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A molecular theory of cholesteric liquid crystals is presented. By means of symmetry considerations we obtain

a general form of the intermolecular potential containing chiral contributions, which are then shown to be

responsible for forming the cholesteric phase. The temperature dependence of the cholesteric pitch is

calculated. It is found that the pitch depends on temperature through a ratio of orientational order parameters
in the form [cr4(T)/cr2(T)]'. A general mean-field theory for binary cholesteric mixtures is also presented, along
with a formula showing how the pitch depends on temperature and concentration. Under certain conditions,

the formula reduces at fixed T —T, to a simple quadratic rational fraction in the concentration. This is

consistent with experimental observation.

I. INTRODUCTION

The cholesteric mesophase is generally regarded
as a distorted farm of the nematic mesophase:
one which is characterized by a macroscopic
twist. Besides this helical structure, there is no
long-range order in the spatial distribution of
molecules. The optical response of a cholesteric
is usually uniaxial, or'at most very weakly bi-
axial. ' For this reason, the steric or packing
model, which assumes molecules of planar shape
(slab-like) piling up on top of one another to form
twisted layers, had to be abandoned.

The description of cholesterics as twisted nema-
tics is consistent with experimental observation.
It provides at the least a very good approximation
to physical reality. Thus the existence of a finite
pitch is a common feature of all materials found
in the cholesteric mesophase. This phenomenon
results from the microscopic structure of the
molecules and the nature of the intermolecular
interactions. From the point of view of global
symmetry, one can argue that cholesterics are
made up of chiral molecules. The few potential
models in existence' ' all agree that chirality is
the major cause for the macroscopic twist. Un-
fortunately they also share the common conclusion
that the pitch is insensitive to temperature varia-
tions.

In actual experimental situations it is found that
the pitch of a cholesteric invariably depends on the
temperature. An interesting explanation was
offered by Keating. ' He assumed the forces op-
posing the twist to be anharmonic, so that a ma-
croscopic twist results automatically from the en-
semble-averaging process. Also, he found the
pitch decreasing with rising temperature, in quali-
tative agreement with experimental observation
on most cholesterics. There do indeed exist cer-
tain exceptional cases' in which the pitch increases

with rising temperature. Such cases are hard to
understand in terms of Keating's model.

In a previous paper, ' hereafter referred to as I,
we proposed a planar model for cholesteric liquid
crystals which in some sense is a synthesis of
Goossen's potential model' and Keating's kinetic
model. By means of a mean-field analysis, we
were able to show that the cholesteric phase is a
natural product of an orientation-dependent poten-
tial which contains chiral contributions, and that
even though a decreasing pitch at rising tempera-
ture is preferred, other kinds of temperature de-
pendence are also possible under proper conditions.
The mechanism proposed for forming cholesterics
yields a simple yet coherent picture. On the other
hand, there are certain inherent deficiencies in a
planar model. The long axis of each molecule is
unrealistically restricted to lie in a plane normal
to the twist axis. As we know, the molecules
should in principle be permitted to rotate freely
in space, and at least occasionally swing out of
these nematic planes. The removal of this degree
of freedom is artificial, in the sense that even if
the molecular axes prefer to stay on the nematic
planes, the phenomenon should be a consequence
of theoretical calculations rather than an input
to the model. M or cover, the isotropic- cholesteric
transition that results from the mean-field analysis
on a planar model turns out to be second order,
contrary to what is well known experimentally.

In this paper, we present as a continuation of our
previous effort an analysis on a three-dimensional
model. The theory is a natural generalization of
our work on the planar model, but the difficulties
mentioned above are completely eliminated.

II. UNIAXIAL MODEL

We shall characterize the configuration of a con-
stituent molecule by its position vector r and its
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V(1, 2)=y„(r„,g, r„,Q, i„,Q, Q, )

Y

f

FIG. 1. The geometry, A constituent molecule is at
r, with orientation vector O.

orientation vector Q. Q will have two angular
components: 6I and cp in some fixed coordinate
frame as shown in Fig. 1. Thus the molecule pos-
sesses cylindrical symmetry. Molecular biaxial-
ity, and therefore phase biaxiality, cannot exist
in this model.

We assume the interactions between the mole-
cules to be pairwise:

V(1, 2) =V(r„Q„r„Q,) =V(2, 1).

The lack of symmetry between a molecule and
its mirror image defines a chiral molecule. While
the appearance of the V„ term in Eq. (4) manifests
what is known as chirality, it is not quite the
sa~e thing as calling our molecules chiral. This
point was discussed in much detail in I, and will
not be dealt with here, suffice it to say that in all
except the rarest cases the two usages of "chiral-
ity" are equivalent. The V„ term is crucial in our
theory. It vanishes for nonchiral molecules.

A completely general form of V(1, 2), with ap-
propriate symmetries, is thus obtained. Q,
Q, ~ r,» as well as Q,&Q2 ~ &» represent scalaps
coupling orientational and spatial variables. At
the present stage of development, it is safer and
more instructive to work with a model which is
more manageable though less general. By drop-
ping the dependence of V„and Vx n Ql 12 and

0, -&„, we take

V(1, 2) =V„(r», Q, Q, )+ (f), xQ, ~ r»)V„(r„,Q, Q, ).
(6)

Up to this point, other than making sure that the
spatial nature of the rotation does not affect the
arguments employed in I for planar rotations, we
have not done anything new. The mathematics that
follows will now become more complicated, though
still straightforward. Equation (2) requires that
V„be even in Q, Q„and V„be odd. Expanding
both in their arguments, we find

It is generally believed that permanent dipoles
play no essential role in the formation of the
nematic phase. We assume that this is equally
true for the cholesteric phase. Thus the inter-
action is symmetric with respect to inversion of
molecules about their own centers:

V(r„Q„.r„Q,) =V(r„—0„r~,Q2)

=V(r„Q„r„-Q,)
(2)=V(r„-Q„r„-Q,) .

Following the consideration of translational and
rotational symmetries, ' V reduces to a function of
five variabl. es:

V„(x„,Q, Q, ) =V,(x„)++V„(&„)P„(Q, Q,),
1=1

V„(~„,Q, ~ Q, ) =g V,'„,(r„)P„„(Q, Q, ).
l=p

In particular, the truncated forms

V„(~»,Q, ~ Q, ) = V,(r„)~ V,(r„)p,(Q, ~ Q, )

+V, (r„)p,(Q, A, ),

(6)

(8)

V(l, 2) =V(r„,Q, ~ r„,Q, ~ r„,Q, ~ Q„Q,x Q, ~ r„),

where &»=—~r, —r,[. Since (Q, xQ, &»[ canbe ex-
pressed in terms of Q, ~ Q» Q, ~ r„, and Q,
the potential can be decomposed into two parts
with no loss of generality:

V„(~„,Q, ~ Q, ) =V,'(r„)p, (Q, .Q, )

+V,'(r„,)p, (Q, Q, )

are rather familiar. V„, an intermolecular poten-
tial that accounts for the formation of the nematic
phase, in the form of Eq. (8), was used by Maier
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and Saupe" and other authors" offering generaliza-
tions of the Maier-Saupe theory. The appearance
of Vx will be shown to distinguish cho)esterics
from nematics. The V,' term represents a more
natural way to bring in anharmonicity: our exten-
sion of an idea due originally to Keating.

III. THEORY

In the statistical mechanics of a classical sys-
tem, the central quantity is the Helmholtz free
energy functional S. For liquid crystals in the
mean-field approximation, "

p = p(f(r, rr)lrp) =p, ,(&, p) +pp)' ff(r„rr, ))pprf(r„r), ) pr, prr,

+&p' r„O, r„O, Vr„Q„.r„Q, dr, dQ, dr, dQ, , (10)

where p is the average number density, F, the
ideal-gas free energy, and pf (r, Q) the one-parti-
cle distribution function (or density function) nor-
malized as follows.

(i) The local molecular alignment has complete
cylindrical symmetry about n(r). In other words,

f = f(n(F) ~ Q). (Is)

pf (r, Q)drdQ =N,
(ii) n and -n are equivalent, i.e.,

f(n(r) ~ Q) = f(-n(F) ~ Q). (16)

N being the total number of particles in the sys-
tem. The minimization of S with respect to f (r, Q)
under the constraint Eq. (11)gives rise to the usual
self-consistency equation. " The mean field, V „
is given by the opti. mum f (F, Q) through the follow-
ing Eqs. (12)-(14)~

(iii) The molecular centers of mass are randomly
distributed, i.e.,

pf(n(r) ~ Q)dQ =p

or

N 1
pf (F, Q) = —exp —

~ V, (r, Q)

g= exp —
&

V, r 0 drdQ,

(12) (17)

(iv) By defining orientational order parameters
in the usual way,

p, (r„rr, ) = p f f (F„rr,)p(F„rr„r„rr,) dr, r(rr.

In considering cholesterics, we assume that the
local molecular arrangement can be described by
a distribution function f (Q~ F), or, to be more
specific: f(Q~n(F)), where n(F) is the local direc-
tor (direction of the local nematic axis). Based on
the concept of a local nematic, we expect that f
will possess the following properties.

o„= f(n(r) Q)P„(n(r) Q) dQ,

f can be expanded in i,egendre polynomials; thus

f(n(r) Q) = 1 ++ (21+1)o,P, (n(F), Q)
I

4m l~2
even

Note that the order parameters do not depend on r.
In terms of v2( and n(F), the free energy func-

tional can be expressed as follows:

1

7(f(F, Q)~T, pj=F~(T, p)+4zÃ&T —,f (cos(l))ln4))f (cost)dcos(I) +U, +U, +U, +U,'+U,',
-1

where

cos(l) =n(F) ~ Q,

(20)

(21)

U0=2p2 f(n(F, ).Q, )f(n(F ) ~ Q ) V (t; )dF, dQ~dF dC1, =~p Vo(, )dF dF =~f)j'pya, (22)

U, =-,'p f(n(r, ) ~ Q, )f(n(r, ) ~ Q, ) V, (x„)P, (Q, Q, )dF, dQ, dr, dQ,

=2@, V x, nr, nr dr dr =2Npy, ,&, +—,'pai ~r +12 P, nr, ~ nr2 —1 dr, dr2 l=2 4 23
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U', =—p n r, Q, n r, Q, t/', ~, Q, xg ~ r, , Q, ~ Q dr, dQ, dr, dQ, , 1=1,3.

After some lengthy but straightforward algebra, we find

2P ~ ~1 ~„n r, «r, '~12 &1(n r, 'n r, )dr, dr (24)

and

4 3 12 1 2 1 1 2 1

r —,', p (q' —q') f V,'(r, )[2(r,) 2(F) r ]P{„2(~) nr(r, ))dr, dr, . (25)

If n(r) is a constant unit vector throughout the
whole space, then U,'=0, U,'=0, and the free-ener-
gy functional reduces to

5 =5, +7~,

1
U =—,&py 0'

+2Xpg42 dr V4 x 6345 cos4qz(+64 cos2qz —5654

(31)

where

8', =F +-,Npy, ,
U,

' =-,'Npo', dr V,' r ———sin2qz (32)

F„=4vNkT ~f(cosf) In4&f (cosg) d cos(l)
1

+-:&ay,~', +-:&w;~,'.
yr = V, ~ dr, &=0, 2, 4.

(2 "I)

(28)

V = —,iqps dr 'V (r) ——sin2qz — —sinqqz)
1 z 5 z

3 4 16 ~

r-,'Zip(p' —s') dr V'{r) ———sin2qz) .4 2 14

(33)
In this case, the state of the system is either iso-
tropic or nematic. For this reason we separated
the total free-energy functional into

5 —S +%~+%~,

where F~ denotes the distortion energy due to
spatial variation of the directors.

In order to carry out the variational program,
we proceed with the usual ansatz":

n(r} = (cosqz, sinqz, 0}. (29)

U2=-:&Py2~2+2+P dr V ~ a cos2$z -1

Such a representation assumes that the director is
uniformly twisted along the z axis with a pitch
P =2)(/q. Here q will be treated as a variational
parameter. Since there is no external field, both
the z axis and the origin of the coordinate frame
can be chosen at will. If a nontrivial solution,
i.e., q & 0, exists there will of course be an infinite
number of degenerate configurations. Equation
(29}merely defines a most convenient choice.

Combining Eqs. (23)-(25) we obtain after some
algebraic manipulations

All these quantities can be written in terms of
transforms of the intermolecular potential. It is
most convenient to use the following definitions:

2 (Q)=d' f dV)v (q)(spsQ{ —i), l =2, 4,

p.(Q) = 4' f dV) V.'(n) -Qi, —
7j

(34)

(35)

Sz(Q) =-,'Npv', G, (Q) +-,Npo QQG, (Q),

where

G. (Q) = q ~.(2Q) —k p, (2Q) + —,'. p, (2Q)

and

(35)

(37)

G, (Q) = —,",~, (2Q)+ —,",~, (4Q) ——;,V, (2Q) —,'g p, ( 4)Q—

Qr,

1
& = &, (&, p) +4))'N&& &f (cos)()) In4vf (cos)I))d cos)I)

-1

where Q =qd, q =r/d, and & =z/d, with d measur-
ing the range of the interaction. Thus, from Eqs.
(2"I) and (30)-(35),

(30) + 2Npy2a 22 + 2Npy4V 42, (39)
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with

r , -(Q)=r, +G, (Q), 1=2, 4.
This is a form identical to the free-energy func-
tional used for analyzing the nematic phase in the
(generalized) Maier-Saupe theory, ""'except that
the average interaction strengths y, and the angular
variable g depend on Q.

As soon as the intermolecular potential is speci-
fied, G, (Q) and G, (Q) can be evaluated for all val-
ues of Q. One can then employ the usual varia-
tional procedure" to determine the optimum solu-
tion(s) by solving a set of self-consistency equa-
tions for each Q. The result is

f (cosg) = (1/4)) 4) exp[B,P, (cosg) +B,P, (cosg)],

(41)
with A a normalization constant,

B, = py, o, /-kT, l =2, 4, (42)

and u, given by Eqs. (18) and (21). Finally, one
determines which configuration is thermodynamic-
ally stable by comparing the free energies at vary-
ing Q. It is interesting to know, for example, how
Q (or therefore the cholesteric pitch P) depends
on the details of the intermolecular potential.

We learn from experiments that the cholesteric
pitch is of macroscopic scale, while the range of
the interaction d, is microscopic. For P =2m/q
-10' A, Q =qd«l. It is then meaningful to con-
sider a small-Q expansion of Eq. (39). First of
all,

to solving the Maier-Saupe equation. After the
order parameters o, are obtained in this manner,
we turn toward the determination of the equilib-
rium Q by means of Eqs. (4"I) and (48). This is the
second step.

The main conclusions of our analysis are: (i)
The isotropic-cholesteric transition is like the
isotropic-nematic transition, hence first order.
To see this, we note that as far as the orienta-
tional order is concerned our treatment is identi-
cal to that for the nematic phase. (ii) Since Q =Qo
always minimizes the total free energy when 0,
and o4 do not both vanish, the cholesteric phase
is always more stable than the nematic phase.
There is no nematic-cholesteric transition. (iii)
The cholesteric pitch can be expressed in terms of
the order parameters and moments of the chiral
contributions in the intermolecular potential.

IV. TEMPERATURE DEPENDENCE OF PITCH

Experiments indicate that there are different
types of temperature dependence of the pitch in
cholesterics. By means of a simple anharmonic
model, we illustrated in I how these different
types could emerge from a coherent picture. In
addition, we suggested a yet-unobserved kind of
temperature dependence —one in which the helical
structure would first untwist and then reverse
helicity after passing through a divergence in pitch
at some definite temperature. In this section,
we shall present the results of a more quantitative

~ (Q) =-'~"(o)O'+ O(Q'),

p (Q) =((('(0)Q+O(Q'),

where

(43)

(44)

Z,"(0)=-d'f 2'V(il)dii, (=2, 4, (45)

(48)

Next, Eqs. (36)-(38) yield

~r(Q) ='»l-'~l'(0)& '. +»,"(0)~,') ((Q —Q,)'- Q', ],
(47)

where

(48)

as resulting from completing squares.
For numerical work, the problem can be solved

in two successive steps. As far as the orientation-
al order is concerned, it is totally safe to ignore
the Q-dependent distortion energy in our present
small-Q regime. Thus the first step is identical

07 .8
T/T,

.9

FIG. 2. S(T) = [04(T)/02(T)] as a function of T/T
See Eq, (49).
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(i) -0.412 &R &0. In this range, the pitch in-
creases with decreasing temperature, and remains
finite at all temperatures.

(ii) -~ &R &-0.412. The pitch increases with
decreasing temperature. At certain temperature
T& between 0 and 0.935'„however, the pitch di-
verges; after which the helicity reverses and the
pitch decreases as temperature is lowered fur-
ther.

R)0

T/Tc

study using the model described in previous sec-
tions.

For simplicity, we ignore higher-order terms
in the nematic part of the interaction; i.e., we
assume that &, (0)«Q'(0). Equation (48) then
reads

Q, =~+ps(~),
where

(49}

FIG. 3. Representative curves showing various types
of temperature dependence of the cholesteric pitch in
pure substances.

(iii) 0&R &4.861. The pitch decreases with de-
creasing temperature, and remains finite at all
temperatures.

(iv) 4.861 &R&~. The same phenomenon as in
(ii) occurs, except that the pitch diverges at a
higher temperature T„between 0.935T, and T, .

Case (i) is of course the most familiar in cho-
lesterics. Case (iii) is unusual. It has recently
been observed in, e.g., CEEC.' We find it possi-
ble to fit the experimental data on CEEC rather
satisfactorily to our theory. See Fig. 4.

Cases (ii) and (iv) have not been observed" in

pure cholesteries. %e see no fundamental reason
why they should not occur in nature. One may
argue that the relatively narrow temperature range
spanned by the cholesterie phase prevents the phe-
nomenon from taking place. Or nature does not
care for large moments in the higher-order parts
of the chiral potential. We feel that for reasons .

of both theoretical understanding and technical
applications, such behavior by eholesteric ma-
terials is well worth searching for.

n =[-,'p, ,'(0) ——', p. ,'(0)]/&,"(0),

p = —,",p,'(0}/~,"(o},

S(T) =t~.(T)/o. (T)]'.

(so)

(sl}

(s2)

R I', (0)/p,'=(0) (58}

By varying the value of R, cholesterics can be
classified into the following categories.

According to this picture, then, the temperature
dependence of the pitch comes through the tem-
perature dependence of the orientational order
parameters. This is most convenient since the
function S(T}can be calculated using just the (gen-
eralized} Maier-Saupe theory. The results are
given in Fig. 2.

Figure 3 shows the different kinds of tempera-
ture dependence of the cholesteric pitch. The es-
sential parameter that governs these temperature
dependences is the ratio

.8-

CL

CL

.6-

98
T T,

FIG. 4. Temperature dependence of the cholesteric
pitch for CEEC. The points denoted by 0 were taken
from Ref. V. The solid lines are theoretical curves with
R equal to (a) 2.19, (b) 2.33, (c) 2.50.
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V. BINARY CHOLESTERIC MIXTURES

where

p(A) + p(B) + p(A B) (60)

In this section, we generalize the theory pre-
sented for a pure cholesteric substance to binary
cholesteric mixtures. The generalization is quite
straightforward, but the notations are clumsy.
The reader will please bear with us until the final
lines for a bit of physical insight.

We consider molecular species A and &, a total
of N molecules at number density p, such that

%=RA+NB 9 and p =pA +pB.

V,"(1,2)=V„"(r„,Q, Q, )+(Q, XQ, r„)V„"(r„,Q, Q,),
/

(54}

where the single index e stands for the paired
label (A, A), (B,B), (A, B), or (B,A). Note that
V'"'B'(1, 2) = V'B'"'(2, 1). Expending these poten-
tials in Legendre polynomials as before, and
truncating at leading terms, we obtain

V„"(r„,Q, Q, ) =V,"(r„)+V,"(r„)P,(Q, Q,}

+V,"(r„)P,(Q, Q, ),
V„(r„,Q, Q, )=V,' (r„)P,(Q, Q, )

+V', "(r„)P,(Q, ~ Q, ) . (56

(55)

The calculation begins with the distribution func-
tions

There are three kinds of intermolecular potentials:

p(') p(&) p(&) (61)

with 7,"), 5:„",and 5'(r&) given by E(ls. (26}, (27),
and (36), except that everywhere in the notations
(5:„&,p, y„y„y„f,g„g„G„G,) a label s must
now be attached. The defining equations of y„G„
G„S&„and Ss: (28), (37), (38), (34), and (35)
are generalized in the same way, with (A, A. ) or
(B,B) placed in the index whenever i calls for

A or B, and (A, B) placed in the index for a third
class of such functions to be used immediately
below.

P(A 2B) y(A 2B) P(A2B) P(A 2B)+ N + T

where

8:&A B) 5(A IB) (7' p p ) + ~ (~ p +~ p )y(A. B)
9

(63)

s& ( ApB+ BpA)(y g A B

+y,'"'B'o, „g, B), (64)

2(NA pB+NB-pA)[G2 '
(Q)g2~Ag2, B

+G.'""(Q), , .].(65)

The total twist energy is then

p(A) + p(B) + p(A, B)
T — T + T + T

f, = f,(n(r) Q},

the normalization conditions

) f, ( (nr) Q)dQ=1,

and the order parameters

(58)

p [g2 G(AIA)(Q) +g2 G&A,A)(Q)]

+-'X p [o' O'B B'(Q)+g,' BG~B' '(Q)]

+2(+A pB++B pA}[ Ag2BgG22'(Q)
+g. . g . G.'""(Q)]. (66)

Once again, by carrying out a small-Q expansion
and completing the square, we find

o, , = f,(n(r) Q)P„(n(r) ~ Q) dQ, (58)
&r =2(C, Q+C2Q') =2C,[(Q -Q,)'-Q', ], (67)

where i stands for the species label A or B. Note
that the order parameters refer to species A. and
S in the mixed medium.

The free-energy functional now takes the form

with

Q2 = -C, /2C2,

where

(68)

fg2 [ +&A,A)'(0) + 3 p(A&A)'(0)] 2((g2 p(A, A)'(0)}

++ p (g2 [ Ss(B s&B) (0) + 3
IA

(BIB) (0)]
2&) g2 Ss

(BB) (0)},
(68)

and

p [3g2 S((AaA) (0) ~5g2 S&(A A) '(p)] ~~ p [3g2 g(B B)"(p)+5g 2 g(BsrB)"(p)]

+(X„p,+X,p„)[-,'o, „g, ,~&A B) (0) +5g, „g, ,a&A') "(p)]. (70)



MOLECULAR THEORY OF CHOLESTERIC LIQUID CRYSTALS. . . 2557

E

CL

CHIC-CC

O o O

~ C BAC-CEEC
~ 0

depend on the order parameters, which in turn
depend on x. However, there are some special
circumstances under which the latter dependence
can be neglected. We would like to conclude by
constructing such a set of conditions.

Let us plot Q, versus x. At some concentration
x„ the mixture has a transition temperature
T,(x,). I.et us select a temperature T„and enter
into the graph a point Q, (T„x,). Take next another
concentration x, and its corresponding transition
temperature T,(x,). Instead of selecting the same
temperature T„ let us select a temperature 7,
such that

~ ~ T, —T,(x,) = T, —T,(x,), (73)

E.BBa-CEEC

Finally, by defining

x= N~/N, 1-—x-=N~/N, (71)

we can rewrite Q, as

A, +A, x+A, xm

Bo+B,x+B,x' '

with coefficients A's and B's given by complicated
expressions extracted from Eqs. (68)-(70).

Equation (72) appears as a quadratic rational
fraction in x, but it is not, since the A's and B's

(72)

20 40 60 80
X (.~)

FIG. 5. Typical concentration dependence of the chol-
esteric pitch in binary cholesteric mixtures, plotted at
constant T - T, . n is the mean refractive index; P is
the cholesteric pitch.

T/T, =1+(1/T, )(T —T,), (74)

and 1/T, changes relatively little throughout the
range 0& x ~1, our Q, curve is essentially done at
fixed T/T, . In the mean-field theory, this corre
sponds to fixed order parameters, that is, order
parameters which are independent of x. Under
these conditions, the coefficients A's and B's in

Eq. (72) become independent of x, and we arrive at
a quadratic rational fraction. This is then the mo-
lecular basis for the plot in Fig. 5, we obtained
by experimenters. ""

Quantitative results for binary mixtures will be
repor ted elsewhere.

Note added in Proof We have r. ecently learned
that B. W. 7an der Meer, G. Vertogen, A. J.
Dekker, and J. G. J. Ypma have independently ar-
rived at some similar conclusions by a different
approach [J. Chem. Phys. 65, 3935 (1976)].

and enter Q, (T2, x, ) into the plot. In this manner
we continue to plot Q, (T„,x„)until a curve is ob-
tained for x covering the whole range 0 to 1. Every
point on this curve has the same T —T,. Since
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