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Theory of third-harmonic generation in metal vapors under two-photon resonance conditions
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The density-matrix formalism is used to develop the theory of two-photon-resonant third-harmonic generation

in metal vapors taking into account saturation, ionization, laser-induced Stark shifts, and variations in thewave-

vector mismatch as a result of population redistribution. It is shown that for third-harmonic generation in the

ultraviolet and the vacuum-ultraviolet regions, where 3co exceeds the ionization limit of the metal vapor, two-

photon-resonant three-photon ionization will be the main limiting process. This will also be true for four-wave

parametric processes. For efFicient energy conversion„ the two-photon-resonant metal vapor must be phase

matchable to allow large vapor density and cell length. Otherwise, the low incident intensity limits, set by the

saturation and the ionization efFects, cannot be efficiently converted in only one coherence length. The theory

is applied to two-photon-resonant tripling of the ruby laser in cesium vapor.

I. INTRODUCTION

Third-harmonic generation in metal vapors has,
for many years, been considered as a means of
extending the range of available coherent radia-
tion sources beyond the 200-nm absorption limit
of nonlinear crystal frequeney conver ters.
Harris and co-workers proposed third-har-
monic generation in phase-matched alkali metal
vapors and have recently reported' 10/z energy
conversion efficiency for tripling of 1.064- p, m
radiation in a phase-matched mixture of rubidium
and xenon. Since it was a nonresonant process,
the achieved high-conversion efficiency required
a long vapor cell (1.5 m), high total pressure
(1200 Torr), and high incident intensity (10'o
W/cm') which caused self-focusing. A different
approach' that has been suggested is to make use of
a two-photon resonance, which enhances the third-
order susceptibility by many orders of magnitude,
without increasing the absorption either at the
incident or at the generated frequency, as is the
case for one- and three-photon resonances, re-
spectively. Two-photon-resonant (TPR) third-
harmonic generation has been reported recently
in cesium, ' thallium, ' and strontium. ' However,
the conversion efficiency in all three cases has
been very low (10 ").

It is the purpose of this paper to examine the limita-
tions' and the special problems associated with TPR
third-harmonic generation in metal vapors. The
density-matrix formalism is used to describe the
harmonic generation process in the two-level approx-
imation, which is adequate as long as the incident
frequency is far from any one-photon resonance be-
tweendiscrete bound states. Wedo, however, take
into account the loss of atoms due to ionization which
inevitably occurs in all three experiments on TPR
third-harmonic generation mentioned above. Since

the third-harmonic photon will normally exceed the
ionization limit of the metal vapor, as in the above
three cases, ' ' the TPR three-photon ionization
will be the main limiting process in TPR third-
harmonie generation. To indicate the importance
of the ionization, we mention here that in cesium
under TPR conditions, a 30-nsec 100-MW/cm'
ruby laser pulse will ionize 96/z of the interacting
atoms. The effect of ionization arises quite na-
turally in the density-matrix formalism together
with saturation and the laser-induced ac Stark
effects. In previous papers' ' on TPR third-
harmonic generation, Stark shifts and ionization
have not been taken into account. In Ref. 3 an
attempt was made to interpret experimental data
solely on the basis of population saturation of the
two-photon excited state. As we have shown in an
earlier paper, ' however, the observed intensity
dependence of third-harmonic generation can be
adequately explained only when ionization and
laser-induced Stark shifts are taken into account.
The analysis has also considered the effects of
population redistribution on the phase matching
conditions; the possible influence of stimulated
emission from the two-photon excited state; and
laser multimode effects.

Sections II-IV are devoted to the development of
the theory of TPR third-harmonic generation which
is then applied, in See. V, to TPR frequency trip-
ling of the ruby laser in cesium vapor. The results
of our calculations are compared with experi-
mental data and the limitations in achieving high-
energy conversion efficiency are discussed.

II. DENSITY-MATRIX EQUATIONS

In this section, we derive equations describing
TPR third-harmonic generation for the case shown
in Fig. 1, that is, when the third-harmonic photon
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exceeds the ionization limit of the atom. This will
usually be the case' ' in metal vapors with ruby
and optical dye lasers. Ne begin with the equation
of motion for the density-matrix operator p

N =[H—,+H'(f), p],

where H, is the unperturbed atomic Hamiltonian
and H'(t) is the time-dependent interaction Hamil-
tonian which in the dipole approximation is given
by

H'(t) = —p, E(t), (2)

where p. is the atomic-dipole operator. The inci-
dent electric field is as usual written in the form

E(t) = e(t)e' '+ e*(t)e ' ', (3)

where e(t) is a slowly varying complex amplitude
The generated harmonic field will not be included
in the interaction Hamiltonian as it is expected to
be negligible in comparison to the incident field.
The only density matrix elements which we need
to consider are P„,P22, P», the sets (P»f, (P2i);
and their complex conjugates. The level ~l) stands
for any level, bound or free (or even autoionizing),
for which the dipole matrix element p. » and/or
p. 2r is nonzero.

The following equations,

FIG. 1. Schematic diagram of TPB third-harmonic
generation with Se& exceeding the ionization limit. (~l))
is the set of al.l levels, bound or free, with allowed dipole
transitions to the TPR levels ~1) 2nd ~2).

($) g(2& s&2&& c(2& +s
12 21 (9)

For the nonresonant elements p„, p», coupling
levels ~1) and ~2) with the other levels of the atom,
we retain the first and third (odd) harmonics;
for example,

(t) c(»siQJt + o(» +s i'd& i

+ g(3) /~3+~+ p (3) +g
1r .I1 (10)

Substituting into E(ls. (6) and (7) and neglecting
the derivative of the slowly varying amplitudes,
we obtain

(1) 6011~1l ~12 ~21
(2)

h ((d+ (dpi)

(2) &tt
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are obtained from E(I. (1) by expanding the com-
mutator and using the eigenvalues of H„where
H. ~l)

=- it (e, ~l), (c, —(d, =-e&», etc. In E(ls. (4) and (5),
r represents the lifetime of level ~2) (radiative
or collisional, whichever is shorter), and T is the
transverse relaxation time. Each matrix element

p, , is expanded in harmonics of the incident fre-
quency, i.e. ,

(t) o (t) Q [c(ni(])sin(ui (n&+(t)s-in(uiJ

(8)

where v, , , o-,.'&), and v,.",. * are slowly varying com-
plex amplitudes. Note that o,.'," and 0,.',". are not
complex conjugates of each other. For the diagon-
al elements p„and p„we retain only the first
term in the expansion, l e ~ o]1 and o'22 respec-
tively. For the off-diagonal element p» and its
complex conjugate, owing to the parity selection
rule which implies p, 12 0 the first allowed har-
monic is the second (only even harmonics allowed)
and therefore

I ~

~

~
2 2 7

1
+ P22 = —ZR E(t) (P2iil i2 —P2ipi2), ,

Bt I
(4)

(2) *
(3) + 21 I 2I

h (-3(d+ (dii)
(12)

(
1

12 T P12 ~@ +(t) (PliV i2 V'1 P )iyi2
I

(5)

(1)* (3) (3) 2(e

the equations for O2) vrz 02r, and Or'2 can be
obtained from Etls. (11) and (12) by simply inter-
changing the subscripts 1 and 2. From E(I. (5),
we obtain the equation



302 GEORGES, LAMBROPOULOS, AND MARBURGER 15

—+ 2(2o1 Q-P ) +—o(
8 (2)

8t 21 y 12

—ZA Q(Eo L1, 2+ E'+os1 p, 12

—fp, 11oI2
—6*jl,11o'I2 ) (13 )

for the resonant slowly varying amplitude @1' .
The antiresonant amplitude o„' will be neglected.
Replacing 01l 01l Ol'z and v, ', by expressions
given in Eqs. (11) and (12), the above equation re-
duces to

8 1 y (2)

8t
+1(2~ —(d —5(d )+ —+ — o21 21 T 2 12

= ih '(o22 —o»)r»c', (15)

where 6~» is the relative laser-induced Stark
shift for levels Il) and I2). This shift can be ex-
pressed in terms of the real parts of the polar-
izabilities of these levels as

&~„=~ '(~l —~l)I~I',

with the polarizabilities given by

(16)

(17)

. „, s-, p(ls. , ~l Is., ~l

) (,s)
(dl2 —Cd Ct)l2+ (d

The polarizability o.2 of level I2) is complex be-
cause of the coupling with the continuum. y is the
intensity-dependent ionization width, or equivalent-

ly, the ionization rate from level I2) which can be
written

y=2If-'~l'I~ I'

The quantity r„(which can be thought of as an
equivalent second-order matrix element) is de-
fined by

—~ 011' l2
12 (d +CO

'
l l2

(20)

+ 2(2&d —&d2i) + os2~
a ~

I
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~
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If we now make use of the TPR condition, copy 2(J0

(which need not be exact as long as we are far
from one-photon resonances) and of identity rela-
tions such as o1» = o1»+ o1», Eq. (14) takes the final
form

with the summation being over all (virtual) inter-
mediate states, bound and free.

In a similar manner we obtain the reduced
equation for 0»,

—+ —022= —2h 'Im r12012 E* —yo'», 21
8

~I ~2
~~

~ 2
I2 I(2

2) 2
~

~
22 t

and the obvious equation for the total atomic popu-
lation

8—(o„+o„)= —yo„, (22)

which takes the place of the usual, but now in-
valid, normalization condition 011+ 022 1 It is
evident that the loss of atoms due to ionization
makes the rotating vector model of Feynman,
Vernon, and Hellwarth' for the density matrix
operator, invalid in this case. The interaction
process no longer corresponds to a simple pre-
cession of p about some torque vector and there
are four vector components needed to describe p,
namely, Reer, ,', Imo, ', , v„, and v„, making the
three-dimensional visualization of the process
impossible.

Note that the formalism developed above can be
used to describe any TPR four-wave process of
the type cu, +~2+~, =(d, . It ean also be used to
study details of TPR three-photon ionization, as
we shall show in a subsequent paper. Similar
equations have been obtained for two-photon pro-
cesses, such as Raman scattering and two-photon ab-
sorption by Khronopoulo'using the method of aver-
ages. One problem which we have not considered in
developing this formalism is the possibility of
two-photon-pumped lasing from the excited state
I2) to some intermediate state of lower energy.
This could take place if the gain seen by a fluores-
cent photon from the two-photon-excited state,
as it travels along the vapor cell with the incident
beam is high enough to produce stimulated emis-
sion. With a typical stimulated emission cross
section of 10 "cm' and a vapor cell of a few cm
in length, for lasing to take place it would require
a population for level I2) of over 10" atoms/cm2.
In addition, there will be no mirrors to provide
feedback. In any ease, if lasing did take place it
would simply populate an intermediate state which
otherwise would not be populated except for the few
atoms undergoing spontaneous emission to that
state from the two-photon-excited state. As lasing
would most likely take place under strong satura-
tion of the TPR transition, which itself limits the
harmonic generation, the depopulation of level I2)
due to lasing would be favorable. In this sense,
lasing has a similar effect with the ionization which
we believe is more important, since unlike lasing
it is not a threshold process. I asing will, in fact,
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be limited by the ionization process which, by
depleting the population of level ~2), not only re-
duces the gain, but also the fluorescence which
initiates lasing.

III. CALCULATION OF THE MEDIUM POLARIZATION

second-order atomic response represented by
0,,'can saturate and thus limit the third-harmonic
generation. We can, however, use Eq. (28) in the
weak-field limit in order to assess the potential
of a given atom as a TPR third-harmonic genera-
tor. In this limit, the peak value of g~~~ is

E(z, t) = 2e(z, t) cos((dt —kz+ y)

=e(z t)et(~t 2') +c c (23)

so that it represents a linearly polarized plane-
wave pulse and defines e. Neglecting the motion
of the atoms, the variable z appears as a simple
parameter in the density matrix equations. Quan-
tum mechanically, the polarization per atom is
defined by

P(z, t) = Trp-(z, t) p.

(Pl tel 1 I 1lPll P21Pl2 P 2'lP12) 1 ( )

from which we obtain the nonlinear polarization
at 3+,

I',""(z, t) = Q [(t,(', ) p„+ p, „o, (',)

+ c 2)
p + p ( )(])2(e~tt 2) + C.C. ,

(25)

and the polarization at (d,

(i) (x)

Having obtained the equations for the density-
matrix elements, we can now readily calculate the
medium polarization resulting from the third-
order interaction of the atom with the incident
electric field which we now take to be of the form

(3) ~ l 2l v' l l + I 2ll 11 / @ 3rgl

CO —3(d (d + 40
2 L1 li

(29)

Obviously, a strong TPR transition (large 2») or
a narrow resonance (large T) imply a large )((22),

but they also imply a low saturation intensity
(3 = 47'T)2 Ir121 I&I ) If the coupled third and
fourth steps of the third-harmonic generation pro-
cess are strong, that would imply a large X3',
but it would also imply strong ionization; which
means substantial loss of atoms due to ionization
by the strong incident beam and also absorption of
the generated harmonic.

Abandoning metal vapors and going to noble gases,
in order to avoid the ionization, would not help.
Noble gases have third-order susceptibilities many
orders of magnitude smaller than metal vapors.
Thus one may choose to work with metal vapors
and do the best one can. One way to reduce the
effect of ionization in alkali vapors is to have a,

TPR between states of the same orbital angular
momentum (8-8), so that every channel out of the
two-photon excited state can lead back to the
ground state. Ioniza, tion will still, of course, take
place, but at a, weaker rate compared to an S-D
TPR transition, for neighboring excited S and D
states.

The expression for the pola, rization at the inci-
dent frequency given in Eq. (26) reduces to

I2 (z, t) = [X
' (z, t) + t)("(z, t)] e (z, t)e" ' "'

+ o(1))t + )2 (y(1))et(QJt 22) + c c (26) + c.c. , (30)

In Eq. (25), the second and third term inside the
square brackets are proportional to the antireso-
nant amplitude a„' and can be neglected. The re-
maining two terms give

pN(~()~(vppp)3(d
g Q)gi —3(d (dpi+ (d

&& jg ()( )(z t)e(z t)e'( ~

where

x' (z, t) = n,'(~)o»(z, t) + n2'(~) o22(z, t)

+ 2it ' Re[r,',e "e' "c"(z t)]

x~(z, t) = —n,"(~)o22(z, t)

lm[2*e l t(2 )c()(z t)].

(31)

(32)

(27)

Note that, in general, due to the strong coupling
of the atom with the TPR field, one cannot define
a third-order susceptibility

The linear polarization at 3(d is not included in
Eq. (24), because the harmonic field was not in-
cluded in the interaction Hamiltonian. It can,
however, be written easily as

I2"1 (z t) =)(,' Z'(z, t)e''"' "' +cc.(28) &2 (z, t) = [)(2.(z, t)+tx2 (z, t)l e,(z, t)e'"' '"'

as one can in the case of nonresonant third-har-
monic generation. When a TPR is involved, the where

(33)
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X,
' (z, t) = n', (3(u)o„(z, t)+ u,'(3(o)c„(z, t), (34)

X3' (z, t) = u,"(3(u)(T„(z,t) + n2'(3(u)c„(z, t), (35)

and where the third-harmonic field is

E,(z, t) =-7.,(z, t)e" ' '~'+c.c. , (36)

which defines e,. Note that the susceptibilities at
the incident and harmonic frequencies defined
above, are all intensity dependent. This gives
rise to complications in phase matching and to
pulse propagation self-effects' which we discuss
in Sec. IV.

8 E3 1 8e3 . 3(A)N (2),(e ~,)+ ge» ee'
Bz e Bt 2cf0

where

(39)

@
-1 g W2.I t)ll + h" 2lt ll

l l 1 -3ttI l1 + &
(40)

self-defocusing takes place the harmonic genera-
tion will be limited by them. The other effects
will not be limiting.

For the third-harmonic field, the reduced wave
equation for the complex amplitude is

IV. WAVE EQUATIONS

The reduced density-matrix equations, obtained
in Sec. II, are coupled to the wave equation for
the incident field through the polarization at the
incident frequency, calculated in Sec. III. In the
slowly varying envelope and phase approximation,
the second-order wave equation reduces to the
first-order wave equations for the envelope and
the phase:

~E 1 Bf (dN

~Z C ~t 2C Eo

BQ 1 8&[&

XQJ 0Bz c BI; 2ceo

(37)

(36)

where N is the density of the metal vapor. The
index of refraction is set equal to unity every-
where, except in the calculation of the wave-vec-
tor mismatch later on. The above equations would
have to be solved numerically, together with the
reduced density matrix equations; analytical solu-
tions cannot be obtained in a general case. We
can, however, study the above equations to in-
vestigate what happens to a pulse under TPR prop-
agation and whether this can affect the third-har-
monic generation process.

In Eqs. (31) and (32) for the real and imaginary
parts of tbe susceptibility (which appear in the
source term of the reduced wave equations), we
make the following observations. First, the in-
phase component of the TPR transition and the
population redistribution produced by the out-of-
phase component of the TPR transition and the
ionization process, can cause self-phase modula-
tion of the incident wave as well as self-focusing
or self-defocusing in the case of Gaussian and
focused beams. ' Second, the ionization and the
out-of-phase component of the TPR transition
will cause attenuation, pulse reshaping and velocity
changes. The third-harmonic generation will be
affected by the self-phase modulation in that the
phase-matching condition (phase matched or one
coherence length) will break. If self-focusing or

= (3tuN/2ce, ){[n,'(v) —n,'(3+)]cr„(z, t)

+ [n', (cu) —n,'(3(u)]o22(z, t)

+28 'Re[r,*,e "eo»(z, t)J}.
(41)

Since the polarizabilities of levels ~l) and ~2) are,
in general, different, substantial population re-
distribution and loss of atoms through ionization
produce changes in the wave-vector mismatch.
Smaller changes are also produced by the third
term in the right-hand side of Eq. (41). In pbase-
matched (Lk= 0) mixtures of metal vapors and
noble gases these changes must be avoided as they
will always reduce the conversion efficiency. How-
ever, in cases where the metal vapor is normally
dispersive (k, & 3k) and phase matching by means
of either a buffer gas or noncollinear incident
beams is not possible, the population of level ~2),
and of other excited levels which may become pop-
ulated, can play the role of the buffer gas and in-
crease the coherence length (L, = m/n, k) for third-
harmonic generation. One such case is TPR
tripling of the ruby laser in cesium vapor which
we study in Sec. V. The reduction in the wave-
vector mismatch as a result of population redis-
tribution will be maximum when the polarizabilities
of levels ~1) and ~2) have opposite signs and com-
parable magnitudes. Self-focusing due to popula-
tion redistribution will not be a problem if the
vapor density is low.

If the incident pulse is much longer than the
effective length of the vapor cell, which is actually
the case for ruby and dye laser pulses, we can
neglect the time derivative in Eq. (39) and inte-
grate over z to obtain

. 3+%
Z (L, t) = —i fo„' (z,, t)e(z, t)e' e "dz,

(42)

where L is the effective length of the vapor cell.
Considering the very low efficiency of the multi-
photon processes involved, and the fact that self-
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phase modulation is a cumulative effect requiring
path length, we can make the undepleted pump
approximation and neglect self -phase modulation.
For short vapor cells we can also neglect the local
variations in the wave-vector mismatch. Allowing
for time variation in the wave-vector mismatch
we calculate the number of third-harmonic photons
generated per pulse per unit area

2Sld¹L', sin[si(0, !i)L)21)
48'c'eo [b,k(0, t)L/2J

x ~o,
' (0, f) ~'i(0, t) df, (43)

where I(o, t) is the incident intensity. In the case
of a rectangularpulse, we can obtain exact analyt-
ical solutions for the density matrix elements.
These are decaying solutions of the form

o=A. e '&'+Be '2'+ e '3'(C cosbt+D sinbt) . (44)

The reason for the exponentially decaying solu-
tions is of course the loss of atoms due to ioniza-
tion. The interaction never reaches a steady
state and the incident field eventually ionizes all
the atoms.

The fraction of atoms ionized per pulse is given
by

o»dt,

where t~ is the pulse width and y is the one-photon
ionization rate from level ~2) given in Eq. (19).
The ionization is actually a three-photon absorp-
tion process from the ground level, but since it is
also two-photon resonant, it reduces to a one-
photon process feeding on the population of level
~2). As a three-photon process, the ionization is
stronger than any four-photon process like third-
harmonic generation or four-photon parametric
processes which take place simultan tously. More-
over, since it is an absorption process it does
not require phase matching and at high intensities
it ean multiply through avalanche ionization, the
ultimate catastrophe. But then, it is only a metal
vapor.

V. TWO-PHOTON RESONANT TRIPLING OF THE RUBY

LASER IN CESIUM

Cesium has a near TPR with the ruby laser
(6943 A) between the 6s'S,» and the 9d'D», energy
levels which are separated by 28828.9 cm '. This
coincidence has been used by Vizard and co-workers'
for TPR tripling of a high-power ruby laser by
thermal tuning. The weak-field third-order sus-
ceptibility [see Eq. (29)J for cesium under this
particular TPR condition is 2.9x10 "esu/atom,
assuming a collisional transverse relaxation time
T = 2 nsec. This value is larger, by a factor of

10', than the nonresonant third-order susceptibility
of helium at the ruby-laser frequency. ' The rela-
tive laser-induced Stark shift for the 6s'Sy/2 and
9d'D», levels is 27.7I sec ' (the levels are pulled
together) and the one-photon ionization rate from
the excited 9d'D», state 2.2I sec ', where in
both cases the intensity is in W/cm'. In calculat-
ing these constants' the continuum was properly
taken into account using quantum defect theory.

Using the experimental' values 7 =35 nsec, T = 2
nsec, the vapor density' N = 2.6x10" atoms/cm'
and the corresponding one coherence length L= 6.4
cm (all atoms in the ground state), we have cal-
culated the number of third-harmonic photons
generated per pulse per cm' [Eq. (43)] as well as
the fraction of atoms ionized per pulse [Eq. (45)J,
assuming a single-mode rectangular pulse of 30
nsec. Figures 2(a) and 2(b) show the dependence
of N, (solid line) and E;,„(dashe dline) on the
detuning of the laser frequency from the Stark
shifted two-photon resonance. For comparison
we have also plotted the number of third-harmonic
photons (dotted-dash line) calculated by neglecting
the time variations in the wave-vector mismatch
[Ak(0, t) = m/L] . It is clear that population redis-
tribution reduces the wave vector mismatch and
enhances the third-harmonic generation. The
slight asymmetry of the resonance curves for
N3 is due to the third te rm in the ri ght -hand side
of Eq. (41).

Note that for the intensities used, 33 and 100
MW/cm', power broadening has increased the
homogeneous width above the Doppler width [0.02-
cm ' full width at half-maximum (FWHM)], thus
our neglect of the Doppler broadening is justified.
For intensities below 33 MW/cm' the Doppler
broadening should be taken into account by num-
erically averaging Eqs. (43) and (45) as we have
done in a previous paper. ' Figure 2(a) (33 MW/
cm') corresponds to one of the two resonances
with the ground-state hyperfine-structure doublet
in Fig. 2(g) of Ref. 3. Considering the spectral
width of the laser (0.02 cm ') there is very good
agreement between theory and experiment. Com-
puter simulation results show that the on-reso-
nance dip in the curves for N, , for which there is
experimental evidence, is due to saturation of the
TPR transition and in addition to theheavy loss of
atoms through ionization. Near resonance, how-
ever, it is found that the weaker ionization re-
duces the saturation effect and makes the two
peaks higher than what they would be in the ab-
sence of ionization.

Shown in Figs. 2(a) and 2(b) is the position (ver-
tical bars) of the unperturbed two-photon reso-
nance relative to the Stark-shifted two-photon
resonance. The laser-induced Stark shift together
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with the ionization are responsible for the quad-
ratic intensity dependence of the third-harmonic
generation reported in Ref. 3. For intensities
greater than 33 MW jcm' these effects reduce the
intensity dependence of N3 to about linear. By
having the laser tuned to the unperturbed TPR,
one avoids the stronger ionization and its compli-
cations at the two peaks of the resonance curve
for N3, without any significant decrease in the
conversion efficiency. The peak energy conversion
efficiency at the laser intensities used in our cal-
culations has saturated to about 2x10 '. Since
the hyperfine splitting {0.3 cm ') of the ground
state in cesium was resolved in the experiment'
and thus only half of the atoms were TPR the ef-

I I I I I I I I I I I ! !
—,O. I -0.05 0 0.05 0.1

D(g (cm ')

FIG. 2. Resonance curves for the number of third-
harmonic photons (N~ —solid line) generated per pul. se
per cm2 and the fraction of interacting atoms ionized per
pulse (Ploll —dashed line). The incident intensity is
equal to (a) 33 MW/cm and (b) 100 MW/cm h, cu is the

ning & (&21+~21) ' The vertical bars are located
at the position ~ =- 26u2&, which is half the Stark shift.
The dash-dot curve represents the number of third-har-
monic photons calcul. ated by negl. ecting the variations in
the wave-vector mismatch (6k =x/I. ).

ficiency is reduced, by a factor of 4, to 5X10 '.
Ward et al. did not report the experimental effi-
ciency in their 1975 work, but in their 1974 work
the efficiency was about 10 ". Optical component
absorption and nonuniform vapor density along the
celP could explain the discrepancy. Owing to the
fact that phase matching in cesium is not possible,
as it is normally dispersive at these frequencies,
the calculated conversion efficiency of 5&10 '
would seem to be the maximum attainable efficiency
for tripling of the ruby laser.

In applying our model to TPR tripling of the ruby
laser in cesium we have taken into account the
dominant effects of ionization, saturation, and
laser-induced Stark shifts, and have also allowed
for variation in the wave-vector mismatch. From
the other processes that could have taken place in
the cesium experiment, the most important would
be lasing (fluorescence amplification) from the
9D3„state to the 6P,» state. Estimates of the gain
for this process show that it should have taken
place under saturation of the TPR transition, as
indeed has been mentioned in Ref. 3. As we pointed
out in Sec. II, the depopulation of level!2) under
saturation conditions is favorable to the process
of third-harmonic generation. Calculations of the
polarizability of the 6Py/, state at ~ and 3~ show
that populating that state reduces the wave vector
mismatch even more than populating the 9D3/2
state.

The presence of five longitudinal modes in the
output of the Q-switched ruby laser' does not
change either the Stark shift or the one-photon
ionization rate which were calculated for a single
mode. This is because the ruby laser has no one-
photon resonances with the cesium atom, and
since these effects are linear in the intensity, the
contributions from the various modes simply add
up. Mode correlation effects would have enhanced
the TPR transition' but there is no significant
phase locking between the modes of a giant-pulse
ruby laser. Therefore, except for the fact that
the third-harmonic spectrum will be wider than
the laser spectrum, the single-mode approximation
should provide an adequate description of the ex-
periment in cesium.

VI. CONCLUSIONS

We have developed a simple formalism to des-
cribe TPR third-harmonic generation in metal
vapors. The model takes into account saturation,
laser-induced Stark shifts, variations in the wave-
vector mismatch, and also the ionization process
which takes place simultaneously with third-har-
monic generation. In addition, the possible effects
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of lasing, and of the presence of more than one
laser mode have been examined. Applying the
model to TPR tripling of the ruby laser frequency
in cesium vapor, we find that the process is
limited by saturation and ionization. The inability
to phase match in cesium limits the conversion
effieieney to about 5~1O

Although efficient TPR tripling of the ruby laser
in cesium is not possible, this does not put an
end to the expectations' for the TPR enhancement
approach. It is evident that to fully utilize the
potential of TPR enhancement, the metal vapor
must also be phase matchable, either by means
of a buffer gas or through noncollinear phase
matching. %ith the availability of tunable dye
lasers we are not restricted to accidental two-
photon resonances with fixed frequency lasers.

Furthermore, the use of the two different incident
frequencies allows tunable TPR sum generation
(2&v, + e,) in the vacuum-ultraviolet region of the
spectrum. ' Combining TPR enhancement with
phase matching one could construct short practical
metal vapor cells with high-energy conversion ef-
ficiency and high output power. The incident in-
tensity should be low, about 10' W/cm', to avoid
strong ionization and maintain good beam quality.
If the laser-induced Stark shift is large for a
particular two-photon resonance it will not nec-
essarily be unfavorable and. may not have to be
compensated. The reason is that a large Stark
shift would probably be connected with either a
strong TPR transition, and thus a low saturation
intensity, or a strong coupling to the continuum
and therefore strong ionization.

*Partially supported by the Joint Services Electronic
Program.

/Work supported by a NSF Grant No. MPS74-17553.
~D. M. Bloom, G. W. Bekkers, J. F. Young, and S. E.

Harris, Appl. Phys. Lett. 26, 687 (1975).
See, for example, E. A. Manykin and A. M. Afanas'ev,
Sov. Phys. -JETP 21, 619 (1965); A. I. Maimistov,
L. R. Malov, and E. A. Manykin, Sov. J. Quantum
Electron. 5, 375 (1975); N. L. Manakov, V. D. Ovsyan-
nikov, and L. P. Bapoport, ibid. 5, 22 (1975).

SJ. F. Ward and A. V. Smith, Phys. Rev. Lett. 35, 653
(1975); K. M. Leung, J. F. Ward, and B. J. Orr, Phys.
Bev. A 9, 2440 (1974).

4Charles C. Wang and L. I. Davis, Jr. , Phys. Bev. Lett.
35, 650 (1975).

~B. T. Hodgson, P. P. Sorokin, and J. J. Wynne, Phys.
Rev. Lett. 32, 343 (1974).

6A. T. Georges, P. Lambropoulos, and J. H. Marburger,
Opt. Commun. 18, 509 (1976).

'B. P. Feynman, F. L. Vernon, Jr. , and B. W. Hellwarth,
J.Appl. Phys. 28, 29 (1957); D. Grischkowsky, M. M.
T. Loy, and P. F. Liao, Phys. Rev. A 12, 2514 (1975).

Yu. G. Khronopoulo, Izv. VUZ. Badiofizika 7, 674
(1964) (in Russian); V. S. Butylkin, A. E. Kaplan and
Yu. G. Khronopoulo, Sov. Phys. -JETP 32, 501 (1971).

9The vapor density can be calculated from the equation
of state of an ideal gas: N =P/X2 =9.66&10 P(Torr)/
T( K) atoms/cm3. At the temperature of 483 K and
the corresponding cesium vapor pressure of 0.13 Torr
the density is 2.6& 10"atoms/cm3.


