
PHYSICAL REVIE% A VO LUME 15, N UMBER 6 JUNE 1977
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Stripe domain patterns have been observed in a nematic liquid crystal film excited by ultrasonic waves

propagating in a sandwiched glass-nematic-glass medium. The effect was found to be due to molecular
reorientation induced by acoustic streaming in the nematic film. Based on a simple fluid dynamical model, we
calculated the propagating acoustic modes, their nonlinear mixing which causes acoustic streaming, and the
resultant shear flow reorientation of the director which produces the birefringent stripe patterns. Our
calculations show quantitative agreement with the measured acoustic modes and the observed stripe domain
patterns.

I. INTRODUCTION

It has been shown that acoustic waves can influ-
ence the optical properties of nematic crystals. ' '
A qualitative discussion on the subject ha, s been
given by Helfrich. ' Because of anisotropy in the
viscoelasticity and sound attenuation, a uniform
longitudinal sound wave can produce a steady trans-
verse force, which in turn gives rise to a trans-
verse mass flow and reorientation of molecules.
In the case of a thin homeotropic nematic film
(i.e. , the director of molecular alignment being
normal to the film surface) with sound waves prop-
agating along the normal of the film, the molecular
orientation becomes unstable and undergoes a
transition at a critical acoustic power similar to the
well-known Fredericksz transition. ' Many such
experiments have been reported' but quantitative
analysis, especially of its steady-state configura-
tion after the transition, is still not available.

Another geometry has also been used where
shear vibration in fluid perpendicular to the direct-
or is important. The experiments employed pro-
pagating surface waves' or longitudinal bulk waves~
along the substrate. Existing calculations ' in. this
case assumed that the observed results came from
the molecular reorientation in the boundary layers
induced by the viscoelastic shear motion of the
sound, which is first order in the sound amplitude.
However, they were not successful in explaining
the experimental results.

We have recently studied the propagation of ultra-
sonic waves in homeotropic nematic films sand-
wiched between glass plates. With the sandwiched
film between crossed polarizers, we observed a
semiperiodic stripe pattern. "We found that flow
reorientation of molecules in the nematic film was
responsible for the observed pattern, while acoustic
streaming resulting from nonlinear mixing of the

propagating acoustic modes in the film was the
cause of the fluid flow. A preliminary analysis
of the experimental. results has already been re-
ported. ' In this paper we would like to give a full
account of the calculation and the experiment.

In Sec. II, we show the detailed calculation for
flow reorientation induced by ultrasonic wave prop-
agation in a homeotropic nematic film. In Sec.
III, we describe the experimental technique. Fin-
ally, in Sec. IV, we present the experimental re-
sults, comparison between theory and experiment,
and discussion.

II. THEORY

In this section, we first give a theoretical de-
scription of acoustic-wave propagation in a fluid
film sandwiched between two identical solid planes.
We then calculate the acoustic streaming of the .
fluid induced by the propagating acoustic waves.
In a nematic liquid-crystal film, the streaming
causes flow reorientation of molecules and hence
tilts the optic axis of the anisotropic film. We
finally evaluate the optical-transmission coeffi-
cient of the film between crossed polaroids in or-
der to compare the calculation with the experi-
mental results.

Because a rigorous treatment of the hydrodynam-
ical problem is extremely difficult, a number of
simplifying assumptions are made in our calcula-
tion. It may be helpful to first discuss these as-
sumptions here before we go into the details.
Based on the observation of almost identical acou-
stic streaming patterns in a water film to those
in a nematic film, as will be described at the end
of Sec. IV, we believe that the anisotropy of the
nematics is only of secondary importance to the
acoustic streaming. In fact, the structure of acou-
stic streaming (e.g. , periodicity of the pattern)
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depends essentially only on the propagating part of
the sound, i.e. , oi& the reactive property of the
system, and the reactive property of nematics is
known' to be isotropic to the first order. On the
other hand, the strength of the acoustic streaming
depends on the reactive property as well as the dis-
sipative property of the material; the latter is an-
isotropic in nematics. Rigorously speaking, to
find acoustic streaming, we should solve the acou-
stic equation of motion in a nematic with at least
the anisotropic viscosity included. However, since
our pri. mary interest is to explain the basic mecha-
nism of the occurrence of the streaming pattern, we
used the following approximations. We first solve
the acoustic equation of motion for a sandwiched
isotropic fluid film between two solid media by
taking into account only the first-order effect of
the viscosity since it is small. The anisotropy of
the viscosity is accounted for by two viscosity co-
efficients: a bulk-viscosity coefficient obtained
from attenuation of longitudinal sound wave in un-

oriented nematics and a shear-viscosity coefficient
for attenuation of shear wave. The wave vector de-
pendence of both viscosity coefficients for an ori-
ented nematic is neglected. Using the solution of
the acoustic modes obtained in this manner, we can
then calculate the acoustic streaming induced by
beating the various acoustic modes. We are only
interested in the time-independent tilt of the direc-
tor, and hence, we consider only the dc flow re-
orientation mechanism. Vibration of the director
at the ultrasonic frequency is ignored. Therefore,
a direct coupling between the sound wave and the
director orientation is not considered. The flow-
induced anisotropy should of course change the
characteristics of the acoustic modes, but the ef-
fect is of higher order and can be neglected. We
also assume that the shear wave will not affect the
molecular alignment at the boudary surfaces. This
certainly deserves further investigation and a
study of Fredericksz transition with ultrasonic
shear wave on the boundary, for instance, couM be
very interesting. Despite all these approximations;
we believe that our theory, described below, does
give a proper account. of the basic mechanism re-
sponsible for the observed sound-induced flow-re-
orientation pattern.

A. Acoustic waves in a sandwiched fluid film (Ref. 9)

K, p, , p SOLID

/I///////I///I//r///// /// ///// I
FLUID

-h
/////////////// /// //////////// / /

SOLID

FIG. 1. Geometry of the sandwiched film in our calcu-
lations. Upper and lower solids are identical with K be-
ing the bulk modulus, p, the shear modulus; and p, the
density. The fluid has K' being the bulk modulus, p',
the density, &, the bulk viscosity; and g, the shear vis-
cosity. The sound waves propagate along the x axis.

where u is the displacement vector and is related
to the mass velocity v by u =-v/i ~ when the motion
is sinusoidal. The fluid dynamics is described by
the Navier-Stokes equation

p' —+(v V)v = —Vp+(g+ —q)VV v —qVx Vxv
Bt 3

(2)

supplemented by the equation of continuity

Bp
Bt

+ V (pV) =0,

where p is the pressure. Linearization of Eqs.
(2) and (3) leads to

the liquid-'crystalline medium as a simple isotropic
fluid. ' The anisotropy of the dissipation can be
taken into account by using "effective" viscosities
appropriate to the process under consideration.
We neglected here the directional dependence of the
viscosity coefficients. We believe the basic prop-
agation structures of acoustic waves will not be
affected by this approximation. The solid is iso-
tropic. The material constants of the solid are
bulk modulus E, shear modulus p. , and density p,
and those of the fluid are bulk modulus X' (in-
verse of compressibility), density p', bulk vis-
cosity f, and shear viscosity q. Dissipation in the
solid can be neglected in the present case.

The equation of motion for the solid is given by'

B2

p 2 =(K+~ p)VV'u —p, VXVxu,

In order to calculate the sound motion in a sand-
wiched fluid film we use the configuration in Fig.
1. The sound propagation is along g and the film
normal is along z with the solid-fluid interfaces
at, z =eh. The y dependence of the problem can be
neglected. Acoustic wave propagation in nematic
liquid crystals can be described well by treating

p' =-Vp (f++q)VV v —qVx V'x v
Bt 3 (2 ')

and

Bp
Bf

+ p'V" v=0.

Just like any other vector, the mass velocity,
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e, = (, exp[y(e e)))]

j4, = g, exp[P(z +h)]

for -h ~z ~A,

where we have dropped a common propagation
factor exp[i(kx- (()t)]. From Eq. (1) we find

O'- P'= ~'/b' and k'- y'= uP/c'

where b and c are, respectively, the transverse
and longitudinal sound velocities in the solid given
by b' = p./p and c' = (K+ —, p, )/p. The real part of
P and y should be positive in order for the sound
amplitude to be finite in the solid. Similarly from
Eqs. (2') and (3') and a constitutive thermodynamic
relation Vp =K'Vp'/p' we find

v, can be split into an irrotational part v„and an
incompressible part v„,i.e., v=v„+v„,where
v„=VC and v„=V && 4, 4' and 4' being the scalar
and vector potentials, respectively. Since we have
neglected the directional dependence of viscosities,
the irrotational part and the incompressible part are
decoupled from each other in Eqs. (1), (2'), and
(3'). Because of the symmetry of the problem,
only the y component of 4' is nonvanishing. Using
these potentials, the solutions of the equations of
motion, Eqs. (1), (2'), and (3'), for sound propa-
gating along g in the solid-fluid-solid sandwiched
system can be written in the form

C =y, exp[-y(~-h)]1 1 for z&k,
4, = (, exp[-P(g —h}]

C '= (t)' exp(inz) + p" exp(-in@)

e'=('exp[ie(e —h)]e("exp[-ie(eei))]j . (4)

-p(d2$, +2p((()3/k, )(k zt), -ikP(, }

= -(p'+'+ 2i +zonk') [p'exp(inh) + p"exp(-inh)]

+ 2i(uz)k &[[])'- I])"exp(-2i &h)], (8)

(for zz,„continuous)

p(&o'/k', )[(k'+ P'}g, + 2ikyg, ]
= $(d'g ((-k + P)[g +g exp(-2zbh)]

-2kn [P' exp(iuh) —P "exp(-inh)]j, (9)

(for v, continuous)
0

-y(t), +ikp, =iu[(t)'exp(iuh} —(t)"exp(-inh)]

+ ik [[I)'+ [I)"exp(-2i &h)],

(for v„continuous)

(10) "

ikg, +Pg, =ik[(t)'exp(inh) + P"exp(-inh)]
I

-z 6[[[)'-0"exp(-» 6h)] (11)

where k, = &u/b. With (t, and P, replaced by Q, and

g, and h by -h, we find a similar set of equations
at z =-h. Solution of these eight linearly coupled
equations for the eight amplitude coefficients is an
eigenvalue problem.

1, Low-viscosity Limit

The complete solution of Eqs. (8)-(11)and the
complementary equations at z =-h is too complex
to be illuminating. We can, however, simplify
the calculation by first neglecting the Viscosities
and later taking them into account as a small per--
turbation. In the limit tpat g and zl-0, the shearing
force near the fluid-solid boundary becomes neglig-
ibly small; Eq. (11) gives g'=0, and Eqs. (8)-(10)
reduce to

&=-(1+i)&o, &0= [(up'/2z}((())]' ~, (6) -p(t), + (2p/k', )(k @,—ikP(, )

p'[(t)'exp—(inh)+ (t)"exp(-inh)], (8')

40 2 . (d 4= (z —zE, 6 =, [0((())+ 'g((())]

where a=(Z'/p')' ' is the bulk sound velocity in
the fluid. Note that the viscosities ( and g depend
on the frequency. " The amplitudes &f

's and g's
are to be determined by boundary conditions.

B. Acoustic modes in the sandwiched film

%e now impose the boundary conditions to relate
the coefficients (t)„g„etc., and to determine the
eigenmodes. 'The boundary conditions are that
stress and velocity are continuous across the
boundaries. At z =h, they can be written explicitly
(for cr„continuous)

(k'+ P') g, + 2iky(t), = 0,

-y(tIz+zk0, =zn[(b'exp(iuh) —(I[)"exp(-inh)], (10')

with a similar set of equations at z =-h. The con-
dition for these six linearly coupled equations to
have nontrivial solutions leads to the characteris-
tic equation"

.[(k'+ ~'—)' —4k'y~]-
p

I y y4

= -tan(nh) (for odd modes),

= cot(uh) (for even modes), (12)

from which we can determine the wave vector k,
and hence n, P, and y, in terms of the fluid thick-
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p'= p [-i etee(a )i)] exp(-iaet)I
(t)"= (t) [i+tan(nsk)] exp(in@)

(for odd modes), (14)

where (t)„and (t)s are constants. In the following,
we use subscripts A and B to describe the even-
and odd-waveguide modes, respectively. We shall
see that within the range of the film thickness of
our interest, there is only one mode of each sym-
metry. From Eqs. (13) and (14), we find the fluid
velocities for the waveguide modes as

v~ = -i P„—. cos(u~z) exp[i(k„x—(tpt)],
2k~" sin u„k

v„.= (t)„. sin(u„z)exp[i(k„x-(t)t)],
2ng

S1Q n~k

(15)

vz„=its „sin(nzz) exp[i(ksx- et)],2k'
cos &~A

vs, = Ps cos(nsz) exp[i(k~ —(dt)] .2nz

We also obtain from Eqs. (8')-(10'),

4'&; = [2n J(kg+ Pg)h'p', ] 0, ,

(„=-(4ik, n, /kzp) Q, ., .

(16)

where. j =A or B.
When e is pure imaginary, the modes are the

surface-like modes, since for a single solid-fluid
interface they correspond to surface waves on the
interface with amplitudes decaying exponentially
on both sides. There are an even and an odd sur-
face-like modes. The odd mode exists only for
gg 2 226 p, m in the case of nematic p-methoxyben-
zylidene-p '-butylaniline (MBBA) film between glass
plates. In our study, h &40JLt,m, and only the even

ness 2h. The odd and even modes here refer to
the symmetry of the fluid velocity with respect to
the z =0 plane.

Equation (12) has two types of solutions depending
on whether n is real or imaginary. When n is
real, the sound waves in the fluid can be described
as bulk longitudinal waves bouncing back and forth
between the solid plates. They form the wave-
guide modes. Their amplitude coefficients are

p'=pe[-i —eat(ae)t)]exp( iaet)I-
(t "=P„[i—cot(n„k)]exp(in„k)

(for even modes) (13)

surface-like mode is present. We desi, gnate it as
mode C and write n~ =-in~ which is a real number
(kc- nc = uP/a'). The amplitude coefficients are
then given by

and

(t
'= tt)c[-I+coth(nck)]exp(n ch),

(t "= pc[1+coth(hack)] exp(-uck),

e,.=[2 .(k:+P.')j~.k;]e. ,

(4i—k /k', ) P

(18)

(19)

where Qc is a constant. The fluid velocity of this
mode is

vc„=itt)c . cosh(ncz) exp[i(kcx- (dt)],
2kc

C

sinh(ncz) exp[i(kcx —&t)] .c sinh nck

(20)

2. Correction due to viscosity

The fluid viscosities are low enough so that they
can be treated as small perturibations on the above
formalism. As shown in Eq. (7), the wave vector
k now has a small imaginary part which acts as
the attenuation coefficient. Then, from Eq. (5), P
and y also have imaginary parts, which suggests
that there is a net power transfer from solid to flu-
id. As the wave propagates the power in the solid
is continuously drawn into the fluid and gets dis-
sipated there.

In the absence of fluid viscosities, the incom-
pressible part of the fluid motion described by g'
and P" vanishes. Now, this is no longer true.
However, with low viscosities, 6, in Eq. (6) is very
large (~ &/k

~

» I). From Eq. (11) and a corre
sponding expression at z =-k we find

~

g'~ -
~

g"
~-

~

(k/6) p'~ . It can then be seen that terms involv-
ing the irrotational part in Eqs. (8)-(10) are small-
er than the other terms by a factor of ~k/&

~

and
hence have little effect on the eigensolutions ob-
tained earlier. Physically, the viscosities set up
a boundary fluid layer of thickness -~,' next to the
solid-fluid interface. For large ~„the layer is so
thin that it can hardly exert force on the solid and
hence has little effect on the stress continuity con-
ditions Eqs. (8) and (9). The vertical fluid velocity
v, in the incompressible part is very small and
gives very little correction to Eq. (10). Therefore,
we can first solve Eqs. (8)-(10) together with sim-
ilar equations at z = —k by letting g'= g"=0, and
then, knowing (t)', (t)", (t)„(t)„(i)„andg„wefind
g' and g" from Eq. (11) and the equivalent one at
z =-h. We obtain, with &,h»1, for the three
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modes A, 8, and C,

fA= (1 —$)4A

c(A(k&+ PA -2PAl'A

k As
0 ~A t

(B'= (1-i)4,',

h
= —' -h~(n, h)s '"""hh"'), (hh)

0' =(1—i)(,',

)h( h)+ ( h
) h (hh)

0 ~C t

and a similar set of expressions for (C)". The in-
compressible fluid velocity close to z =h is given
by

v,„=2i &,'gJ exp[(1 - i) 6,(z —k) + i(k,.x —&t)],

v„=(1+i)k, g,' exp[(l —i)6,(z —k) + i(k,x (o—f)],

(24)

where j=A, B, or C.
' From Eqs. (15), (16), (20), and (24), the total

fluid velocities for modes A, 8, and C are now

given by

v„„=i —@„. cos(o', Az) + 2 6,ip(exp[(1 —i) 6,(z —k)] + exp[(i —1)&,(z +k)]] exp[i(kAx —~t)],2kA

A

sin ~„z+ 1+i k» exp 1 —i ~, z —h —exp i —1 ~, z+h expi k~x —~t
A

2k'
v~, =i ~

— sin n~z +2~, ~ exp 1 —i ~, z —h —exp i —1 &, z+h exp i k~ —et
B

cos n~z + 1+i k» exp 1 —i ~, z —h +exp i —1 ~, z+h expi k~- vt
(26)

vc„=i c .
h

cosh o' z +26, c exp 1-i & z —h +exp i —1 & z+h expi kcx —~t2kc
m c

20(c
vc, = c . „sinh~cz + 1+i kc c exp 1 —i ~, z-h —exp i —1 ~0 z+h expi kc&- t

c

(27)

C. Acoustic power Aow

Acoustic power density is given by"

P = (v'o*+ c.c-.) s (28)

I

W„,= . , " hh+ s)n(hn, h)) (h, (*
sin &Ak o) A

(for mode A), (31)

where v is the particle velocity, 0 is the stress
tensor, and * and c.c. indicate complex conjugate.
In the absence of dissipation, the net power flow is
obviously in the x direction. Therefore, we con-
sider only P, .

In fluid, since 0„„=p'a'V u, and 0„,= o„,= 0, we
have

and

4'k
W =, (hh — sin(hn h)) (h

(for mode 8), (32)

4'k

(for mode C) . (33)
P„=—p'a (v„Vu*+c.c.), (29)

W~= P„dz.
-h

(30)

Thus from Eqs. (15), (16), (20), (29), and (30), we
find

where u =-v/i(d. The power-flow density in the
fluid film per unit length in the y direction is given
by

In a similar manner, the power flow density per
unit y dimension in the solid is given by

-h

P„dz+ P„dz=2 P„dz,
h

(34)

where P„is given by Eq. (28) and o„„=(K+~p)
&& su„/ex+(K- ,p)su, /Bz, c—r„,=0, and o„,= p, (su„/sz
+ Bu,/sx). We find for each mode
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+ [P;(p&') + u(3k;'r; + 2k', P; + P,'r, + 2P, r', )](4„0,*, —P;,.0„) (35)

where j =A, 8, or C. The above expressions are
still valid in the presence of small fluid viscosi-
ties; the energy associated with the incompressible
motion of the fluuid is negligible.

The total acoustic power density per unit y width
is the sum of Eqs. (31)-(33) and (35) for all modes.

V v, +(1/p, )V (p,v,*+c.c.) =0. (39)

In our case, we can show from the expressions of
v, and p., that

ties are evaluated at zero frequency. The equation
of continuity (3) in the second order has the form

V'V2 —0
~ (40)

D. Acoustic streaming

A sound wave in an absorbing medium exerts a
net force on the medium to conserve momentum.
Such a force causes a stationary flow in a fluid,
which is known as acoustic streaming. " Formally
acoustic streaming is a second-order effect gov-
erned by Eq. (2). We can express the variables
in Eq. (2) in series of ascending orders,

p =
po + pi + p2 + ' ' '

P PQ P$ P2

+ v + 0 % 0

1 2 7

(36)

where p, and p, are the equilibrium values, v„p„
and p, =K'p, /p, come from the solution to the lin-
earized equations (2') and (3') as given in Sec. IIB,
and v„p„andp, come from the second-order sol-.

ution of Eqs. (2) and (3).
From Eq. (2), the second-order equation of mo-

tion is
-Vp, + [g(0) + —', g(0)] VV v, —q(0) V x V x v, = F,

(37)

with

$ = po[(vi ' V)vi +vi(V'vi ) + C.c.],
where we have considered (and shall considei in
the following calculations) only the time-independ-
ent part of v, and p, and accordingly the viscosi-

i.e., the streaming is incompressible. Taking
curl of both sides of Eq. (37), we get

q(0) V'(V x v, ) = V x F . (41)

The term V x F in Eq. (41) has two parts: one
from mixing of different modes and the other from
mixing of each mode with itself. The latter pro-
duces a uniform streaming along g. In the Appen-
dix, we show that the uniform streaming is weak
arid negligible. We calculate here only streaming
from mixing of different modes. In the following,
we consider mixing of two parts of v, =v~g +vga,
separately and sum up the resultant second order
velocities v, at the end.

J. Mixing of v&. and v&.

In the presence of dissipation, we have k,. =k,'.
+ik&' and u,.=u,' +iu,"(j. =A, . 8, or C). When the
viscosities are low k&'«4&, u&'«o'&, and a «a'.
Then it can be shown from Eq. (38) that

2'L& (d(ex'), =p, {v„.v„+e.c)
(42)

(V x E)„=(V x E),=0.
Equation (41), with the constraint Eq. (40), can be
readily integrated to yield the following particular
solutions:

a, Mixing of modes A and B.

v,"„s=A, [C, sin(u„z)cos(uzz)+ C, cos(u„z)sin(usz)) exp[i(k„'—kz)x] exp[-(k„"+ks)x]+c.c. ,

v2s A, [C, sin(u„z) sin(usz) + C, cos(u„z)cos(usz))(-i) exp[i(k„'-kz)x] exp[-(k„"+kz)x]+ c.c. ,
(43)

where

-2P~PIIpo&
sin(u„k)cos(uzk)(k„-kz)'g'q(0) '

C, =-u„uz(k~+kz), C, = (k& —k„kz)(k„+kz), C, =-u„(k&—k„kz+u'z), C~ =-uz(k& —k„kz+u~),



15 EXCITATION OF STRIPE DOMAIN PATTERNS BY.. .

k~ = u)/a.

b. Mixing of modes B and C

v2zc =A, [C, sin(asz) cosh(acz)+C, cos(nzz) sinh(ncz)] exP[i(kz —kc)x] exP[-(kz+kc)x]+ c.c. ,

v2zc =A, [C, sin(a ~) sinh(ncz) + C, cos(azz) cosh(ncz)](-i) exp[i(kz —kc)x] exp[-(kz+kc)x]+ c.c. ,
(44)

mr here

—2$afcpo&
cos(a P) sinh(uch)(kz —kc)'a'q(0) '

C, =-(ky- kzkc)(kz+kc), Co = —uzuc(kz+ kc), C7=uc(az+k~ —kzkc), C, = nz(uc —k~+k~kc) .

c. Mixing of modes A and C

v,"„c=A, [Co sin(u„z)sinh(n~) +C,o cos(u„z)cosh(ucz)] exp[i(k„'—kc)x] exp[-(k„"+kc)x]+c.c. ,

v,",c =A,[C„sin(a„z)cosh(& cz) +C» cos(a„z)sinh(n~)](-i) exP[i(k~ kc—)x] exP[-(k„"+kc)x]+ c.c. ,

vrhere

(45)

-2$&Acpo&
sin(n„h) sinh(nch}(k„- kc)'a'q(0) '

Co =-a„ac(k„+kc),C,o
= (k~ —k„kc)(k„+kc),C„=a„(uc—k~+ k„kc), C„=-nc(a„+k~~—k„kc).

2. Mixing ofvh, with v|,,
Because of the large 6„the incompressible part 4 or v, ~, in fluid decays very rapidly away from

the solid-fluid interface as seen from Eqs. (4) and (6). Therefore, Eq. (41) can be approximated by"

SF„/8z=q(0)S'v /ez'.

With the expression of F in Eq. (38), we find readily the following particular solution for Eq. (46):

(46)

v,'~ =
0 p,'g& I exp[26o(z -h)] +exp[-25o(z+h)j] [k;(I+i)+k&(1- i)] expli(k& —k;)x] exp[-(k,"+k&')xj+c.c.,

v,".= O(k/6, ), (47)

where plus sign applies for (i,j ) = (A, C) and minus for (i, j) = (A, B) and (B, C).

3. Mx' gof, , d

By the same reason as stated in Sec. IIC2, Eq. (46) applies to the present case. The particular solution is

" sin a„h
+Pzg„' nz z B,exp[i(kz —k„')x—(k„"+kz)xj+ c.c. ,cos uz h

vo =4zVcns
h

B exP[i(kz —kc)x —(ks+k"')x]cos(n ~z}
cos Ag Q

s inh(n cz)
+Qc$z ac .~( h)

B,exp [i (kc —k )x ~(k +k z)x] c-c c+.
sinhgK~h

(48)

v„=O(k/6, ),

sinjo. „g
' sinh nch
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where

—(1+i)2p„]exp[(l+i)5,(z —k)] +exp[-(1+i)5,(z +k)] j
1 n(0)

-(1 + i)2p, (exp [(1+ i)5,(z —k)] —exp[-(1 + i)5,(z + k)] ].
2-

n(0)

4. General solution

The general second-order solution should include
the homogeneous solution of Eqs. (40) and (41) in
order to satisfy the boundary conditions v2=0 at
z =+k. In the limit that k/5, and (k; —k,.)k are
small, the homogeneous solutions are"

where K» is Frank's bend elastic constant" and

a2 is Leslie's shear-torque coefficient. " We have
neglected other shearing terms, Bv„/Bx, etc., not
only because they are small but also because the
pertinent shear-torque coefficient 0.3 is small"
(jo.,/a'. , ~-10 '). Equation (50) is readily integrated
to yield, assuming 8 =0 and d8/dz =0 at the solid-
fluid interface,

vs, = 2D, (k„'—ks)z exp [i (k„'—kz)x

—(k„"+kg)x]+c.c. ,

v,",e = -i[D, +D,(k„'— kz)' 'z] exp [i(k„'—kz)x

8(x, z)=-
33

v,„(x,z') dz' (51)

—(k~ +kz)x] +c.c. ~

v,", = -i[D, +D, (k,' k,')'z'—] exp [i (k,' —k,')x (49)

—(kz + kc)x] + c.c. ,

v,"„=[D, + 3D, (k„' —kc )'z'J exp [i(k„'—kc )x

—(kg +kc)x] + c.c. i

v,",c= -i [D,(k„' —kc)z +De(k„' —kc)'z']

x exp[i(k„' —kc)x- (k„"+kc)x]+c.c.

The (complex) constants D, D, are dete-rmined
from the boundary conditions and the relative
phases of the modes. They become real quantities
if we replace (k,' —k,') x (i, j =A, B, or C) in Eq. '(49)
by (k,' —kJ)x+Q„where P,, is the relative phase
of the i and j modes.

The complete second-order velocity is then given
by the sum of Eqs. (43), (44), (45), (41), (48), and

(49).

E. Flow reorientation

Knowing the stationary fluid velocity, we can
calculate the associated shear-flow reorientation
of the nematic molecules. We assume that initi-
ally the molecules are homeotropically aligned.
If the induced tilt angle 8 of the director from the
z axis is small, the equation describing the bal-
ance of torques is'

I

K»S'8/Sz'+ a,ev,„/ez= 0, (50)

v~zc = 2D, (ka —kc )z exp [i (kz —kc )x —(k 'z + k c )x] + c.c.,

satisfying the boundary condition that 8(x, +k) = 0.
Note that although the shear pate in the boundary
layer is very large, its direct effect on reorienta-
tion is small because

2x AZ
ttndary layer

is very small for a thin layer. The effect of the
boundary layer comes in indirectly through the
boundary conditions leading to large D; (i = 1-6).

As a result of flow orientation, the optical axis
of the nematic substance is now tilted at an angle
8(x, z) away from 2 in the x-z plane. If the film
is placed between crossed polaroids with their
axes at 45 with respect to x and y, the optical
transmission coefficient of the assembly is given
by19

I/I, = sin'[-,'a(x)J,

2m6 (x) =—(n~~
—n~) sin'8(x, z) dz,

h

(52)

where I and Io are, respectively, the transmitted
and incident light intensities, X is the optical wave-
length, and n~, and n, are refractive indices of light
polarized parallel and perpendicular to the optical
axis of the nematic film, respectively.

In order to illustrate the theory, we show the re-
sult of numerical calculations of v, (x, z) and 8(x, z)
in Fig. 2. (The parameters used are the same as
those for Fig. 7. Note that the vertical axis and
accordingly v„areexpanded four times. The angle
8 is also exaggerated by four times. ) The vortical
fluid flow and the associated tilt of the directors
are clearly visualized.
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FIG. 4. Block diagram of the optical-diffraction ex-

perimentt.

FIG. 2. (a) Fluid flow velocity, and (b) director orien-
tation, calculated from Eqs. (43)—(45), (47)-(49), and

(51) for the first three flow vortices along x with the
same parameters used in the calculation of Fig. 7(b).
Both the z scales and the tilt angle are expanded four
times for illustration.

III. EXPERIMENTAL TECHNIQUE

The experimental setup' is shown in Fig. 3. An
interdigital surface-wave transducer of funda-
mental frequency of 12.3 MHz was deposited on a
F-cut X-oriented quartz plate. A surface wave
generated on the quartz plate by the transducer
was transferred onto one of the glass plates holding
a nematic film through a water coupler, and then
propagated into the sample region. The sa,mple
thickness was controlled by Al or Mylar spacers
of various thicknesses to +2 p, m. The inner sur-
faces of the glass plates were treated by silane
surf actants to obtain homeotropic or hopaogeneous
monodomain samples. All experiments reported
here were done on MBBA at room temperature.
The effects have, however, been seen in other
nematics. The observation of the sample was car-
ried out by a polarizing microscope.

The phase velocities and amplitudes of the acou-
stic modes in the sandwiched medium were mea-
sured by the optical diffraction technique. " The
experimental setup is shown schematically in Fig.
4. A 1.5-mW He-Ne laser bea,m was directed onto

A 8

I= G
ruuuimi

I

FIG. 3. Sample arrangement. T is the interdigital
surface wave transducer, Q is the quartz crystal plate,
S' is the water film coupler, S is the liquid crystal film,
and G is the glass plates.

the sample and the backward diffracted light was
analyzed. The inner surface of one glass plate
was partly coated with a thin (-500-A) Al film to
enhance the reflection.
The laser beam was then diffracted by corrugation
of the Al film caused by the propagating sound in
the film. The diffraction pattern was measured at
the focal plane with a photomultiplier behind a slit.
For each acoustic mode, the separations of the
diffraction peaks shouM be proportional to k's
from which ~'s can be calculated. The results
were calibrated against the free Hayleigh-wave
velocity on quartz The .peak height should be pro-
portional to the square of the acoustic amplitude

~ v, ~' in ther direction at@ =h. Using Eqs. (25)-
(27) we calculated relative magnitudes of

~ p„~,
~ &f&~(, and

~ pc~. The absolute amp/itudes were
then determined" by measuring the intensity ratio
of the first-order diffraction peak to the zeroth-
order peak for the strongest mode. Because of the
nature of our experiment, the phases of p's could
not be obtained. From Eqs. (31), (32}, (33), and
(35) the absolute acoustic power density per unit
width of each mode was obtained. The transducer-
sa,mple assembly was mounted on a rail and pos-
itioned by a micrometer. The attenuation of each
mode was measured by observing the change of the
diffraction peak height as the laser-beam probes
different regions of the sample along the. direction
of sound propagation.

IV. RESULTS AND DISCUSSION

We first show in Fig. 5 the results of our diffrac-
tion measurements on the phase velocities of the
waveguide and surface-like modes in sandwiched
nematic films as functions of film thickness. They
are compared with the theoretical curves calculat-
ed from Eel. (12}. The material constants used in
the calculation were measured separately as a
=1.55 km/sec, 5 =3.38 km/sec, c =5.69 km/sec,
p =2.45 g/cm', and p' =1.0 g/cm'. There is no ad-
justable parameter in the calculation. The agree-
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FIG. 5. Phase velocities of modes A, 8, and t as
functions of film thickness. Dots are experimental data
from diffraction measurements and solid curves are
calculated from Eq. (12).

ment between theory and experiment is good. The
small systematic deviation seems to stem from
neglecting the viscous stress of the boundary layer,
especially o,„jseeEq. (9)]. In the case of water
films, whose viscosity is an order of magnitude
smaller thm. MBBA, the agreement was better.

When a homeotropic nematic film in the presence
of acoustic excitation was examined under a mic-
roscope between crossed polaroids, a stripe pat-
tern was observed. Typical patterns at the feeding

d (A. in Fig. 3) are shown in Figs. 6(a) and V(a).e ge in
The acoustic waves propagated from left to rag
perpendicular to the stripes. The constrast of the
stripes was best when the polaroid axes were at
45'with respect to the stripes. Without acoustic

't t'on the view was dark. A similar pattern
was observed when the polaroids were parallel
with the polarizing axes along x and the image
plane was defocused slightly above or below the
sample. This was apparently due to the well-
known "lens effect"" in the acoustically perturbed
nematic film. With increasing acoustic power,
the stripe pattern first showed up and then became
increasingly clear. However, there was no definite
acoustic threshold power for the appearance of the
pattern. We simultaneously observed dust parti-
cles in the sample undergoing flattened vortex mo-
tion around the bright stripes in directions consis-
tent with the flow pattern shown in Fig. 2(a). Judg-

ii

i

IO

, t
l ) i i I )

l000 Pm)

IO

(b)

FIG. 6. {a) Photograph of the domain pattern induced

by acoustic streaming in a homeotropic MBBA film o
26 pm thick. Sound propagated from left to right; The
sample was e een1 b tw n crossed polaroids with their axes
at 45 with respect to the stripes. Total acoustic power
density was about 19 m/cm. The picture was over-
exposed to exhibit weaker stripes. (b) Calculated trans-
mission coefficient I/Io as a function of x from Eq. (52).
The following parameters were used in the 1 1 t'd in the calculation:

c ', kB=255 cm ', kc=526 cm-', yA/yB
't =21= o.17, p~/$B= 0.1 and total acoustic power density=

mW/cm, aside from the other parameters given in the
text.

-I
IO—

&o

IO

MBBA
44 p.m

Io

0
,
'jn,

looo (p.m)

(b)

FIG. 7. (a) Sa'We'as Fig. 6(a) for a 44-pm-thick film
at a total acoustic power density of about 4 m'Ql/cm. (b)
Calculated transmission coefficient I/Io using the para-
meters kA=239 cm, kB= 266 cmm A- - - ~, — ~ k =515cm ~,

O'A~ 4B ' & C B/ =0 48 P /P =0.33, and total acoustic power
density= 5 m'|Ar/cm.
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ing from the dust particle trajectories, the size'of
the vortices in the direction normal to the film was
about 10-20 p, m in a 30-p, m-thick sample. The
semiperiodicity of the stripe pattern was indepen-
dent of the acoustic power. Nor was there any de-,. ;.

pendence of the pattern on the length of the sample
(1-5 cm). In the long samples, the sound wave
was completely attenuated at the end so that there
was no reflection from the end and hence the stripe
pattern cannot be due to standing wave. All these
observations can be explained successfully by our
theory of flow reorientation due to acoustic stream-
ing (Sec. II).

For a given film thickness, we can calculate the
spatial variation of the optical transmission coef-
ficient of the sample between crossed polaroids
using Eq. (52) and compare with the stripe pattern
observed under microscope. In the calculations,
we used values of k's and

I
pi's obtained directly

from optical diffraction measurements. %e found
e/a' = 7.5x10 ' from the measured bulk sound at-
tenuation constant" and Qp 1 2&&10~ cm ' fr.om the
shear-wave reflection experiment' which gave
q(&g) =0.27 P. The constants n's and 5 were
then calculated from Eqs. (6) and (7). Other pa.-
rameters used in the calculation were q(0) =1.0 P
(deduced from capillary viscometer measure-
ment"), n, =-0.8 p,"n~~-n~ =0.2~ at X =0.6 gm,
and +33 0.7x 10 ' dyn. " Since the re lative phase s
of p's were unknown, they were used as adjustable
parameters to fit the observed pattern. Among
the measured quantities the absolute amplitudes of
the acoustic modes were by far the least accurate
because of the instability of the water coupler ( W
in Fig. 3). They were only reproducible to within

50%, while the relative amplitudes remained un-
changed. Therefore, in the calculation, we also
adjusted the absolute amplitudes within our ex-
perimental accuracy to obtain the best fit. Two
examples of the calculated transmission patterns
are shown in Figs. 6(b) and 7(b) corresponding to
the experimental conditions which led to the ob-
served patterns in Figs. 6(a) and V(a), respective. -
ly. The agreement between theory and experiment
is very good. The maximum tilt angle of the di-
rector in these cases was 15'-20' and hence Eq.
(50) was valid.

For a thin sample such as in the cases of Figs.
6 and 7, mode ff is dominant. Since (kc -ks)
»(ks -k„)in a thin sample, the stripe domain
period at the feeding edge was given by 2s/(kc
-ks). In Fig. 8 we compare the observed periodi-
city (bars) with 2v/(kc —ks) (open circles) calcu-
lated from the data of the diffraction measurement
shown in Fig. 5. The agreement is very good.

At low-yower levels, the transmission coeffi-
cient is proportional to the eighth power of the

Feeding Edge

80-
:Terminoting Edge

' 277
C+"8

70—
rw

so
I

50
I i I

30 40
Fitm Thickness (pm)

FIG. 8. Comparison of observed periodicities (bars)
of stripe domain patterns with calculated values (open
circles) of 27r/(kc- ks) at the feeding edge and of
2v/(ks+kz) at the terminating edge. ks and kc were
obtained from Fig. '5. Curves are guides to the eye.

(0)

, 500 pm,
I

M BBA 60 pm

PEG. 9. Patterns observed in an MBBA film under
high-acoustic excitation. {a}Showing colored striation
(isochromate). (b) Showing dynamic scattering mode.

sound amylitude or the apylied voltage on the sur-
face wave transducer since from Egs. (51) and
(52), we find I/I, -b, ' 8 I val I v, l Thus, the
pattern showed up suddenly with increase of acou-
stic power but there was no definite threshold. As
the acoustic power was increased further, colored
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striations (isochromate) began to appear within
each stripe [Fig. 9(a)], and then the molecules
could not sustain the homeotropic alignment so
that disclinations (apparently 90' walls) grew from
the feeding edge. At yet higher-power level, the
director orientation was completely randomized,
and the disclination lines tumbled around in a way
resembling the dynamic scattering mode [Fig. 9(b)].
In the entire process, there was no apparent dis-
continuous change. The ratio of the power at which
the peak intensity of the first stripe reaches a
maximum to that of the dynamic scattering mode
was about 1 to 3 for all film thicknesses.

A pattern of much shorter periodicity was found
at the terminating edge (fI in Fig. 3) of the sample
as shown in Fig. 10(a). In this case, the film was
26 p, m thick and about 1.5 cm long. It was found
that towards the end the periodicity was equal to
2n/(k~ +kc). Diffraction measurement showed that
both mode A. and mode C were rather weak in com-
parison with mode &, and that the forward propa-
gating mode Q was almost completely attenuated
towards the middle of the sample. Mode ~, how-

ever, remained strong and propagated to the end
of the film. There, the wave was partially trans-

(a) Ho m eat ro pic

II~I
' 'I t%) &

I
(b) Homogeneous

I

5QQ p. m

MBBA 26 p.m

FlG. 10. Domain patterns induced by acoustic stream-
ing at the terminating edge of a 26-pm thick MBBA film.
(a) ith a homeotropic alignment observed between
crossed polaroids. (b) gath a homogeneous alignment
along the wave propagation direction x observed between
parallel polaroids with the polarizing axis along x. The
end of the film is on the right.

mitted as free Hayleigh wave on glass, partially
reflected as mode &, and partially reflected as
modes g and t". Mixing of various forward and
backward propagating modes again produced acou-
stic streaming which led to the observed stripe
domain pattern. The shortest domain period was
given by 2m/(k~+kc), resulting from mixing of the
forward propagating mode gg with the backward
propagating mode Q. That the pattern was not pro-
duced by reflected waves from the glass edge was
ascertained by the fact that the pattern remained
unchanged when the glass plates were extended far
beyond the nematic film. The pattern was also
seen near trapped air bubbles for the same reason.
When the sample was long (~5 cm), all modes were
extinguished by attenuation towards the end of the
film and hence no pattern was observed at the end
of the film. We show in Fig. 8 the observed peri-
odicities at the terminating edge in comparison
with the calculated values of 2v/(k~ +Ac) for dif-
ferent film thicknesses.

We found similar effects in homogeneous sam-
ples where the molecular alignment was initially
along x. In this case, the semiperiodic pattern
was most easily observed with parallel polarizers.
The light polarization was along x and the pattern
was created by the lens effect. ' This lens effect
was again due to molecular reorientation induced
by the acoustic streaming and therefore the result-
ant domain pattern with its semiperiodicity was
essentially the same as that in the homeotropic
case. In particular, the periodicities of the pat-
tern at the feeding edge and at the terminating end
of the film are the same as those in the homeo-
tropic case. As an example, we show in Fig. 10(b)
the observed pattern in the homogeneous case at
the end of a 26-p, m-thick sample. Higher acoustic
power was needed to create the pattern in the
homogeneous case because the shear term respon-
sible for inducing molecular orientation was now

sv. /sx. This was weak compared to sv„/sz which
was dominant but had little effect on the molecular
orientation in the homogeneous geometry. "

It was previous1y suggested by Kapustina and
Statnikov' that the semiperiodic pattern could be
caused by oscillating directors in the nematic
boundary layer driven by the propagating surface
acoustic wave through viscoelasticity. Such an
explanation has many difficulties. In our experi-
ment, besides the above-mentioned observations
related to flow alignment of molecules, we found
further direct evidence against this explanation.
When we defocused the microscope above and be-
low the film we observed, with convergent illumi-
nation, neighboring stripes shifted in opposite di-
rections as shown in Fig. 11. This can only be ex-
plained by stationary molecular orientation in the
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(c); '.

bulk of the nematic film. The explanation is
sketched in Fig. 12. As in Fig. 2, the tilt of the
molecules varied semiperiodically along x under
acoustic excitation. The optical rays from the left
passing through the regions with molecules tilted
to the left saw more birefringence and experienced
more rotation of polarization. Those passing
through the regions with molecules tilted to the
right experienced less rotation of polarization.
The converse was true for optical rays coming

Analyzer

Opticol
Axis

Nemotic
Fi!m

olarizer

FIG. 12. Schematic drawing to explain the effect
shown in Fig. 11. See the text.

MBBA 44 p. m

I?3 MHz

FIG. 11. Domain patterns observed in a 44-pm-thick
MBBA film when the microscope was (a) defocused up
from the middle of the sample by 200 pm, (b) in focus,
and (c) defocused below the middle of the sample by 200
PIIl.

from the right. As a result, Fig. 12 shows that
two neighboring stripes in a semiperiodic domain
pattern were actually obtained from optical rays
coming from opposite directions. Therefore, de-
focusing above or below the center of the film
moved two neighboring stripes either farther apart
or closer together. This effect disappeared when
parallel illuminating beam was used. We further
noted that the turn-off time of the domain pattern
was longer for thicker samples (-1 sec for a 60-
p, m film). This cannot be understood by the model
assuming only molecular reorientation in the
boundary layer, ' but can be easily understood as
due. to slow healing of the deformed director as in
the case of William's domains. " The acoustic in-
tensity needed to produce the domain pattern de-
creased rapidly with increase of sample thickness.
This is also contradictory to the model of Ref. 5
where it would predict no such acoustic power de-
pendence as long as the sample thickness is larger
than the penetration depth 5, '.

From the calculations in Sec. II, it is clear that
acoustic streaming of this type is not unique to
liquid crystals. We have in fact observed almost
identical flow patterns of suspended particles in
water films. The fluid motion in water turned out
to be more vigorous than that in MBBA at the same
acoustic power. This is because the driving force
for acoustic streaming is mainly governed by q(&u),
which in MBBA is much lower than the viscosity
for the steady flow q(0) but in water is nearly the
same as q(0).

We have also examined homeotropic films of a
smectic-A liquid crystal CBOOA (p-cyanobenzyli-
dene-p-n-octyloxyaniline). The steady driving
force F [Eq. (38)] should also appear in a sand-
wiched smectic film when subjected to surface
wave excitation. Due to the smectic layered struc-
ture, however, it is extremely difficult to create
fluid flow in the material. Moreover, tilting of
molecules with respect to the layer normal would
be energetically very unfavorable. Accordingly,
we could not observe any induced birefringence in
the smectic film with high acoustic excitations up
to the point where disclination lines started to ap-
pear.

V. CONCLUSIONS

A surface Rayleigh wave propagating into a sand-
wiched nematic film can in general excite several
propagating acoustic modes in the film. Nonlinear
mixing of these modes in the film produces a
steady fluid flow known as acoustic streaming. Be-
cause wave vectors of different modes are differ-
ent, the resultant acoustic streaming is in the
form of vortices with semiperiodic spatial vari-
ation along the direction of wave propagation. The
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fluid flow leads to flow alignment of molecules in
the nematic film. Therefore, in the case where
original molecular alignment is uniform, the vor-
tical acoustic streaming produces a semiperiodic
reorientation of the directors in the nematic film
and hence a semiperiodic birefringence pattern.
Then when observed with a proper polarizer-
analyzer combination, one finds a semiperiodic
stripe domain pattern. We have formulated the
theory and shown that the theory can indeed ex-
plain quantitatively the experimental observation.

We believe the theory can also be used to ex-
plain the results of other shear wave experiments,
such as the one reported in Ref. 4. In these ex-
periments, there should be no definite threshold
acoustic power for any observed phenomenon re-
sulting from acoustic streaming. However, at low

power level the visibility of the phenomenon may
increase rather suddenly with increase of the acou-

~ stic power since the small induced birefringence is
proportional to the fourth power of the acoustic
ampl. itudes.

The situation may be completely different in the
case" where homogeneous bulk sound wave propa-
gates along the normal of a homeotropic nematic
film. In Helfrich's model, anisotropic interaction
of sound wave with the oriented molecules is es-
sential to cause the molecular reorientation and a
fluid flow; the intensity of the sound wave is as-
sumed to be uniform throughout the sample.
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APPENDIX

We calculate here the uniform streaming caused
by mixing of a mode with itself. We use Eqs. (25)-
(27) and (38) to find the driving force F for the uni-
form streaming and then the streaming velocity v,.
The homogeneous solution for v2 in this case is of
the form v2„=D7+Dsg and y& =v2, =O. Knowing

v2, we can obtain the tilt angle 8 from Eq. (51).
As an example, we have calculated the tilt angle
8(x,z) induced by a uniform streaming in a 44-gm-
thick film at 5-mW/cm acoustic power. The maxi-
mum value is 2'at z =~12 p. m. This is negligible
in comparison with the maximum tilt angle of -15
induced by the nonuniform stx earning calculated in
Sec. II. Physically, one may argue that the uni-
form streaming which is symmetric in z and has
four nodes along z is energetically more difficult
to drive than the nonuniform vortical streaming
which is asymmetric inc Isee Fig. 2(a)] and has
three nodes along z.
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