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Variational calculations of the ground-state energy of hard-sphere, helium-4, Coulomb, and nuclear Yukawa
fluids are carried out. The long-range part v(r p d) and a constant part X at r & d of the bare interaction are
assumed to contribute to the average field. The correlation function f(r) is obtained by miilimizing the two-
body cluster contribution due to the remainder interaction, and the distance d is determined by minimizing
the energy as calculated with the hierarchy of hypernetted-chain-type equations. The convergence of two- and
three-particle distribution functions given by these equations is discussed. The method is shown to be exact in
the low-density limit, and the comparison of the present results with the available exact (standard) results in
the high-density limit (region) verifies its accuracy over the entire density range. It is shown that the
variationally obtained value of d in the high-density Coulomb fluid can be understood with conventional mean-
field theory. A solidification criterion is obtained by studying the energies in liquid and solid phases with the
present f(r). This criterion explains the solidification of the Coulomb, hard-sphere, and helium systems, and
the inability of the nuclear Yukawa system to solidify. The variational method in the form presented here
could be very useful for studying complicated quantum systems.

I. INTRODUCTION

The wave function commonly used in variational
calculations of quantum fluids at zero temperature
has the form

where 4' is the ideal noninteracting fluid wave
function, and f;; describes the correlation between
the particles i and 3 due to their interaction. The
f is varied to minimize the energy. The standard
method'istoapproximate the f by a function of the
interparticle distance &,

& &—- r —r&

choose a suitable form for it,

f =exp(-br '),

(1.2)

(1.3)

for example, calculate the energy expectation value
as a function of the parameters in f (a and b in the
example) and minimize it. The main advantage of
this method is that at least for simple Bose sys-
tems, where the two-body potential & is a simple
function of &, exact Monte Carlo calculationsof an
upper bound are possible. Moreover, in these
systems one expects on the grounds of symmetry
that f is a spherically symmetri'c function of r,
and hence the calculated upper bound could be close
to the true energy provided the chosen algebraic
form of f is adequate.

The main disadvantage is that in many systems
of interest the correlations cannot be described
by a simple function of &. The correlation between
two particles in simple Fermi systems can be

complex and can depend upon the angle 8 between
r and their relative momentum k, even when v is
a function of & only. In the limit 4- 0 the imagi-
nary 0-dependent part of f generates the "back
flow" and contributes to the effective mass of par-
ticles in fluid media. ' Also in some dense sys-
tems of interest, nuclear" and neutron-star'
matter, for example, the v is a complicated opera-
tor containing spin-spin, tensor, spin-orbit, and
other terms. In such systems the f is also ex-
pected to contain significant spin-spin, tensor,
spin-orbit, etc. , correlations. 4

There are two problems involved in developing
a variational theory of such systems: first, too
many parameter's are required to describe an f
that is sufficiently general, and second, the exist-
ing Monte Carlo methods cannot calculate the ener-
gy expectation value with a complex f, though in

principle it may well be possible to develop nu-
merical integration programs to do so.

A plausible scheme to avoid these problems is
suggested in Refs. 4 and 5 (Ref. 5 will henceforth
be called PB). PB calculate the f by analytically
minimizing the two-body cluster contribution with
healing constraints which require the f to be unity
beyond a certain distance d. This f contains the
back flow2 and other components4 dictated by the
two-body interaction, and is described by a single
parameter d which is its range. The d is obtained
by minimizing E(d). In many cases E(d&2ro),
where r, is the unit radius, 4n/3r, ' =p ' and p
the density, simply becomes insensitive to d. Also
PB choose to use the hierarchy of hypernetted
chain (1.4) equations HNC and HNC/4 to calculate
the energy. The diagrammatic techniques under-
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lying these equations are particularly suitable for
calculating E when f is complicated. '

In the present work we study some simple Bose
systems [hard sphere (HS), Coulomb (Cl ), heli-
um-4 (HF}, and nuclear Yukawa (NY) j with the
methods developed by PB. By nuclear Yukawa we
mean a system of bosons having the mass of a
nucleon and interacting with a Yukawa potential
2%ce '"/r (r in fm}. In See. II we discuss the
calculation of f and show that the healing con-
straint approximately simulates the variation of
the many-body cluster contributions. The method
is also shown to be exact in the low-density limit
wherever applicable.

The convergence between HNC and HNC/4, the
lowest two orders in the elementary diagram ex-
pansion due to van Leeuwen et al. ,' is discussed in
Sec. III. General arguments which suggest that
the HNC summation of diagrams. should be adequate
in most cases of interest are given. Earlier stu-
dies, ' in which the energy was calculated only from
the two-particle distribution function using the
Jackson-Feenberg (JF) identity, ' indicated that the
HNC integral equation is not sufficiently accurate
to treat dense systems. Much of the accuracy
realized in the present scheme can be attributed
to the method of calculating the energy as S'+U,
where 8' depends upon the two-particle distribu-
tion function and includes the potential plus a part
of the kinetic energy coming from terms con-
taining V, f,~. The kinetic energy contribution U

contains &,f,& &,f;„terms, and depends upon the
three-particle distribution function. In Sec. III we
suggest an explanation of earlier results' with
HNC equations by showing that the U is calculated
with an erroneous three-body distribution function
when the JF identity is used with HNC two-body
distribution function.

The present results are compared with the avail-
able low-density expansions for HS and CL, high-
density expansion for CL, and the Monte Carlo
results for high density HS and CL systems in Sec.
IV. These comparisons verify the assumptions in
the present method. It is found that the healing
distance d(p), which minimizes the high-density
CL energy, corresponds to the range of effective
interaction estimated from the static dielectric
constant c(q, 0). In Sec. V, we suggest that the PB
correlation functions could be useful for studying
the solidification of these liquids. Arguments
which suggest that solidification should occur when
the three-body kinetic energy U in liquids becomes
large compared to the localization energy in solids
are presented. It is shown that one can qualitative-
ly understand the solidification of CL at low den-
sity, that of HS and HF at high density, and the
inability of NY to solidify' with this criterion.

II. CALCULATION OF f
PB assumes that the long-range part v(r ~ d) o&

the two-body interaction contributes only to the
average one-body potential. Since it does not in-
duce significant correlations it should be omitted
from the calculation of f. A minimization of the
two-body cluster contribution (C,) to the energy
with constraint f (r & d) =1 gives the variational
equation:

P f A g 2 A Af ——V2f+vf 4''dr=0 (2.1)

which gives the equation for f:
-(5'/m) V'f +vf =0. (2.2)

-( g' m/)V'f+vf =Xf . (2.4)

The ~ can now be obtained by requiring the deriva-
tive of f to be continuous at d. Even though the
C, obtained with the continuous f is higher than
that with the discontinuous f, the total energy,
which is a sum of C, and the many-body-cluster
contributions (MBCC), obtained with f is lower
than that with f. The differences between the
energies given by f and f could be quite small.
For example, hard spheres of radius a at density
p =0.2a ' and d' =2&, give

C,(f) =2.38 &C2(f) =2.62, (2.5)

E(f) =8.008 Z(f) =5.99. (2.8)

The energies are in units of h'/ma', and the total
E is calculated with the HNC/4 method as dis-
cussed in Sec. III.

Equation (2.4}can be obtained variationally with-
out average field arguments by assuming that the
variation of the MBCC is proportional to that of
the integral of 1-f'.

d

5 (MBCC) ~ 5 (1 —f')4 pr ' dr .
0

(2.'7)

The MBCC involve integrals containing powers of
1 —f', and thus it is plausible that MBCC is a

The solution of Eq. (2.2) should be normalized so
that f (d) =1, and generally the derivative of f is
discontinuous at d.

PB eliminates the unphysical discontinuity at d
by assuming that a part of the interaction at «d
must also contribute to the average field. It is
approxivnated by a constant ~ and subtracted from
the var iational Eq. (2.1). Solving

p
" S~f ——Vf+(u-X)f)4wr dr=D (2 3)

2 ng

gives a Schr561nger-type equation.
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smooth function of the integral of 1 —f' .Over a
limited region in the neighborhood of the f, one
may approximate this function by a straight line
whose slope is the constant of proportionality in
(2.7). The boundary condition on f determines
this slope by assuming that the variation of MBCC
makes f heal at r =d. The unknown d (or &) is
determined variationally by minimizing E(d).

The above argument, though plausible, cannot be
completely true because variations in f which
leave the integral over 1 —f' invariant do not
necessarily leave MBCC invariant. Hence we have
attempted to test the validity of Eg. (2.4}by as-
suming a more general shape for the contribution
of the interaction at «d to the average fieM. It
is taken as

F(r) = f'(r) —1. (3.5)

Each term in the expansion can be represented by
a diagram" in which a dashed line represents the
function E. The diagrams are classified as com-
posite, nodal, and elementary'; the integral equa-
tion

S'
2U=- p g.,(r», r») ~ d r»d rx2m ~X2 ~XS

(3.4)

The g(r) and g, (F», r„)are two- and three-particle
distribution functions which can be expanded in
powers of E(r},

(r & d. ) = A. (1 + A r), (2.8)

the ~0 is obtained from the boundary condition,
while A is an additional variational parameter.
Generally at values of d at which E(p, d) has a
minimum it is found that E(p, d, A) has a very
shallow minimum near A =0 and thus E(p, d, A =0)
either equals or is extremely close to the energy
at the minimum.

It can be easily shown that the equations g „=g(r „)—= g(lr —r„l). (3.7)

P

=p g, —1 —ln, ~ (g„, —1}d'r, (3.6)
~1

sums all composite and nodal diagrams formed
from the elementary diagrams included in E„„.
Following PB we denote the variables of the func-
tion by subscripts, thus

s E(d)
Bd

(2.9)
In the approximation E „=0we get the familiar
HNC (hypernetted chain) integral equation which
sums the diagrams illustrated in Fig. 1. In this

sink(r- a}
sink(d —a)

(2.10}

and (2.4) give the exact energy in the low-density
limit. I et v have a finite range R and a scattering
length a. ln the limit d& r» a the solution of (2.4)
becomes

I

m n m n

2 l
V-—t
I I
I I

m n

X = (I '/m) k' = (k '/m) 3a/d' .
At low densities,

a«d«~,
the MBCC may be neglected to obtain

(2.11)

(2.12)

l.2

E(p- 0) = (k '/m)2 spa, (2.13)

which is the well-known low-density limit. '0 This
low-density limit may also be obtained from the

f [Eq. (2.2)j; the discontinuity vanishes in the
limit d'- ~.

l.3

g 3,HNC, l23
3

~ ~
I 2

gHNC mn ~ ~ +,mn m n m n

I 2

III. CALCULATION OF ENERGY

The energy expectation value can be written

E=W+U,

gT= — p X g K 4~2',
V(r&d) =A. , V(r&d) =v(r),

(3.1)

(3.2)

(3.3)

FIG. 1. Diagrams 1.1 and 1.2, respectively, define
the sum of all single chain and hypernetted chain dia-
grams, while diagrams 1.3 and 1.4 give the gHNc and

g3 HNC
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approximation g, is merely given by superposition

g3 eHNCe123 ~HNCe12 gHNCo23 gHNG31 -& (3.6)

as illustrated in Fig. 1 diagram 1.4.
To test the validity of the HNC approximation,

PB solved Eq. {3.6) in "HNC/4" approximation
with the E „given by the first elementary diagram
(the four-body diagram 2.1 shown in Fig. 2},

Epe, mn
2~ p t +ml Fmm +nl +ri2 +12 ). 2 (3.9)

~mn 2~ Gln1Gtn2-Gn1Gn2 12 d 1 ~ (3.10)

gHNCa kg (3.11)

The function G;& is represented by a double line,
and its diagrammatic equivalence is shown in Fig.
2 diagram 2.3. The diagram 2.4 contains the sum

However, using arguments presented in Sec. IV
of PB it can be shown that many elementary dia-
grams (2.2, for example} are comparable to 2.1.
Thus the PB choice of F. is not very satisfactory.
In the present work E in the HNC/4 equation is
taken to be

of 2.1 and all other elementary diagrams that can
be comparable to 2.1.

The simplest type of diagrams contained in the
difference &g,

~HNC/4 g HNC (3.12)

are shown i.n Fig. 2 diagrams 2.5-2."l. The sim
plest type of diagrams omitted in HNC/4 have
structures of the type in diagrams 2.8-2.9. Dia-
grams of type 2.8 are simply those of type 2.5 with
an additional chain linking particles 1 and 2. Sum-
ming all possible chains linking 1 and 2 gives the
function G», and thus integrals represented by
diagrams 2.8 have an extra G» compared to those
represented by diagrams 2.5. Since generally
G «1 we can expect the contributions of diagram
2.8 to be smaller than those of diagram 2.5. Such
arguments suggest that the diagrams neglected by
HNC/4 with E „given by (3.10) are smaller than
those contributing to ~g, (for example, diagrams
2.9 are less than diagrams 2.7, etc.).

%e now give plausibility arguments which sug-
gest that in most cases of interest we should not
expect &g to be more than a few percent of gHNc.
The Fourier transform of the HNC equation gives

L(k) =p'G'(k)/[I +pG(k)], (3.13)
I 2

m n

I 2
) W

I 'o3

fA n

where L(k) and G(k) are Fourier transform of
ln(g/f') and G(&), respectively. It is necessary
that

2.I 2.2
pG(k) & -1 (s.14)

2.3

for Eq. (3.13) to have a solution. The above equa-
tion at k =0 imposes a lower bound on the volume
integral of G.

4))'p G(r)r 2 dr & -1 .
0

(3.15)

2.5

2.4

2.7

Since g(&) is positive definite G(&)~-1. When
the potential contains a strong repulsive core
G(r& so) =-1 and G(&&&,) fluctuates around zero.
Assuming that the fluctuating part gives negligible
contribution we could estimate E „(&0) with an
approximate G,

G(r & r, ) =-1, G(r & ~,) =0, (3.16)

2.8 2,9

FIG. 2. Elementary diagrams that have a single cou-
pling between two single chains are shown in diagrams
2.1 and 2.2, while diagram 2.3 gives the diagrammatic
equivalence of function G. Diagram 2.4 gives the sum of
all diagrams in which two hypernetted chains linking m
and& are coupled by either anF or a HNC or both. Dia-
grams of type 2.5-2.7 contribute to the difference &g,
while those of type 2.8-2.9 are omitted in gHNc ~4.

which corresponds to the maximum permissible
hole.

E„„(~)&,p'(I G,G„, d'~) =-,'( —,', )'=-0.05.

(s.17)
The estimated E „{&,) in this case is around 0.025.
The E „(&=0)could be larger (=0.25) but it is in-
consequential because f'(&=0) is practically zero.

As another extreme case (high-density Coulomb
gas, for example) one could estimate E„„with a
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long range G. Again the magnitude of 6 must be
smaller than (r,/D)' if D is its range (neglecting
the fluctuating part). In such cases the 8 „ is very
small, for example, if D=2ro, E „(0)&10 '. A
study of &g diagrams reveals that when Z „(r)«1
&g(r)=E „(r)f'(r) and thus &g(r) may be expected
to be a few percent of g»cin most cases of in-
terest.

The contribution of the four-body elementary
diagram 2.1 by itself can be larger because the
volume integral of F does not have a lower bound
of type Eq. (3.15). Thus the contribution of dia-
gram 2.1 is not a good criterion to examine the ac-
curacy of gHNc. Recently Smith" has approximately
studied the convergence between HNC, HNC/4,
and HNC/5 using four- and five-body elementary
diagrams with both I' and G functions. The expan-
s'on using elementary diagrams calculated with
G's has better convergence than that with F func-
tions.

We note that for the exact distribution function,
correct to terms of order 1/0, where 0 is the
volume of the system, Eq. (3.15} is an equality.
However in obtaining an irreducible cluster ex-
pansion terms of order 1/0 are neglected, and
hence even if all the diagrams were to be summed

Eq. (3.15) may not become an equality. For exam-
ple when f =1 all diagrams give zero contribution,
g(r) =1 and G(r) =0. This g satisfies Eq. (3.15) as
an inequality, but not as an equality. In the litera-
ture the G has been at times required to satisfy
Eq. (3.15) as an equality, which we believe could
be erroneous while working with irreducible clus-
ter expansions.

The g, consistent with approximations in HNC/4
is given by

g3 ~HNC/4 s123 gHNC/4 I12 ~HNC/4 e23 gHNC/4 ~31

(3.20)

(3.21)

The difference between E» and 8' is obtained as

V'f . , (V f .)'
'F Y 2m f „+ f'

p I ' 2(V f P
gmn

v g)d„'r (3.22)
mn

Now the g „can be written as f'„„(1+diagram con-
tributions). By letting the V„ in the second term
operate on the f'„ in g „we get a term that exactly
cancels the first term in (3.22). Thus

E,„—W =-— f „V f „~V (diagramp
2 2m

contributions}.

(3.23)

In principle E,F —K should simply be U, and it is
easy to see, by differentiating the contribution of
some of the g diagrams, that one simply obtains
diagrams that contribute to U. For example, by
differentiating the three-body g diagram 3.1 in

Fig. 3 we get

p=+ —
JI f „V„f„ f„,V f,f„,d'r, ~ d'r „2 I

2 2

f „V„f„ f„,V„f,f'„,d'r, d'r„„,
2 m

(3,24)

X 1+P G1mG2mG3m O'Vm ~ (3.18)

PB neglected the second term of g3 „„c/4 which
violates the superposition approximation. Equa-
tion (3.6) is first solved with E „=0 to calculate
the G. We then calculate the E „using Eq. (3.10)
and solve (3.6) again to obtain g„„c/„ from whj. ch

g, ,„„c/, is obtained with Eq. (3.18).
Earlier studies, ' in which the energy was calcu-

. lated from only the two-particle distribution func-
tion using the Jackson-Feenberg (JF) identity, '
indicated that the HNC integral equation is not
sufficiently accurate to treat dense systems. We
will now demonstrate the basis for problems asso-
ciated with using the JF identity along with ele-
mentary diagram expansions.

With JF identity the energy can be written as

3.I

I 2
I I
I

m n

3.3

I

/ r /'
I w / I

rIr
pr) / I

/

m n

3.2
n

I 2

I
I r w I

m n

34
4
~ --- --r+

~ ~/ I

/I ~ / I

t~~ / I
/

3g
I

(
/ I('7

X (/

N n

Z» —— V»(r}g(r)4((r ' dr,p (3.18)
3.5

FIG. 3. Some diagrams that contribute to gm„.
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TABLE I. Two-particle distribution function in HF at
p = 0.3650 3.

TABLE III. Calculated energies of liquid He.

gHNC(4 f2
vb 3) HNC/4 +KL V

0.805
0.865
0.925
0.985
1.045
1.105
1.165
1.225
1.285
1.345
1.405
1.465
1.525
1.585

0.0298
0.1389
0.8417
0.6064
0.8618
1.064
1.185
1.244
1.256
1.234
1.196
1.150
1.105
1.062

0.0282
0.1331
0.3310
0.5927
0.8490
1.056
1.182
1.246
1.262
:1.241
1.203
1.158
1.110
1.066

0.0273
0.1249
0.3341
0.5948
0.8596
1.066
1.'195
1.245
1.273
1.268
1.213
1.167
1.106
1.062

0.0065
0.0363
0.1035
0.2139
0.3517
0.4950
0.6254
0.7359
0.8231
0.8866
0.9326
0.9626
0.9815
0.9927

TABLE II. Three-particle distribution function in HF
at p=0.365o . The ri2, ri3, and r23 are given in units
of 0 = 2.556 A, while 0 is in radians.

ri2 = ri3 r23 23 g3 HNC g3 HNC/4 +3 HNC/4 Sgyer

1.107
1.107
1.107
1.541
1.541
1.541
2.00
2.00
2.00

0.8.9
1.584
2.00
0.89
1.584
2.00
0.89
1.584
2.00

0.8274
1.595
2.255
0.5859
1.080
1.412
0.4488
0.8143
1.047

0.235
1.249
1.092
0.2456
1.306
1.141
0.1877
0.9979
0.8724

0.118
1.26
1.07
0.2349
1.385
1.166
0.1791
0.9774
0.8576

0.2229
1.238
1.075
0.2382
1.324
1.149
0.1795
0.9972
0.8655

which equals the three-body contribution to U cal-
culated with the lowest order g, given by the first
diagram of Fig. 1 diagram 1.4. Differentiating
I", in diagrams of type 3.2 in Fig. 3 will produce
U diagrams included in the second term of the

3 HNc in Fig. 1 diagram 1.4. In this way the EJF W

calculated with the HNC g includes all the U dia-
grams calculated with g,HN~

However, the E» —S' calculated with HNC g
also includes terms that correspond to improper
g3 diagram s . For examp le, diff ere ntiating the E
in Fig. 3 diagram 3.3 generates a U term in which
the f'„, in g, „, is approximated by unity. The
f'„„, f'„„ and f'„, in g, „, obviously can not be
approximated. In order to obtain the correct U

diagrams one must differentiate the sum of g „
diagrams 3.3 and 3.4; but 3.4 is a HNC/4 diagram
which is omitted when g„„cis used to calculate the
E». This problem persists wherever the cluster
expansion is truncated. Differentiating the I", in

gHNc~, diagram 3.5 will generate an inaccurate
g3 3 which can only be corrected by adding the
derivative of diagram 3.6 which is a HNC/5 dia-
gram.

0.283
0.341
0.365
0.4
0.416

-5.619
-5.745
-5.745
-5.176
-4.878

-5.669
-5.836
-5.836
-5.325
-5.045

-5.67
-5.91
-5.73
-5.25
-5.02

-6.13
-6.77

-6.67

IV. RESULTS

The two particle g(r) in liquid 'He at p =0.365
atoms/u' calculated with the HNC and HNC/4 ap-
proximations is compared with the exact Monte
Carlo (MC) g(r)" in Table I. The standard Len-
nard-Jones potential' with o =2.556 A is used in
these calculations; and the f is constrained to
heal at d 2&p The difference between the HNC,
HNC/4, and MC g's is quite small. Simple dia-
grammatic arguments given in the previous section
suggested that one may expect

IgHNC, gHNC/4i &IgMC gHNC/4I. (4.1)

However the above inequality is not necessarily
satisfied at all &; as a matter of fact the two dif-
ferences have the same order of magnitude. This
occurs because the terms in the expansion of g
alternate in sign; the sign of the contribution of a
diagram containing n & lines is simply (-1)"when
f' ~1. Thus the sums of g diagrams belonging to
any reasonable sequence 'are often much smaller
than any individual diagram in the series.

The three-particle distribution functions in the
above system calculated with the HNC and HNC/4
approximations are given in Table II. The last
column in Table II gives the first term in g, , „Nc],
[Eq. (3.15)j which can be obtained by superposition.
The differences between HNC and HNC/4 g, 's can
be =0.1 and are somewhat larger than those be-
tween g»c and g„wcg, . The superposition approxi-
mation seems to be valid when &», &», &23 are all
&1o', but it overestimates g, when &» =&„=&,3 10,

The calculated HF energies are given in Table
III along with the best available variational esti-
mates, "as well as available estimates from direct
solutions of the many-body Schrodinger equation. "
These calculations have been carried out at d =2&p.
The convergence between the present HNC and
HNC/4 is much better than that obtained by PB;
the PB HNC/4 energies are too low, not so much
because of their choice of E „, but mostly because
of their neglect of the second term in g3.HNC

gives a contribution of =0.3 'K at p =0.365' '. The
Monte-Carlo calculation' at p =0.365 with the
f (r, d =2r, ) gives E =-5.67+16 'K in good agree-
ment with the energies obtained from integral
equations. The energies calculated with the pres-
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TABLE IV. Hard sphere energies.

p(a 3} Eg'= 2r, } E(d = 2.5r,}

0.166
0.2
0.244
0.27

4.296
5.985
8.719

10.65

4.295
6.032
8.872

10.84

Variational calculations of the Bose Coulomb
liquid energy have also been carried out with the
Monte Carlo method using an f (r) given by an

ent f (E»c and E„Ncg, ) [Eq. (2.4)] are almost the
same as those obtained with other variational cal-
culations (E«v) which parametrize f and minimize
E by varying each parameter. However all the
variational energies are significantly above those
(E») estimated from solutions of the many-body
Schrodinger equation. " The difference (E„,„,„
—E») represents the influence of the explicit
many-body correlations neglected in the present
work.

The E(d) in both HF and HS systems becomes
very insensitive to d when d 2&0. PB discuss this
result for HF, while in Table IV we give E„,(d =2,
2.5ro), at various values of p, calculated by the
HNC /4 method. The HS energies are in units of
h '/(ma').

The HS energies are compared with E«~ and
E»" in Table V. The approximations seem to be
equally valid in HF and HS systems. The last two

ELDE /2 and ELDE / r espectively, give
the energies obtained with the first two and first
three terms in the low-density expansion. " The
expansion is valid only when a/r, «1.

The E(d& 2ro) is generally sensitive to d in the
high-density Coulomb liquid. Table VI gives the
E(d) at ro =0.1 and 0.01 in the units of the Bohr
radius. The value of d/r, at which the energy has
a minimum increases roughly like r, for &, 1
(Table VII). The calculated Coulomb energies
compare favorably with the available low/high
density limits':

E (r, »1) = I.ver +2.8-8r;~',

E,(r, «1)= -0.803r,- ~4. (4.2)

algebraic function with two parameters. These
calculations are rather involved due to the long
range of Coulomb correlations and, respectively,
give —0.807 (-O.V81) and -0.134 (—0.121) at r, =1
and 10. The values given in parenthesis" are ob-
tained with better numerical techniques than those
used by Monnier. " The Monte Carlo energy at
&p I0 is in fair agreement with the pre sent re-
sults, but at r, =1 our f seems to underestimate
the correlation energy by &ID'. This is the most
serious disagreement between the results obtained
by the present method and the Monte-Carlo results.

A simple way to explain the variation of d/r, in
the Coulomb system at high density is to appeal
to the mean-field theory. The PB argument implies
that the healing distance d is related to the range
of the effective interaction. There are many meth-
ods to calculate the dielectric constant at high
densities. ' These methods are completely ana)o-
gous to the random phase approximation in Fermi
systems and give the Bogoliubov result E~ for the
ground-state energy. The static dielectric constant
is given by

e(q, 0) =1+12/roq4, (4.3)

and the range of the effective two-particle inter-
action may be estimated as follows

v,f~(r) =Q e '",
)

g2
— exp[- (3/r,')~4r] cos[ (3/r3)'~4r] .

(4.6)

The calculated values of d (Table VII) are very

(4.4)

The range of &,ff is clearly proportional to &p and
thus d/ro should be proportional to ro'~4. The ef:-
fective interaction (4.4) is positive at small r and

changes sign at

(3/r,')'~4r = (n +-,')v . (4.5)

Due to the exponential the interaction beyond the
second node is negligible, and hence we may esti-
mate d in mean-field theory to be

p(a 3} a/ro HNC

TABLE V. Hard sphere energies.

HNC/4 E~ . EgE @LDE/2 ELDE/3

0.24 x 10~
0.24 x 10 3

0.166
0.2
0.244

0.01
0.1
0.866
0.943
1.01

1.505 x ].0+
1.604 x 10,3
4.327
6.029
8.970

4.296
5.985
8.719

4.32
6.01
8.80

4.15
5.69
8.14

1.504 x 10
1.612 x10 3

3.089
3.963
5.179

1.503 x10 6

1.553 x10 3

-3.022
-3.988
-5.192
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TABLE VI. Coulomb liquid energies with HNC equa-
tion.

d/rp Z(d, r, = 0.1) d/r, E(d, rp = 0.01)

5.2
6.0
6.4
6.8

-3.893
-4.026
-4.043

- -4.043

8.5
10
11.5
11.8

-22.6
-24.44
-25.11
-25.11

close to the above estimate.
Figure 4 shows the variation of f (&, d =d,.„) jn

CL as the density is varied by a factor of 10"(&,
=100-0.01). At low densities the Coulomb corre-
lations resemble those due to a strong repulsive
core, while at high p the correlation becomes
weaker and longer (as compared to &0) in range.
The f(r =0) approaches unity as p-~, and that
one can treat these different types of correlations
over such a wide range of density with the HNC
equation is very significant. As discussed in Sec.
III it may be understood by notirig that the elemen-
tary diagram expansion should converge due to
fundamental constraints on the function G.

The present f neglects all the long-range corre-
lations which influence the liquid structure function
S(k) at small k." These long-range correlations
may be included in a Jastrow wave function via a
Reatto-Chester" term. Their effect on the HS
energy has been estimated by Kalos, Levesque,
and Verlet" at p =0.2 to be --0.1$'/ma'. It corre-
sponds to -1%-2% in high density HS. In principle
it is possible to calculate the exact f in simple
Bose systems by the method of paired phonon
analysis developed by Feenberg and collaborators. "

The results reported in this section, and the NY
results given in Ref. 17 verify the accuracy of the
calculation of f from Eq. (2.4), and also that of
energy with the HNC equation. That the variation
of d/&0 in high-density Coulomb system can be
understood on the basis of conventional mean-field
theory supports the arguments used by PB in ob-
taining Eq. (2.4). The energies obtained by the
present method also satisfy the "upper-bound"
property of a proper variational calculation.

0
~ 0

FIG. 4. f (x/r p) in C L at r
p
= 100, 10, 1, 0.1, 0.01.

V. SOLIDIFICATION CRITERION

f. . h.
Y

y (+ )
- v (r

~
- R ~ ) /2 (5.2)

Here 8,. are the lattice points and f„is given by
the Eq. (2.4). The v is an additional variational
parameter, and in the solid phase the E(v) must
have a minimum at a value of & such that &+0»1.
Wave function (5.1) neglects the exchange sym-
metry which is thought to be unimportant in the

Quantum liquids at zero temperature can solidify
on compression (HS and HF), or on expansion
(CL) or they may not solidify at all (NY) depending
upon the two-body potential. Several criteria to
predict the solidification density have been pro-
posed; the most common are the signer, "Linde- ~

mann, "and the law of corresponding states. "
These criteria are not very general, the first two
have been useful in the CL system, while the last
is for HF.

To obtain a general solidification criterion one
may compare the variational energies in the liquid
and solid phase. " This approach has been exten-
sively used to study the solidification of HF, HS,
and NY, and it is entirely numerical. In this sec-
tion, we show that the comparison of liquid and
solid energies becomes much simpler when one
uses the present f in both the phases. For the
sake of simplicity we consider a Boltzmann solid
wa.ve function:

TABLE VII. Bose Coulomb energies.

HNC/4

rp (d/rp) rp Mp (d/rp)

0.01
0.1
1

10
100

-25.64
=4.003
-0.722
-0.1261 '

-0.01421

13
6
3.4
2.5
2

11.32
6.37
3.58

~ ~ ~

-25.11
—4.043
-0.6968
-0.1230
-0.01364

11.5
6.4
3.35
3.2
1.9

—25.39
-4.516

-0.0949
-0.01524
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(5.9)

E(luation (5.9) is also valid in the liquid phase, and
it can be used to obtain

1.0

Wz = ———1 + — v(r)4''dr=W.
2 y. 2 ~

(5.10)

The solid energy is then given by

3 52
E =W+-s —

4 m

Od5

.2 .4 .6 .8 1.0 12 1.4

FIG. 5. Density dependence of the ratio 8 in various
systems. The lower scale gives densities of HS, HF,
and NY systems inunits of a 3, o 3, and fm 3, re-
spectively, while the top scale gives rp of the CL sys-
tem.

(5.11)
The W is obviously independent of &, while the
second term increases with &. The last decreases
as & is increased, and it equals the liquid U at
v =0. One may crudely estimate the solid energy
by assuming that the last two terms of (5.11) are
comparable at &,q. In this case

3 I' 3 h2
E =W+ — v»W+—

2 m m'v
0

(5.12)

solid phase.
The energy per particle of the solid can be writ-

ten

Comparing Es with the liquid energy suggests that
solidification should occur when the dimensionless
ratio R,

&s =As +~s +Us (s.3)

3 k '/2mr~ (5.13)

g, (r„r;)V(r,)(Pr, d'.ri,
2 i~1

(5.4)

T~ =4(N'/m)v, (5.5)

S2
US

xQ dr(r, ;r~) ' " r ' )d'r d'r, ,

(5.5)

becomes much greater than unity. Figure 5 shows
A in the CL, HS, HF, and NY systems as calcu-
lated with f (d =2r,). The R in HF and HS increas-
es with p and thus these systems solidify at high

p, while the R in the CL system, which melts at
large p, decreases as p is increased. The R in
NY system, which probably never solidifies, '
increases with p at small p but reaches a rather

sEz (v)
&= &eq

=0 (s.v} 1,2

and the V(r} is given by Eq. (3.3}. The two-particle
distribution. function g~(r~, r, ) in solid phase is
given by

1.0—

4—

.2—

Some useful properties of gs can be obtained by
noting that a sphere of radius d» +p will on the
average contain (d/ro)' particles. Thus when

I

r5 l.5

FIG. 6. The f(r/xp d=2/p) in HS, HF, and CL sys-
tems at A =2.5.
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small maximum value =1 and finally decreases with

p at very high densities.
It is easy to see that R depends only upon the

dimensionless correlation f(&/&, ), and thus two
systems which have the same & have very similar
correlations. The similarity between correlations
in HS (p=0.25a '), HF (p=0.51o '), and CL (x,=35)
at densities (given in parenthesis) at which & =2.5
is shown in Fig. 6. The HS and HF systems solidi-
fy when R becomes =2.5, and on the basis of the
present criteria one would expect the Coulomb
system to melt at &p=35. A direct comparison"
of the variational CL liquid energy with the har-
monic solid energy suggests &p =360 at melting.

However this value decreases to ~p 120 if the
solid energy is estimated in the Hartree approxi-
mation. The value may further decrease on con-
sidering the effect of short-range correlations
on the CL solid energies.
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