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The transport coefficients of hard-sphere, soft-sphere, Lennard-Jones, and one-component-plasma systems are
expressed in terms of the corresponding internal entropies, to reveal some universal characteristics. The -
transport of all the inverse nth-power repulsive potentials appears to be related, and can be numerically
estimated by the hard-sphere model, although the hard-sphere transport is different. The entropy dependence
of the coefficients of self-diffusion and (to a lesser extent) shear viscosity, for systems with purely repulsive
potentials, is only slightly affected by the addition of an attractive potential. :

I. INTRODUCTION

The purpose of the present work is to relate the
eguation of state and transport data of simple sys-
tems. We find it helpful to relate the transport
coefficients to the internal entropy. This relation
enables direct comparison with the hard-sphere
model and has a special merit by itself since it
features universal properties.

The hard-sphere model, for interpreting both
static and dynamic thermodynamic properties of
simple systems, is briefly discussed in Sec. II
In Sec. III this model is applied to calculate the
transport coefficients of the one-component plas-
ma (OCP). In Sec. IV we relate the transport
coefficients to the internal entropy, following an
indication by the variational hard-sphere model.
The effect of adding attractive forces on the trans-
port coefficients of a purely repulsive potential is
discussed in Sec. V in terms of the corresponding
effect on the entropy. The major findings are sum-
marized in Sec. VL.

II. THE HARD-SPHERE MODEL

The hard-sphere approach to understanding li-
quids has been most successful. This model ex-
plains the observed structure factor of many
liquid metals near their freezing points* and the
experimental viscosity data of monatomic liquids.?
The model is fruitfully applied in connection with
the Lindemann law for hard spheres to yield sim-
ple melting equations® and additivity of melting
curves.® In turn, systematic methods were de-.
veloped for calculating fluid® and solid®*” equi-
librium thermodynamic properties from inter-
particle potentials. Of these, the Mansoori-
Canfield variational method® proved successful in
interpreting both static® and dynamic'® properties
of the inverse 12th power potential and the Len-
nard-Jones (LJ) system. This method has also

been applied, with considerable success, to other
inverse power potentials,® to liquid metals,! liquid
metal alloys,? to the screened Coulomb potential,*?
and has been recently extended to treat also the
ocp.*#

In the variational method, one minimizes the
free-energy functional with respect to &:

F(p,T,&)=F!(p, T) - TSEs (£)

+12¢ JM d(xd) g ysle; &) x%dx (1)
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to get an upper bound of the free energy per parti-
cle of the system. F! is the ideal-gas contribution,
S%s(£) is the excess entropy per particle of the
hard-sphere system, ¢(x) is the pair potential of
the given system, g,4(x) is the hard-sphere radial
distribution function, and £ =5mpd® is the hard-
sphere packing fraction where d is the hard-sphere
diameter and p is the number density. The corre-
spondence with the hard-sphere system is obtained
through a density- and temperature-dependent
packing fraction £(p, T) from the solution of

aF (p,T, &) -0, @)
L3 P, T
The approximate excess free energy per particle
is given by
FE(p,T)<F(p,T,&(p, 7)) ~F'(p,T).

Other thermodynamic properties are obtained by
the usual thermodynamic relations. In particular,
the excess entropy per particle is given by

8F%(p,T)
SE LA VY
(psT) ST ,
__B8F%|  oFF 9k
8T o, 8E lpp oT lp.
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The last term in Eq. (3) vanishes because of Eq.
(2), and the entropy of the system is approximated
by the entropy of the hard spheres, i.e.,

S%(p, T)> Sks(&(p, 7)) . (4)

It will prove useful in what follows to define the
reduced coefficients of self-diffusion, D, and
shear viscosity, n, which are scaled by the ther-
mal velocity (kBT)l/2 and powers of the number
density p: )

D*(£) =Dp*® (m /Ry T)*/2, (5)
n*(E) =np~2 (mkyT)™12, (6)

where m is the particle mass.

For hard spheres, Dymond!® presents transport
coefficients from the molecular-dynamics results
of Alder et ql.'” in terms of the Enskog expressions
and density-dependent correction factors. Here
we do not treat other transport coefficients for
lack of computer data.

III. RESULTS FOR THE OCP

The calculations by the variational HS model have
the physically appealing characteristic that both
transport and static properties, of the inverse
12th power potential and the LJ system, may be
computed together by minimizing the free energy.°
The situation is, however, much less favorable in
the case of the OCP. In this case the packing frac-
tion £, which minimizes the free energy, is related
to the conventional scaled parameter for the plas-
ma, ,

_(z e)? [4m \1/3
T==%r (T" > ’

in closed form to yield4

2-¢ (1+2¢)
2+ (1-9)°"

For the dense OCP, I'>100, Egs. (5), (6), and (7)
predict much too high values of D and n (factor
~4), that is, Eq. (7) gives values of ¢ which are
too large.

Levesque and Verlet'® chose the hard-sphere
packing fraction ¢ for which the structure factor
for a hard-sphere and LJ liquids had the same
height in the first peak. They found that in order
to reproduce the LJ molecular-dynamics data,
they had to multiply the approximate expression
for the self-diffusion [Eq. (5)] by a factor of 1.28.
We performed similar calculations (without the
1.28 factor) for the OCP (using the Percus-Yevick?
hard-sphere structure factors and the OCP struc-
ture factors published by Hansen?°) tofind reason-
able agreement with Hansen and collaborators?!:22
(see Table I).

T =2£1/3 (7)

TABLE 1. The reduced coefficients of self-diffusion,
D*, and shear viscosity, n*, of the OCP.

T D*? D*P n*a ,n*c’
10 0.4 0.43 0.5 0.3
100 0.08 0.06 2 1.7
140 0.04 0.05 4 2.7

2Calculated by the hard-sphere model with the “struc-
ture-factor” packing fractions.

PReference 21.

°Reference 22.

From these results we find that the structure-
factor criterion for choosing £ has a more stable
predictive character than the variational criterion.
Moreover, the structure factor of real systems
can be measured and can predict transport coef-
ficients by means of the hard-sphere model. This
is a crucial advantage over the variational method
in cases when the effective potential is unknown.

IV. RELATION BETWEEN THE TRANSPORT COEFFICIENTS
AND THE INTERNAL ENTROPY

Since we want to relate the transport coefficients
to the equation of state, for which there are more
readily available data for real materials, we pur-
sue the possibility indicated by Eq. (4) and de-
termine £ from the excess entropy data of the
system by solving Eq. (4). Beside other conse-
quences which will be discussed later, this choice
of £ can be cast into a simple closed form upon
using the Carnahan-Starling hard-sphere equation
of state.® Denote

_ SE(p,T) _ 4& -3¢

5= kB h (1"'&)2 ’
Then Eq. (4) yields
_ s+2 s(s +3) \72
g_s+3’:1_<1_(s+2)2> } (®)

We call this the “entropy” packing fraction.

Equations (5), (6), and (8) define the HS approxi-
mation for the transport coefficients with the “en-
tropy” packing fraction. To the extent that this
model can predict equally accurately the transport
coefficients of different systems, we expect D*(s)
and n*(s) to be nearly universal functions. More-
over, the accuracy of the hard-sphere model in
determining D and n of various systems can be
inferred directly upon plotting D*(s) and n*(s)
together with n#s(s) and D(s).

Computer transport-coefficient data are avail-
able for the LJ system,®:?3 the inverse 12th power
potential,'°2%:2% and for the OCP.?' This data,
although limited, enables one to judge the capa-
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FIG. 1. Reduced coefficients of self-diffusion, D*,
and shear viscosity, n*, as functions of the excess en-
tropy (SE/kB), for hard spheres (Ref. 17), soft spheres
(Ref. 23), and the OCP (Refs. 21,22). The straight lines
are given as visual aids. Note the OCP point beyond the
left margin.

bility of the present method for a large class of
systems. The inverse 12th power potential and the
OCP serve as two rather extreme test cases. The
LJ data allows investigation of the effect of attrac-
tive forces added to a purely repulsive potential.

The inverse 12th power potential, ¢@)=€(o/7)'?,
and the OCP, ¢ (@) =(Ze)?/r, have the scaling prop-
erty, i.e., the excess entropy depends on only one
reduced-density temperature variable, vy =po®(e/
ET)Y* and T, respectively. For the inverse 12th
power potential we use Hansen’s?® fit to the Monte
Carlo data, to obtain

s =1.9171y +0.9080y2 +0.3091y° - 0.0102y*°. (9)

For the OCP we can use Hansen’s?® fit to his Monte
Carlo data, or preferably an excellent and simple
fit by DeWitt,* to get

§=2.4494171/4-0.50123 InT" — 2.3148 , (10)

In Fig. 1 we plot D* and n* (on a logarithmic
scale) versus s for the purely repulsive potentials:
the hard spheres (HS), the inverse 12th power
potential [i.e., soft spheres (SS)], and the OCP.
For the shear viscosity n* of the OCP we took the
“H, super-0.02” results of Table III in Ref. 22,
since they agree better with the molecular-dynam-
ics results of Ref. 21 near the fluid-solid tran-
sition. To a good accuracy, logD* and logn* are
nearly linear in s for the three systems con-
sidered. The hard-sphere model with the “en-
tropy” packing fraction [Eqgs. (5), (6), and (8)]
reproduces the OCP transport coefficients to a
reasonable accuracy at large s, and resembles
more the soft-sphere results at small values of s.
Interestingly enough, the lines representing the
data of the OCP and the SS are nearly parallel,

ie.,
D¥.,(s)s1.4D&(s), n&(s)= 1. Tn¥q(s), (11)

which suggests that these numbers could be related
to the repulsive power index n if other nth-power
transport data are available.

Figure 1 shows that the HS model with the “en-
tropy” packing fraction can be used for quanti-
tative estimation of the transport of dense simple
systems. However it does show that for n =«

(hard spheres) the transport is distinctly differ-
ent from the n =1 (OCP) and n =12 (SS) cases.

V. EFFECT OF ATTRACTIVE FORCES

To see the effect of adding an attractive term to
a purely repulsive potential, we plot, in Fig. 2,
the transport coefficients of the inverse 12th
power potential and the LJ system. The self-
diffusion data of the soft-sphere and the LJ sys-
tems lie on nearly the same line in the log D*-vs-
s plot, i.e.,

D¥(s)= D (s) =0.585exp(—0.788s) . (12)

The same trend, but to a lesser extent, is ob-
served also for the shear viscosities, ﬂé‘s(s)
=~qk/(s). In Ref. 23 n,; is given in terms of the
transport scaling variables of the SS system.

At given p*, T* the effect of adding an attractive .
force to the inverse 12th power potential is to in-
crease- the diffusion coefficient. For example, at
T*=1and p*=0.8 we find Dff;~2Dg. Physically
the reason for this is that the attractive term re-
duces the repulsion and decreases the size of the
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FIG. 2. Reduced coefficients of self-diffusion, D*,
and shear viscosity, n*, as functions of the excess
entropy (SZ/kp) for the soft-sphere and LJ systems. The
LJ shear-viscosity data along the saturated-vapor-pres-
sure line is taken from Ashurst and Hoover (Ref. 23).
The LJ self-diffusion data is taken from Levesque and
Verlet (Ref. 18). For the soft spheres we plot the data
of Ashurst and Hoover (Ref. 23), Hiwatari et al. (Ref.
24) . (results for 108 particles), and Ross and Schofield
(Ref. 10) (results for 500 particles). The broken line
represents the results for the OCP and is given for com-
parison.
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TABLE II. The excess entropy [s=-SZ(p, T/kgl of the
LJ system.

S

T* p* Monte Carlo (Ref. 27) Eq. (14)
2.74 0.70 1.79 1.79
0.80 2.21 2.17
0.90 2.65 2.60
1.00 3.11 3.14
1.08 3.565 3.76
1.35 0.70 2.18 2.15
0.80 2.70 2.63
0.90 3.28 3.27
0.95 3.56 3.75
. 1.15 0.75 2.57 2.46
0.85 3:15 3.05
0.92 3.62 3.67
0.75 0.70 2.59 2.40
0.80 3.24 3.01
0.84 3.52 3.36

effective hard spheres, thereby increasing their
diffusivity. We find that a completely quantitative
account of this effect is taken care of by the en-
tropy analysis: At given p*, T* the effect of adding
the attractive term is to increase the entropy and
thus to increase the diffusivity. A similar analysis
holds also for the shear viscosity, except that
there is also a long-range contribution to momen-
tum transport from the potential in addition to the
kinetic part.

To calculate the entropy of the LJ system,

o) =4e[(o/r)2=(0/r)°],

(reduced units p*=po3, T*=kT/e), we make use of
the tables of Monte Carlo data given by Verlet and
Weis?” and by Hansen,? and interpolate graphically
when needed.

A consistency check of our calculations can be
made in the following manner. Levesque and
Verlet!® fit their molecular-dynamics results of
the self-diffusion of the LJ system in the region
T*<5, p*>0.65, by a simple expression:

D, (p*, T*) =p*'/3(48/T*)*/2(0.006 4237 */p**
+0.0222 - 0.0280p %) .
(13)

Equating the expressions (12) and (13), we ob-
tain the following approximation for the entropy
of the LJ system:

SEs(p*, T*) 1 < D#y(p*, T*)>
k,  0.188 %\ 0.585 (14)
In Table II we cbmpare the prediction of Eq. (14)
with the values obtained directly from the tables
given in Ref. 27, and find good agreement.

VI. CONCLUSIONS

We find that expressing the transport coeffi-
cients of dense simple systems in terms of the
internal entropy is very useful. Figure 1 shows
that there is a simple relation between repulsive
power transport for =1 (OCP) and » =12 (SS) and
suggests that other values of n will also be simply
related. With transport data for some other »
values, the proper interpolation could be de-
termined and Fig. 1 would provide nearly all the
nth-power transport.

Figure 2 shows that the addition of an attractive
potential to the repulsive power system, does not
change the functional dependence of self-diffusion
upon entropy, while it does have a small effect on
the shear-viscosity dependence. Thus in analyzing
transport data of real materials, it is enough to
have an idea of the repulsive forces.

DeWitt® has shown that dense repulsive-power-
potential systems obey a universal equation of
state in the form

AU _U-Us
NkgT ~ NkyT

=ad;%+b (15)

where U is the internal energy, U, is the static
fcc lattice contribution, and 6, is the Einstein
approximation for the Lindemann ratio. The con-
stants ¢ (0.85) and b (=0.5) are nearly independent
of n for 1<n <12. This universality of the equa-
tion of state of the repulsive power potentials is
exhibited also by the corresponding variational
upper bounds.

The “universal’’ plot of the transport coefficients
vs the internal entropy together with the “uni-
versal” equation of state [like Eq. (15)] yield a
relatively simple description of transport behavior
throughout the dense fluid region, and should also
be useful for empirical correlations of experimen-
tal data.
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