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An exact density-functional theory is developed for nonuniform classical systems, expressing the free energy in

terms of direct correlation functions. It is shown how this theory may be used in a practical fashion to remove

several unjustified, although physically plausible, approximations made in earlier work. Further understanding

of the approximations is obtained.

In a recent article' the authors, together with
Stroud, presented an approximate density-func-
tional theory capable of predicting from first
principles the particle density n(r) at position r
and the Helmholtz free energy for simple, non-
uniform, classical fluids subjected to an external
potential. The sole input, aside from several
physically motivated approximations, was the in-
termolecular two-body interaction which was taken
to be a Lennard-Jones (6-12) potential. The theory
was applied to liquid argon with a free surface,
yielding good results for the surface tension over
a wide range of temperatures and physically rea-
sonable results for the (as yet unmeasured) den-
sity in the vicinity of the liquid-gas interface. The
theory also produced sensible results for liquid
argon pressed against a model container wall in
that it predicts oscillations in the density near
the wall, the amplitude of the oscillations increas-
ing with the pressure.

Despite the success of the theory, several ap-
proximations made in formulating it are certainly
open to question. ' It is the purpose of this work to
develop a formally exact density-functional theory
and to indicate how this exact theory may be used
in a practical fashion to eliminate the most ques-
tionable approximations used in Ref. l. Also, the
nature and validity of these approximations is
clarified by the present work.

Consider a classical system of particles with
fixed chemical potential p, and temperature T in
the presence of an external potential v( r) which
couples to the particle number density n(r). Then
according to Mermin, ' there exists a functional
Q[n] of n(r) such that the minimum value of

()-=()[rr]r J d'rv(r)rdr),

with respect to variation of n( r) at constant i), , T,
v( r), and volume V, is the equilibrium grand free

energy of the system; n(r) at the minimum is the
equilibrium number density. The equation deter-
mining the minimum is

60 =-v„(r)+v(r) =0,
+'L r J z', v, v (r), y

where

(2)

(4)

where p '=k~T, k~ being Boltzmann's constant.
Further, the pair correlation function h(r, r') is
defined by

= —pn(r)[6(r —r')+n(r')h(r, r')]. (5)

Combination of (4) and (5) with the identity

(6)

yields the bernstein- Zernike relatiori'

h(r, r') =C(r, r')+
J

d'r" h(r, r")n(r")C(r", r')

for nonuniform systems.
Next, suppose that we have some means of ob-

taining C(r, r ) given an arbitrary, but physically
reasonable, density n( r ) We woul. d then want to
functionally integrate (4) to obtain v„(r). This in-
tegration will take the system from some initial
density n,(r) to a final density n(r). Following

We remark that, for any given n(r), v„(r) is sim-
ply the external potential which would produce that
particle density.

Let us define the direct correlation function
C( r, r') in the usual4 manner:
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Lebowitz and Percus, ' we choose a path in the
space of density functions which is characterized
by a single parameter n which varies from 0 to 1.
Then the integration gives

p[v„(r ) —v, ( r )]= -ln[n( r)/n, (r )]

„, , sn(r', ~)~I

~

~
I

~ r ~

~

~I ~

It is important to point out that the existence of the
functional A[n] guarantees that the result (10) is
independent of the path of integration. " Further
simplification will result if we choose the reference
state to be one of uniform density with

n, (r) =n, =const

The particular choice

xC( r, r ', o[) . (8) v, (r) =0.

Then (10) becomes
n( r; o[) = no( r ) + n [n( r ) —no( r )]

reduces (8) to

(9) 1

Pv„(r)= (n + dred'r'C(r, r';n)
n0 0

P [v„(r ) —v, ( r )]= -ln [n(r}/m, ( r )]
1

+ da d'r'C r, r';~
0

x[n(r') —n, (r')]. (10)

&& [n( r') —n, ] .
(12)

A further integration of (12) using (2) and the
same path yields

p((( —(()=p Jd'rv(r)[ ( n) r—n ]+f d rn(r)ln — d'r[n(r) —n]
no

1 01

do'. do.' d rd r'C r, r', a' n x' —n0 n r' —n0;
0 0

(13)

(14)

and

C,( r ) =—
JI

d 'r' C( r, r') .
1

Given (14) and (15), we may write (13) as

(15)

0 d r r + d'rv r n r

+ -4 — d'rd'r'C r, r' n r —n r'

(16)

Q0 is the grand free energy of the reference state.
The theorem of Mermin guarantees that Q is

unique; i.e. , the free energy calculated using (13)
will not depend on the path employed for the func-
tional integrations. Also, assuming that one can
calculate C(r, r', n) for any density along the path,
(13) provides a useful way of finding approxima-
tions for A. and n( r) given an external potential.
The final density can be parametrized and the
right-hand side of (13) minimized with respect to
the parameters. This procedure is much simpler
than finding the exact density. by solving the inte-
gral equation that results from combining (12) and
(2)

Next, we compare (13) with the approximate
theory developed in Ref. 1. This comparison is
facilitated by making the definitions

j. ap

C( r, r') -=2 do do' C( r, r' o.')
0 0

where

(()(r) = jp~T n(r) l'n —[n(r) —n,]
n0

—C,(r [n( r ) —n,]' (17)

In deriving (16) the symmetry relation C( r, r')
= C(r', r), which follows from the fact that C(r, r')
is a second variational cross derivative of Q, has
been used. The approximate theory of Ref. 1 is
stated by an equation strikingly similar to (16):

0,= d're@, r + d3rv r n r

+ d'rd'r'C, r-r', n n r

(18)

In this expression, &o,(r) is the free energy den-
sity of a uniform system with density n(r ) and
C,(r —r;n) is the direct correlation function of a
uniform system at Qensity n. The density n is
chosen in a convenient and physically reasonable
manner, the usual choice being

n=[n(r)+n(r')]/2. (19)

Equation (18) is a guess, motivated by the idea
that the free energy in a nonuniform system should
be given approximately by a local term +,(r) plus
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BJ'
=P '[1 —nC, (n, T)] (20)

between n, and n, changing the integration variable
to o, , and using the fact that f(n) = —P(n)+ np, (n).
Here, C,(n, T) is the q= 0 Fourier component of the
direct correlation function. Finally, note that
&u(n) =f(n) —pn and that the integral over v(r) in

(16) accounts for changes in p, that occur when

a nonlocal term arising from the nonuniformity and
having the appearance of an effective interaction
between different parts of the system. The kernel
C,( r —r', n ) for the nonlocal term was shown to be
the direct correlation function in the weakly non-
uniform case by invoking linear-response theory.
In this limit, n is the average density of the sys-
tem and (18) is an expansion of 0 through second
order in density differences. Given large density
variations, n accounts in an approximate fashion
for terms higher than second order in the expan-
sion. This procedure is clearly open to question
beyond the regime where linear-response theory
is valid.

It seems likely that one of the reasons why the
theory of Ref. 1 gives such reasonable results is
the similarity of (16) and (18). Also, one can show
that, for the case of a uniform final density n( r }
=n, ~( r) is just the difference in the Helmholtz
free energy densities f(n) and f(no), thus further
exposing the similarity. A proof of the preceding
assertion follows from integrating the uniform
system relations'

C(r, r') = [1+h(r, r')][1—e'~' "'], (22)

where V(r ) is the interparticle pair potential.
The coupled equations (7) and (22) must be solved
for density distributions which occur in the para-
meter path integrations in order to make any ap-
plications of (16}. In the general case, this opera-
tion would involve a massive amount of numerical
work. However, in the course of the work pre-
sented in Ref. 1 we developed numerical techni-
ques which permit the solution of (7) and (22) for
a uniform system in a few seconds using an IBM
370/168. We are confident that these techniques
can be extended to handle nonuniform. systems. '
Should this confidence not be misplaced, the
theory of equilibrium nonuniform classical fluids
will have advanced to a position roughly equivalent
to that of the theory of uniform systems in which
no approximations beyond those used in deriving
results such as the Percus- Yevick or hypernetted
chain equations need be invoked.

going from the initial to final uniform densities.
In fact, the procedure just outlined was employed'
to obtain v, from C, for use in (18). We conclude
that the form of (18) is correct and that the theory
presented in Ref. 1 amounts to guessing the aver-
age correlation functions defined in (14) and (15).

The use of (10) obviates the need for employing
either the density-difference expansion or a some-
what arbitrary Choice of the average density n.
The lone remaining question is how to obtain
C(r, r') given a nonuniform density n(r }. In our
previous work, ' C, was obtained from the Percus-
Yevick equation' for a uniform system. The same
may be done here, generalizing to the case of non-
uniformity. The Percus- Yevick equation is
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