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The expressions for the fourth and sixth fr'equency moments of current correlation functions are simplified by
performing the angular integrations associated with the three-body contributions to these moments. The
resultant expressions are applicable both in the long-wavelength limit as well as for any momentum transfer.
These expressions are then numerically evaluated for a liquid-argon-hke system near its triple point using the
molecular dynamics data of Verlet for the static pair-correlation function. We have used Kirkwood
superposition approximation for the triplet correlation function and a low-order decoupling approximation for
the quadruplet correlation function. The Maxwell relaxation time for the longitudinal mode is calculated using
our computed numbers for the fourth and sixth moments. The results for' the relaxation time are compared
with those of other authors as well as with the experimental observations. It is concluded that the approach of
Machida and Murase is comparatively adequate and has to be modified in order to get a better wave-number
dependence of the relaxation time.

I. INTRODUCTION

In an earlier paper, ' we derived explicit expres-
sions for the sixth frequency moments of both the
longitudinal and transverse current correlation
functions for a classical system of particles in-
teracting through a two-body potential. The re-
sults for the low-order moments (up to the fourth)
were previously known. ' But until now only the
long-wavelength limit of the fourth moment was
possible to estimate. ' For general wave vectors,
it was not possible to compute the expressions of
the fourth and sixth frequency moments. This is
because these moments involve multiple integra-
tions, the numerical evaluation of which is very
difficult and expensive. However, in the long-
wavelength limit, the expressions for these mo-
ments become simplified and Forster et al.' could
then perform all except one angular integration in-
volved in the three-body integrals of the fourth
moments.

Another difficulty in estimating these moments
is the lack of experimental information about the
triplet and quadruplet correlation functions. From
the last few years, a considerable effort is being
made to get an information about the triplet cor-
relation function in simple liquids. The measure-
ment of pressure dependence of g, (x) makes it pos-
sible to test different expansions for g, (r, r ) but
its direct determination is not possible in this
way. 4 ' Although in principle some molecular
dynamics and Monte Carlo calculations about g,
do exist in the literature, ' ' the data are not suf-

' ficient enough to be used in the above mentioned
multiple integrals. To our knowledge, no attempt
has been made so far to understand the behavior
of quadruplet correlations.

In the past, some authors have included the
higher-order moments in their theoretical mod-
els" " in order to see their effects. But in view
of the above mentioned difficulties, they have been
determining these moments either through some
other physical property of the system"" or in a
very approximate manner. ""We estimated these
higher-order moments in paper II of this series'4
using approximate theoretical models" "of the
spectral function of longitudinal current correla-
tion function.

In this paper, we have been able to integrate
exactly all except one of the angular integrations
involved in the three-body integrals of both the
fourth and sixth moments for all momentum trans-
fers. For this, we made use of a symmetric
property of the triplet correlation function. " How-
ever, it was not possible for us to perform an
exact analytical calculation of the multiple integrals
associated with the four-body contributions of the
sixth moment. Therefore, we have evaluated these
four-body contributions by using a low-order de-
coupling approximation discussed by Machida and
Murase (MM)." These results are presented in
Sec. 2. To achieve a uniform presentation, we
have described some steps of calculation and the
notation used in the appendices. Results for the
self parts of the sixth frequency moments of the
current correlations and the sixth frequency mo-
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ment of the velocity auto-correlation function ob-
tained after carrying out angular integrations are
also given in Appendix C.

In Sec. 3, we give some simplified expressions
for the sixth moments which are applicable in the
long- wavelength limit. The long- wavelength limit
results for the fourth moments are not included
here because these have already been given by
Forster et al. ' and our results reduce to their
expressions in this limit.

In Sec. 4, we present the results of our nu-
merical calculations for the fourth and sixth fre-
quency moments of liquid argon for momentum
transfers in the range 0-5 A '. Our numerical
calculations correspond to a temperature of
86.136'K and density 0.021 53 x 10'» atoms/cm',
which is close to the triple point of argon. There-
fore, we feel that our results can also be used in

analyzing the experimental data on liquid argon.
Our own motivation of performing these calcu-

lations was to estimate the Maxwell relaxation
time for the longitudinal mode in liquid argon, an

approximate microscopic expression for which
has been derived by MM. This expression in-
volves the moments of the longitudinal current
correlation function up to the sixth. Using the
numerical results for the various moments de-
scribed above, we calculated the relaxation time

from the expression of MM. These results are
discussed and compared with other possible esti-
mates" ""in Sec. 4. It is found that the present
results are different from the original estimates
of MM are in improvement. A summary and

conclusions are given in Sec. 5.

II. EXPRESSIONS FOR SUM RULES

We define the nth frequency moment of the spec-
tral function of the current correlation function as

(+n ) Itl, t+QI), t

g=2

where the subscripts l and t denote, respectively,
the longitudinal and transverse current. E„"de-
notes the kinetic part. I„", , I„',', . . .etc. represent
the contributions due to static pair and triplet cor-
relation functions, respectively. Explicit expres-
sions for both ((d»t t) and (~'t t) are given in Refs.
3 and i.

gfe now describe the results obtained after per-
forming the various possible angular integrations
involved in the expressions for the fourth and

sixth moments. It is trivial to carry out the an-
gular integrations involved in two-body terms,
i.e. , I„','. We, therefore, state here only the re-
sults.

I,', = ( r4tttkT/3m')
PP

drr'g2(r)(15q'V»+ 18q[3j,W3+ (j, —2J2)W»]+ (2/ksT)[3W,'(1 —jo)+ V, (1 —3e,)]j, (2a)

I', = (2 ntktT/Sm')
40

OO

dry'g2(t')[29q'V»+ 18qj,(W»+ 5W,)+ (6 /k~ T)( SW', +V,)(1 jo)] —2I», ,

'g, 50 'V -3V, + —— 2V, +CATV, +3 W',

x 3j,(W»+ t W,}+J,(6W, —6xW» —SW» —t'W, )+j2 1 —,, (3W» —xW»)
8

+35q2 j,V, —J', (V, +2W2Wt)- j,W2
qr

+72q[ j~W, V»+ (j, —282)(W»W2+ W»W~+ 2W W )]+
B

x ((-),)(W,'+66 1'6",)+(-', — )[6*, 66+(W6,'+6666(W', +t'+66W6W)] ),
(Sa)

I»t, =(4ttnksT/m') Chx'g, (t)f(q'k~T)(-41V, /5+39(j, (W, +4W3/r)+8, [W, +2W»+2(W» —W )/t']]3)
0

+ 5q (4W~(T+ jo}+4V~('1+38t)/3+ V»[SWt(l+ jo)+ W2(1+38~)+ 22q ksT]}

+ 8q j,(23W, W, + 9P,(r, r))+ (4/k~T)(1 —j,)(P,(r, P)+ Sk~TP, (r, r))] —~ I'„.
(Sb)
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The various symbols used have their usual mean-
ings and the notation used has been explained in
Appendix A.

The angular integrations involved in terms like
I„", are very tedious to perform and require much
more complicated and lengthy algebra. There-
fore, we give here few relevant steps which can
help as a guideline to the readers.

The triplet correlation function g,(r, r') is a
function of the magnitudes of r and r' and p, the
cosine of the angle between r and r'. Therefore,
it can be expanded in terms of spherical harmonics
1;„(8,g) in the following way,

oo l

g, (r, r')=Q P -" g"'(r, r')
g=0 m=-l

x l;*.(8', C') l,.(,8&), (4)

where (8, g) and (8', ('}are the polar angles of r
and r', respectively. The coefficients g'" can be
obtained from the relation

~+1
g"'(r, r') = dP P, (P)g,(r, r') .

"-1

Here P, (P) is a Legendre polynomial of order L

The tables for Legendre polynomials as well as
spherical harmonics can be found in several
standard text books. " Finally we use the well-
known orthogonality relation

(i.e. , second term of I,'„Ref. 3) is difficult to
handle in the present form. For this term, there
is no use of expanding g, (r, r') in terms of spheri-
cal harmonics because in cos [(l.(r —r')], the
angle between q and both r and r' appears. But it
is possible to get rid of this difficulty with the help
of a symmetric property of the triplet correlation
function" as described below.

For (l along x axis, the expression (Vb) can be
written as

d r d r' g,(r, r') cos [q(x —x')]

x«„.(r )U..(r'), (Vc)

x cos(qx") U„( ir" +r'~) U„,(r'). (Vd)

In this equation, we replace r" by r, x' by —x' and
use the following symmetric property of the triplet
correlation function"

g, (r, r') =g,(r —r', —r'), (8)

where U„(r ) = 8'Q(r)/exsr o, d.enotes the Carte-
sian components and summation over doubly occur-
ring indices is implied. Using the transformation
r" =r —r' for r, E(l. (Vc) becomes

" d r" d r'g, (r"+ r', r')

~&0

dg d8 sin(8)Y,*, ,(8, $)l", (8, $) = 6«, 6
&0

and obtain

This helps us to reduce the dimensionality of the
integrals involved in I„",' from six to three. It is
important to note that with this procedure, the
terms like

t d r d r' g, (r, r') (1—2 cos((l r))

I= J( r sFdx's (r, x')sos(sx)

&& U„(
~

r —r'
~
)U„(r') . (Ve)

%e have thus transfered the angle of r and r' from
cos[q(x- x')] to the derivative of potential. Now

we can define a new function

~(q V)((l ~ V')(V V')y(r)y(r') (Va) (9}

d r d r' g, (r, r') (cos (l (r —r'}]

x (q +)(q +')(+ '+')4(r)4(r') (Vb)

(first and third terms of I,'„Ref. 3) can be inte-
grated in a straightforward manner using Eqs.
(4)-(6). However, the term like

which is a function of the cosine of the angle be-
tween r and r', and can easily be expanded in
terms of spherical harmonics.

Proceeding in a manner described above and
after same lengthy algebra we obtain the following
results:

I4, = (87('n'/Bm') dr dr' r 'r"
0 0 1

x dpg, (r, r'}(p'W»+2W»+3W»-6[8, ( p'W»+ W»)+(8, (8'+ J)w»+ j,W»]
~1

+ 3 [ P,W,' W,"(8,Pr —(82 P'+ J,)r']/r"
+ W,'W [8,r2(r 2Pr')+ (8,—P'+ J,)r"]/r"'
+(8, p'+J, )w,'w + j,w;w,"]), (10a)
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&0 oo t-1

I~, = (4v'n'/m ) dhdh' h'h'' dpg, (r, r')[(1 —2j )( p'W„+ W, + W„+3W„)
0 . ~-a

+j,( P', W,'W,"+3W,'W f + W,'W,"+W,'W,")] (10b)

OO 1

I,', = (6w'n'/m') dh dh' h'h" d p g, (r, r')
0 0 . 1

x [(@AT)[7q P4(r, r', p)+ 3P,(r, r', p)] + 6P6(h, h', p) —P7(h, h', p)

+ 6(@RENT)[Q,(q, r, r', p)+ Q, (q, r, r', p) —Q, (q, r, r', p) —Q,(q, r, r', p)]
—3(k~T)[2Q, (q, r, r', p)+ Q, (q, r, r', p)+ Q, (q, r, r', p)]

—4[Q,(q, r, r', p) —Q„(q, r, r', p)] —6Q, (q, r, r', p)+ Q„(q, r, r', p)]. ,

(1la)

oo

I,', = (4w'n'/m') dh dh'h'h'~ dP g,(r, r')((5q'k~T/3)(75W„+ 50W„+ (3+ I 6P2) W„)+2(qy T)
0 0

(»,(r r' p)(6j.+ pjl)+ W„(6pjl+ 51p'j, 5j,)—
3j,[ p,P,(r", r', p)+ 2 p p, W,'W;] f

+3(@AT)[(1—2jo)P, (r, r', p) —joP,(r", r', p)]+ 2(3 3jo —2j,')

&&P,(r, r', p)+4j,P,(r", r', p)+3(j, —1)P,(r, r', p)) —,'I,', . —

(11b)
Here r = r —r' and the other quantities are described in Appendix A (see also Ref. 24).

Within the scheme described above, it could not become possible to integrate the angles involved in the
integrals of the terms I,'O'. In this case, the symmetric property of the quadruplet correlation function";
namely

g,(r, r', r")= g~(- r, r' —r, r" —r ) (12)

again helps to transfer the relative angles of r, r' and r" from the cosine arguments to the potential argu-
ments. But g, being a function of p, p„and p, (relative angles of r, r', and r", defined in Appendix A),
when expanded contains six spherical harmonics, which can be seen to be of no help in carrying out the
angular integrations of I~'. Therefore, we approximated these terms in a way similar to MM and obtained

I' =((4wn/m} dh h g, (h)[(1—j,)W, + (3 —8,)W, ]p (13a)

dhh'g, (h)[(1-j,)W, + (-.' —Z, )W,]]'. (13b)
0

It is interesting to note that the right-hand sides of Eqs. (13a) and (13b) are, respectively, the cubes of
potential parts of the second frequency moments of longitudinal- and transverse-current correlation func-
tions.

For the sake of completeness, we also integrated the angles-involved in the expressions for (~,',) and

(e, ,) and the sixth frequency moment of the velocity autocorrelation function. These results are given in
Appendix C.

III. RESULTS IN THE LONG WAVELENGTH LIMIT

In the limit of long wavelengths, the expressions obtained in the previous section become simplified.
The long-wavelength limit results for the fourth moments have. already been given by Forster et at. ' We
wish to point out that the q -0 limit of our expressions for I~~", (Eqs. 10a and 10b) may at first look some-
what different from the results of Forster et al. But it is identical. to their results as shown in Appendix
B. Therefore, we state here the long-wavelength limit results for the sixth moments only.
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lim Ie', &uo'= (8vn/15m') drr' g, (r)(27(ksT) V3+ 35(25W2+ 7V, + 2V, )
q~p &p

+ 36r (llW, W, + 15W3W, + 3W4W2+ 3W4W, )+ (r /ksT)

x (5W3+ 3(W', V, + 3W', W )+ Sk~T [10W2+ 3(W24+ 9W2+ 6W, W,)])),

and

00

lim I,', &u,
' = (8v n/m')

q~p
dr r'g, (r)(12ksTV, /5+ 5(16W', + 16V,/3+ V4)+ 4r [23W, W, + 9P,(r, r )]/3

+ (r'/SksT)[P, (r, r )+ 3ksTP, (r, r )]j——,
' limI,',e,',

q~p
(14b)

where ~O2=q'ksT/m.
In the q -0 limit, the expressions for I~,' can be written copcisely as

lim I83vo' = (4v 'n'/15m') dr dr' r 'r"
q~p Mp

d pg, (r, r')[210P,(r, r', p)

+ 12(15(W„+W„/5)(5r+ 2Pr')+ W„[22Pr'+ 5r (2+ 9P')]+ P W~,[15pr+ 2r'(1+ 2 p')]]
+ (2r/k T)(W,'(5W', + 3 V,)(r+ 4pr')+ W,'(W', [12pr'+ r(1+ 2p )]+ p V,[3pr+ 4r'(1+ 2p')]])

+ «r'[ W„p'(1+ 2 p')+ W»(9+ 28 p')+ 2 W„(l+ 8p')]
—(1/k T)(5r W, + W [3r' +r (1+2p )]

' -.+( p./r")W-. [3(pr' r") «-'r"( p-, +2p p,)- «"r"p,]
+ p p,r'W», (5p, —2p p, )+ (r'/r"')W», [Sp;'r"'+ r"(I —p')])], (15a)

oo 1
lim I6, &u,

'= (4v'n'/m') drdr' r'r" dp g, (r, r')(5[75W»+ 50W»+ (3+ 16p') W»]/3
q~p p J y

+ 2P,(r, r', p)(5r+ 2 pr') + 2W»[5r (3p' —1/3)+ 4 pr']+ rr' pP, (r, r', p)

+ (r/Gk~T) [2(r+4r'p)P, (r, r', p) —3rP, (r, r', p)]) ——,
' lim I8',~,'.

It may be noted from our exact expressions for
the sixth moments' that in the long-wavelength
limit, the expressions for I~'/q' should also be
finite, but Etls. (13a) and (13b) contribute zero in
this limit. It can be considered as a drawback
of the approximation used in writing Eqs. (13a)and
(13b).

The results obtained in this section as wel1. as in
the previous section have been computed numeri-
cally for a liquid-argon-like system. These nu-
merical results are presented below.

IV. NUMERICAL CALCULATIONS AND RESULTS

Here we describe the numerical evaluation of
(~', ,)u&,', (~', ,)&o,

' and the longitudinal relaxation
time v, (q) for the momentum transfers in the range
0-5 A '. %'e have computed the expressions for
the moments described in the last two sections
for a liquid-argon-like system at T =86;136'K
and n=0.021 53x 10'4 atoms/cm'. We selected

this temperature and density because all the neu-.
tron scattering measurements" and the molecular
dynamics calculations " for the current cor-
relations in liquid argon are available correspond-
ing to these conditions. 'Therefore, our results
can directly be used in interpreting the experimen-
tal data. In these computations, a knowledge of
three-particle correlation function is needed for
which we have used the well-known Kirkwood
superposition approximation. Therefore, the ac-
curacy of our results is limited by the validity
of superposition approximation and the approxi-
mation which we have used for I,",'. For g, (r), we
have used the results obtained by deerlet" from
computer simulation of a argon-like-system using
a (6-12) i,ennard-Jones potential.

In all the numerical integrations, we have used
the method of Gaussian quadratures and the re-
sults are consistent up to at least four significant
figures. In Figs. 1(a) and l(b), we have plotted
(&',)&u,

' and (~',)~,', respectively. To have an im-
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the behavior of which is already known. It may
be noted that both (&o', )&u,

' and (m', )v,' show a'first
maximum at momentum transfer where the static
structure factor shows a sharp increase. Also
the maxima and minima of these two moments
are almost in phase with the minima and maxima
of the static structure factor. Since it is always
difficult to read the numbers from the published
graphs, we have also tabulated our results in
Table I for future applications.

Having calculated the moments, we use these
results to estimate the Marvell relaxation time
for the longitudinal mode. MM have derived an
approximate microscopic expression for the lon-
gitudinal relaxation time" by relating it to the
second-order memory function in the continued
fraction expansion of the longitudinal current cor-
relation function. It is given by

7 '(q) = 5,(n/25, )'

where 6, and 6, are expressible in terms of the

moments of the longitudinal current correlation
function up to the sixth. Explicit expressions for
53 and 6, are given by Copl ey and Loves ey."MM
have instead used the abbreviation 4' and 0 ' for
5, and 6,. In their paper, MM estimated 5, and

5, by using a decoupling approximation for the
higher-order static correlation functions which
are involved in the expressions for the frequency
moments (see Ref. 31). But we have now estimated
w, '(q) using our computed numbers for the mo-
ments discussed above. For the static structure
factor, we have used the results obtained by Yar-
nell et a/. 32 The results for v 6, are displayed
in Fig. 3. Clearly W5, is not a constant and has
a stronger wave-number dependence which is in
disagreement with the result of MM who find that
W5, is almost constant with a value 2x10" sec '.

In Fig. 4, we have compared our results for
v, '(q) with those of Akcasu and Daniels, "Love-
sey,"and MM. " In this figure, we have also
plotted the results of Howe and Skold" and Aila-

TABLE I. g2(r) and g3(r, r') contributions to the fourth and sixth frequency moments (in
units of uox10 sec and eo&105 sec+) of the longitudinal- and transverse-current correla-
tion functions as a function of momentum transfer. The inverse of the Maxwell relaxation
time for the longitudinal mode is also given here.

0.0
0.1
0.2
0.3
0 4
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

4.4
4.6
4.8
5.0

I42

15.366
15.287
15.085
14.753
14.299
13.730
13.057
12.291
11.445
10.536
9.582
7.616
5.722
4.066
2.776
1.910
1.451
1.314
1.376
1.508
1.607
1.621
1.545
1.410
1.265
1.152
1.093
1.086
1.112
1.144
1.160

—6.527
—6.196
-5.169
—3.571
-1.615

0.437
2.305
3.749
4.620
4.887
4.625
3.150
1.531
0.535
0.157
O.Q78
0.082
0.127
0.205
0.267
0.265
0.206
0.135
0.086
0.064
0.059
0.064
0.074
0.082
0.081
0.070

5.296
5.277
5.230
5.154
5.048
4.916
4.760
4.583
4.387
4.177
3.956
3.494
3.030
2.590
2.191
1.848
1.567
1.348
1.183
1.064
0.979
0.918
0.870
0.830
0.792
0.757
0.723
0.693
0.666
0.644
0.626

-2.249
-2.185
-2.042
—1.797
-1.483
-1.126
-0.755
-0.395
-0.069

0.208
0.425
0.679
0.731
0.660
0.541
0.421
0.321
0.247
0.196
0.164
0.146
O. 136
0.127
0.117
0.105
0.093
0.082
0.072
0.065
0.060
0.056

6.158
6.136
6.072
5.966
5.820
5.635
5.4f 5
5.163
4.882
4.577
4.252
3.566
2.868
2.206
1.625
1.165
0.845
0.668
0.617
0.658
0.747
0.842
0.911
0.938
0.925
0.890
0.855
0.839
0.854
0.901
0.968

-0.393
-0.430
-0.287
—0.057

0.233
0.552
0.862
1.127
1.318
f.418
1.422
1.200
0.829
0.491
0.271
0.157
0.104
0.090
0.108
0.146
0.180
0.189
0.175
0.149
0.125
0.109
0.101
0.102
0.109
0.118
0.123

7.334
7.314
7.253
7.154
7.016
6.842
6.635
6.396
6.131
5.842
5.533
4.875
4.197
3.536
2.932
2.414
2.Q04
1.707
1.518
1.417
1.376
1.368
1.369
1.363
1.344
1.318
1.293
1.279
1.282,
1.304
1.341

-0.344
-0.292
-0.266
-0.222
—0.163
-0.095

. -0.022
0.052
0.123
0.187
0.2/2
0.319
0.353
0.352
0.329
0.296
0.262
0.231
0.207
0.190
0.180
O. 175
0.173
0.171
0.168
0.165
0.161
0.157
0.153
0.150
0.148

0.470
0.466
0.482
0.508
0.543
0.588
0.644
0.691
0.747
0.814
0.882
0.943
1.041
1.177
1.247
1.209
1.084
1.010
1.060
1.175
1.278
1.372
1.465
1.543
1.555
1.504
1.464
1.472
1.537
1.621
1.710
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wadi et al."who treated ~I'(q) as a free parameter
and determined through the least-square fitting
of the experimental data on the longitudinal cur-
rent correlations in liquid argon. Rowe and Skold
fitted the expression for the spectral function of
the longitudinal current correlation function to the
neutron scattering data of Skold et al."on liquid
argon. Ailawadi et al. also fitted the same ex-
pression but to the molecular dynamics data of
Rahman. " The results of Rowe and Skold and
Ailawadi et al. are shown by crosses and solid
circles, respectively. It can be seen that the pre-
sent results are always somewhat higher than the
experimental results. However, the maxima and
minima of the results of Rowe and Skold" can be
corisidered as being exactly reproduced and in
this respect the present results are definitely
in improvement over the results of I,ovesey' and
Akcasu and Daniels. " Furthermore, the present
results are different from the results of MM.
This difference can be partially ascribed to our
use of superposition approximation for g, which,

of course, is comparatively better than the de-
coupling approximation used by MM for estimating
three-body integrals. We believe that the reason
of our results being consistently above the experi-
mental results lies in the nature of the approxi-
mate theory of MM itself and the low-order ap-
proximations used for g, and g4. Now we do not
know how to estimate the errors involved in our
calculations due to the mentioned apyroximations.
It is, however, known that the superposition ap-

. proximation for g, generally overestimates the

magnitude of three-body correlations in liquids4 33

and information about g, is not at all available.
Our results are, therefore, subject to these ap-
proximations. But we feel that within this limita-
tion, the present results can still be improved if
the approach of MM is modified in a suitable man-
ner. This is done successfully in the accompany-
ing paper'4 where we obtain a very good agreement
with the experimental results.

V. SUMMARY AND CONCLUSIONS

In this paper, we have successfully performed
all except one of the angular integrations associa-
ted with the three-body integrals of both the fourth
and sixth frequency moments of ihe current cor-
relation functions. Qur expressions are applicable
for both the q-0 limit as well as the general wave
vector. The complicated nature of g, has not al-
lowed us to integrate analytically the angles con-
tained in the four-body integrals of the sixth mo-
ments. 'Therefore, we have evaluated these con-
tributions by using the decoupling approximation
discussed by MM. This approximation has the
merit of expressing four-body contributions in
terms of pair correlation functions. But it has
also a drawback that it gives a zero contribution
in the long-wavelength limit which is wrong.

We have also computed our above mentioned
expressions for a liquid-argon-like system using
Kirkwood's superposition approximation for the
triplet-correlation function. Since these computa-
tions are time consuming, we have been confined
only to one particular set of density and tempera-
ture which is close to the triple point of argon.
Our results can, therefore, be of use to other
theoretical workers to interpret the experimental
data on current correlation. functions in liquid
argon.

Utilizing the above mentioned approximate re-
sults for various moments in the expression for
v, (q) derived by MM, we estimated the wave-num-
ber dependence of the longitudinal relaxation time
for liquid argon and compared the results with
other existing estimates. In regard to the positions
of maxima and minima of the experimentally
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observed results, the present results are in im-
provement over the other theoretical results. In
the long-wavelength limit, the approximation of
Lovesey gives w, '(0) = 0 resulting in an infinite
answer to the longitudinal viscosity of the liquid
which is incorrect. . 'The approximation of MM and
that of Akcasu and Daniels leads to a finite value
of 2, '(0). But the approximation of Akcasu and
Daniels involves an adjustable parameter. Also,
our results are generally higher in magnitude than
the observed results but the use of correct be-
havior of both g, and g, should further improve
these results. In view of such results, we con-
clude by saying that the approach of MM, together
with our estimated results for the moments, is
comparatively more adequate to understand the
wave-number dependence of the Mmvve1. 1 time and
has to be slightly modified in order to improve
upon the present results. One way to do this is
to look for a more suitable approximation for the
second-order memory function in the continued
fraction expansion of the longitudinal current cor-
relation function. A modification along these lines
is presented in the following paper. "

where 111(r) is the interatomic potential. It is
understood that W, denotes W, (r); W„denotes
W, (r)W, (r'), and W, ,2 denotes W, (r)W&(r')W„(r");
and subscripts i, j, and k can run from 1 to 6.
j„j„andj, are spherical Bessel functions of
the zeroth, first, and second order; their argu-
ment is understood to be qr, i.e., j,=j,(qr), etc.
Also J, =j,/qr and J,=j,/qr

Further unprimed, single-primed and double-
primed quantities are assumed to have arguments
with respect to r, r', and r", respectively. For
example

W, = W, (r); W',. = W, (r') and W 1'= W, (r") . .

We also noted that certain combinations of
spherical Bessel functions and of the derivatives
of potential are appearing frequently in the results
described in Secs. II and III. We, therefore, ab-
breviated these combinations in the following w'ay

V, = W, (W, + 2W, ); V, = W, (W, + 2W,);

V, =5W, +W, +2(5W, +W, )/r; V, =W, +SW, .

And

1 jo 1& 2 1 1' (As)
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A detailed description of the notation used in
this paper is as follows. We define

W, (r)=—;W, (r)=r1 s r) sW(r)

W, (r) = W, (r)/r; W, (r) = ' —2W, (r); (A1)
sw, (r)

( )
&W2(r)

( )
&W4(r)9', r ar ' P, r =

Br

P, ( r, r', p) = p2W42+ 5W2, + W„+ W

P,(r, r', P) = P[P2W44+ 15W„+3(W,4+ W4, )],
P2(r, r', p) = V, (p'W'2 + W', )+W', V4,

P,(r, r', p) = 3(sw»+ 2W»)+ W»(2p'+ 2),

P, (r, r', P) =P(5W„+ 2W„+ P'W /3),

P,( r, r', p) = [W', V,'+ V, (W', + p'W,')]/3,

7( & & ~) (P~1~2 222 t W221 P 1W212+ I 2W122

(A4)

(A5)

(A6)

(A7)

(AB)

(A9)

+ W211+ W112+ W121+ 3W111)/3 (A10)

It may be noted that all these quantities are in-
dependent of q. We now introduce the q-dependent
quantities.

Throughout the paper, we have denoted r' = r —r'.
The variables p, p, and p2 are, respectively, the
cosine of the angles between the vectors r and r',
r and r", and r' and r".

We now give explicit expressions for the various
quantities used in Eqs. (3b), (11), (14b), and (15).

Q, (q, r, r', P) =(3W, +P'W'„)(6j, +Pj ',)+W, (6j, +P'j', )+3PW„(6Pj,+j,'),
Q,(q, r, r', p) = 4W»(3 J', —p J', —Qp2J2) + W41(sp J",- 12J, —5p2J2') + pw42(J2' —12pJ', —3p2J2'),

Q,(q, r, r', P) = P[W„(1lj, 18J,)+ e,P2W«—+ W„(Se,+j,'+ 2P'e,')],
Q,(q, r, r', p) = w, [j,w,"+v', (p'e, +J,)]+ e,w, (w,"+p'v', ),

(All)

(A12)

(A13)

(A14)
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Q (4, ~, ~, P) = w, [j w,'+ w,'(P'e +J )]+ e v (w'+ p'w' )

Q,(q, , r, r', P) = W,"r" '(j,p,'r"'(W 2pp, +W', p, ) +J,(W 2P,[pr' - Spp',r"' —2p,r'r~+ pr" (1. —2P')]

+ W', [6pp',r'r"'+ r"(1+p')(2r+ p,r") —2(r'+ pr")]/r~),

Q, (q, r, r', P) = W,"(j,[SP,W', + p(2pp, + p2)W2]+ 2 J w'(p, + 2pp —5p2p )j,
Q, (Q, r, r', p) =j,w,"p,[pp,'w,'+ (p+ 2p, p, )w,']

+~ w" [w'P'(P —SPP, ) + w,'(P, —4P', p, —3pp, + 2r "P,(1 —p')/r"')],

Q,(g, r, r', P) = W,"Q,[w,'(2P, + 9PP, )+ W'P(P, + 2PP, )]+ SJ',[SW,' (P, —3PP)+ WI(P, PP, 2P2P)]j,
Q„(tl, I', I', P) = W,"'[j,(w', + O'W,')+&,(1 —Sp')W,']+ V,"(W,'(pp, p, j,+ pp, [r'(p' -1)-2pp, r"]/r" j

'+ W'( j P y J [r'2(1 —P ) —2P~r"2]/r»2j }
Q„(a, ~, ~', P) =j,w„,+ e, (w„, + p'w„, + PRW„,)+ (ep'+g, )w„,+ pw„, (pp, e,,p, g)

+PP,W», [e,(2P, —pp, )+J,r'(1 —p')/ r] +W», [e,p', +J,r"(1—p')/r"'] .

(Als)

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

APPENDIX 8

In the long-wavelength limit, the expression (10a) for I,', can be written as

n'(I, +I,)
43 3m 2umI~ = (Bl)

where
OO 00 1

I, = 8m' drdr' r'r" dpg, (r, r')[- (p'W»+ 2W»+3W»)
~ 0 0 1

+ (q'r'/S)[Sp'W„+ SW„+ (2p'+1)W„+ 5W„]} (B2)

gQ Ob 1
8~2 drdrl r2rl2 dpg ( ~ ~l)(p2WtWII+ Wtwtl + WIWII + Swlwll (q r2/10)

0: 0 -1

x(sw,'W('+ (2p'+ 1)W',W,"+[3r'+ r"(2p'+ 1) —6prr']W, 'W,"/r"'

+ [SPr r'(2P'+ 1)]P—,W,'W,"/r "}) (»)

x W, (r')W, ([T —I"[). (B4)

In this equation, we change the variable of integra-
tion from r to r, through the transformation r,
= r- r' and obtain

Jn order to recover the result of Forster et al. ,3

we have to bring out the angle from the potential
arguments in Eq. (BS). We do this with the help
of a transformation and the symmetric property
of g, defined by Eq. (8). This is shown below, but
only for one term of I„say the first one. We de-
note this term by I,' which can alternatively be
written as

I,'= d rd r', g3 r, r' r' ~ (r —r')
r' r -r'

I'= d r, d r'g r, + r', r'

x [(r, r')/r, r']'W, (r')W, (r, ) . (B5)

I' = 8&' drdr'r'x"
2

0 0

1
x . dpg, (r, r')p'W».

'-1,

It may be noted that (B6) directly cancels with
the first term of I,. The same procedure is ap-
plied to the other terms of I,. The resultant ex-
pression for I„when added to I„gives

We now change r' to r', r, to r a-nd use Ecl. (8) of
the text and find that

OO 00 1

lim I~~, q '= (8As'/15m') dr dr'rsr' dP g,(r, r')P(w»(1+2P')+ Sw»+ Sw»+ 5W„}.
0 0 1
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Now with the use of E(l. (Al), it is easy to check that (BV) reduced to the result of Forster et a/. ' In a
similar way, the corresponding expression for the transverse ease ean also be reduced to the result of
Forster et al.

APPENDIX C

In this appendix, we state the results obtained after performing the angular integrations contained in
(~', ,), (&F63,), and C, the sixth fre(luency moment of the velocity autocorrelation function. Explicit ex-
pressions for these three quantities have already been obtained by us in Ref. 1. Within the notation de-
scribed in Appendix A, we find that

C =(16m/3m")f drr'g (r)[RW', + (W, +W)'+3(BnT)(W'+15W,'+6W W )]
0'

00 1
+(8]['n'/m') drdr'r'r" dpg, (r, r')[3(%AT)P, (r, r', p) P,(-r, r', p)+6PB(r, r', p)]

0 p 1

+[(4m/Sm)f drr'g (r)V ]

For writing the last term of this equation, we have used the same approximation as for I,','. But here we
suggest an alternative approximation for the (luadruplet correlation function and assume that (g, ( r, r', r"))
is an angular averaged quadruplet correlation function. With this approximation, the four-body contribu-
tion term of C becomes

(4nn/Sm) ff f'drdr dr r'r'"r"'(g (6 p, r")) {W„,+BW „+37W„, 37W„,),
0 0 0

where

1 1 1

(g4(rs r 3 r )) =(] (dpdPRdPBg4(r) r Sr ) ~

mm]

The results for the self parts of the sixth frequency moments of longitudinal and transverse current
correlation functions are obtained to be

( )=7n(15 m+30 nid 4nBi)+0++(33 /75mr)f mdrr'g, (r)[5(15W,'+SW,*+10WW) —BR TV]
0

+ (66Hz'(u,'/3m ')
oo oo 1

drdr'r'r" de g,(r, r')[6(3W„+ 2W, „)+(2P'+ I)&„],
0 -1

(n', ,)=n'(15n 60m*dr 16B)+C+(Rrn'n'/Sm') f dr 'g, (r)(SOWr', —11W', +30V, +RSV, —435 TV)
0

oo oo 1

+ (40As'(4)o/m') dr dr' r'r" dPgs( r, r') [3W»+ 2g'»+ g»(4+ 3P')/l6] .
. 0 0 -1
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