jak ak +ak Kk jak +
I a,' I 'p„)= 0,

JI'kj -&k*f'kj ++ pkk «k, ak*ak*+ak f'k*;a'*+ I ak I'f'kj) = 0

Bt Kkj 'yk Kk~j+ ~kk'( k'gal' k +ako'Kk'jak +I ak I Kkj) =6kj6(f ~l)

5ak
Kkg- r; r=co

5ak
kJ j r=~o

K„(t,f) =K,*,(f, f) =6». , .

I „j(f,f) =J,*, (f, f) =0. .

As a consequence of Eq. (Al) we have

(A2)

Equations (A1) are a system of linear differential
equations in the known functions Kkd, Pk~, K
and Pk*,. which can be solved since the functions
ak and ak* are assumed to be known. However, if
we confine ourselves to a mean-field theory, in
the sense of Sec. IV, the functions K, P, K*, and
P* need not be computed.

APPENDIX B: EVALUATION OF &c'k(t)& AND &c&(t) c& (t')&

From Eq. (3.1) and its complex conjugate, in
the notation of Appendix A, we have
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a„(t)=r,o(t)+g dt, rf'„(t,t, ) F, (t, )
0

t
+ Q dt, P», (t) tg) F(*(t)),

s

t
~»'=a»'- Q dt, A;, (t, t, ) cg(t, )

g
0

t
dt, P„(t,t, ) c,'*(t, ) .

0

Recalling Eqs. (2.2) and (As) we easily obtain

(c„(t))=-,'(a„*(t)F„(t)+F+(t)a, (t)) =-,' Q, .

(B2)

(as)
t

a+(t) =P„'*(t)+P dt, SC,*,(t, t, ) F,*(t,)

+P dt, P,*,(t, t, ) F, (t, ),
g

0

where x„'is defined as

For what concerns the correlation functions
(c»(t, )c» (t, )), we have

(c„(t,) c» (t, )) = —,
' (a»*a,*F„F,+a„*a,I'„I;*+a»a,*I'»* F,

+ a a, 1'„*F,*) . (B4)

By virtue of Eq. (B1) after lengthy calculations,
we have

t
(c„(()c((,)& = '4 '+

2 ()„a((, t)((ll'll'-++G ([IGllr((,)l +I , 'G(
„

()i(*I).
0

(B5)

Now we observe that by virtue of Eq. (Bl), Eq.
(B5) can be written

G(",, (t, t, ) =a(t -t, ) y„,(t, t, ),
p»»i(t). ) t).) =26»»i'. (C2)

( (t ),(t )) =-'Q Q, +-'Q 6,~(t —t )

x(a,*(t,)a, (t, )) .
Hence

(B6)
Equation (Cl) written in terms of (t) becomes

=2A. (t), (cs)

(c,(t, )c,(t, )) =-,' Q, Q, +-,'(n„)Q,6„6(t,-t, ) .

(as)

where A is defined according to Eq. (3.12). If Eq.
(3.5) has no limit cycle, A is a constant matrix
and the solution of (Cs) is simply

The symbol = indicates that the relation (BV) with-
in the correlation functions (c»(t, ) c,(t2)) and (n»)
has been established in the form [Eq. (BV)] by
means of the approximate expressions (Bl).

APPENDIX C: EVALUATION OF G& ~ AND G~ &

Taking the functional derivatives of both sides
of Eq. (3.6) with respect to b, c» (t, ) and further
putting hq =0, we have

GS((t) —
(y, —Q, (),„ll')G,",'(((,), ,

a

+n,'gP„,G(,'), (t, t, ) =6,„,6(t-t, ). (Cl)

Next we set

(t&(t t ) 2~-le-[BAB ((' c))la- (C4)

where B is an arbitrary nonsingular matrix. It is
convenient to choose B in order to diagonalize the
matrix BAB '. Therefore B ' must be chosen as
the matrix of column eigenvectors of A. Hence,
we have

G( ) (t t ) —2P (t t ) P fl-ill )»(t t)) -(C-5)

where A.„arethe eigenvalues of A. The above
result is meaningful whenever Re)(» is positive.
To obtain G we derivate functionally both sides
of Eq. (3.6) with respect to t).c»i(t, ) and t).c»„(t,)
and further put ~c = 0. %e have

G(', (Gt t) l—
(y, —P(„),„ll,' '(tG„)+ll,'(g)()„,Gy„., (t,(„t),

a

=-O('„),(t, t, ) QP„,G(g„(t,t, ) -G,"„)„(t,t, ) gP„G(',), (t, t, ). (C6)

If we indicate by p», »„(t,t„t, ) the right-hand side of Eq. (C6), by virtue of Eq. (C1), G'" can be ex-
pressed as
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(cv)

From which me have

e e'

(C8)
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