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This paper is concerned with the generalized kinetic equation for the motion of a test particle in a weakly-
coupled classical fluid. The distribution function for the test particle satisfies a generalized Fokker-Planck
equation in velocity. The equation has “memory” and a diffusion tensor that is time and velocity dependent.
We study the case of the relaxation of a spatially uniform distribution in considerable detail. In particular, we
find that the coupling of interaction, velocity, time, and mass ratio make questionable the traditional methods

of solution by expansion in a small parameter.

I. INTRODUCTION

The generalized kinetic equation has come to
play an important role in modern statistical mech-
anics. Such an equation, free of the limitations of
low density, low frequency, and long wavelength
that characterize Boltzmann’s equation, is an ideal
starting point for the analysis of fluctuation and
relaxation in many-body systems. Generalized
equations have been particularly useful in the study
of classical fluids, and their language has begun
to appear in studies of magnetic systems, and of
plasmas near equilibrium.*~5%

The generalized equation is extremely compli- ‘
cated, and approximation is needed before much
that is interesting can be extracted. Systematic
approximation has been based upon expansion in
coupling strength, in density, and in terms of
clusters of interacting particles, while “model”
theories have been based upon the assignment of
simple functional forms to key quantities. This
paper is concerned with the former approach. It
is a study of the equation for the relaxation of a
distribution of marked particles (test particles) in
a classical system that is weakly coupled. In this
first paper, we study a homogeneous system (&
=0). Two time scales appear naturally. They are
characterized by £,, the duration of a collision,
and {,, the mean-free time between collisions.
Their ratio is ngra®, where a is the range of force.
When this quantity is set equal to zero, we obtain
a Markoffian equation that has been known and
studied for three decades. However, it is the gen-
eral case to which we turn our attention. Although
the assumption of weak coupling makes the model
a poor choice for describing a real fluid, it por-
trays, nevertheless, some interesting physics.
One finds speed, time, mass, and coupling
strength combined so that uniformly good approxi-
mations are difficult to obtain. One finds that
quantitative details of the approach to equilibrium
depend upon the shape of the two-body potential.
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And, finally, one finds that the approach is differ-
ent, for any ngra®+0, than that predicted by the
Markoffian model. If these results are not all due
to the weak-coupling approximation, they add
something to our understanding of kinetic theory.

The kinetic equation we study has the form of a
diffusion equation (Fokker-Planck equation) in
velocity. It is complicated by the fact that it has
memory. The first part of this paper is concerned
with the derivation of the equation and the study of
its key ingredient, the diffusion tensor. We use
this knowledge in the second part, to analyze the
equation itself. Since it remains too complicated
for solution in terms of elementary functions it
must, alas, be mutilated to obtain further insight.
The additional approximations are discussed in the
final technical section, where we take the muti-
lated kinetic equation as far as we can. Though
many mathematical questions remain unanswered,
the results we have obtained are being published
at this time, in the hope of stimulating further re-
search into this important subject.

II. ANALYSIS

A. Derivation of the kinetic equation

We consider a classical system of N point mas-
ses, interacting through a common two-body
force. Positions will be denoted by §;, momenta
by P;. All particles but one, the test particle, have
the same mass m,. The test-particle mass is m,..
Thus, the Hamiltonian is

N
1 ., -
H= ) 5— B+ 2, V@ -1,),
im1 Ay pairs (1)
m2=m3=.'.=mlv'

We consider a Gibbs ensemble of such systems.
The ensemble develops through Liouville’s equa-
tion, which we write
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> p(Q,P,1)=~iLP(Q, P, 1),
N

1. 8 = 9
iL = - ¢ —=5— +F;c —= 2
t};lmlp‘ X i 8pg’ ()

fdepp(Q,P,t)=1.

Here, p(Q,P,t) is the phase-space density, (@, P)
denotes (c’h- ++Py), and (@, P’) will denote (q, - qy,
Do D). F is the force experienced by the zth
particle. The initial value of the ensemble de-
scribes the subject of this paper. Itis

p(Q,P,0)= —1(‘?.13 [ 'B”')/(fdepe-BH )]

@)
7 (131)

=f(§1) I;I2 Mz(f’;)po(Q) ’ (3)

LB o)

with
fd3p1f®1)=1, dePMi®)=17

fde0<Q)=1.

In Eq. (3), we have §=1/kT, and p,(H’) is the ca-
nonical distribution; f(J,) is the (arbitrary) initial
distribution of test-particle momenta, and M;(p;)
are appropriate normalized Maxwellians. The
Hamiltonian H'’ is the Hamiltonian of Eq. (1) aug-
mented by “external forces” that constrain the
system to lie in a volume 2, and thereby ensure
convergence of the integrals in Egs. (2) and (3).
(We distinguish between H’ and H only when nec-
essary.) Note that p(@, P, 0) need not be close to
equilibrium.

We are particularly concerned with the evolution
of

f(§1,t)=fdeP'p(Q,P,t) .

To obtain an equation for f(p,,¢) we follow Zwan-
zig! and introduce an appropriate projection oper-
ator. Thus, the projector

Pp=[f(®,, t)/Mx(fh)] Po(H')=py . (4)

is idempotent and particularly useful since
(1-P)p(Q,P,0)=0. The equation for p,,

t
"éa? Py +P(iL)P" = f dTP(iL )e"‘"'(l"P)L
0

X(1=P)(EL)Py (= 17) (5)

is then closed. Next, we need some obvious pro-
perties of P,

. - d
P(lL)P=PF1‘ ?—P s
b (6)
9

B -
iLPp=TF,- ( —”71p1>Pp,

and
P(iL)Pp=0.
Thus, Eq. (5) becomes

G- [Lartet (e EB)rGe-n,

ap my
{...}:fdep/ 'F'le-if(l-P)L fl_pj_ (7
M,

Equation (7) is exact. It has the form of a “gen-
eralized Fokker-Planck” equation, but since the
quantity in curly brackets is a very complicated
operator, the similarity is superficial, at best.
We cannot proceed further without approximation.
In this paper, we explore an approximation which
might bé called “weak coupling” or “linear trajec-
tory.” It consists in writing

exp[=it(1 = P)L] -~ exp(—itL) ~ exp(—=itL,), (8)

and causes the operator in curly brackets in Eq.
(7) to become a simple function. In physical
terms, the deflection of the test particle in a col-
lision is based not upon the true paths of test and
target particles, but upon modified paths—linear
trajectories. Thoughthetest particleis deflected by
the collision, thetarget particles do not recoil, but
remain in equilibrium. The scheme resembles
the “impulse approximation” of collision theory.
It is a severe approximation, particularly for
dense systems. Yet, the system relaxes to equi-
librium, and it is possible to develop a consistent
hydrodynamics, based onweak coupling.®'?® We wish
to examine the model more closely. This, our
first paper, deals with a particularly simple class
of phenomena. We hope that it yields some insight.
In any case, it has the appeal of treating an (al-
most) solvable model in statistical mechanics.

Before beginning the analysis, we note that a
true weak-coupling theory would replace p,(Q) by
Q~¥. Thisis a second, and less-serious approxi-
mation, suggesting that the aggregate potential en-
ergy is small compared with the kinetic. We shall
defer making it, and thereby retain some static
correlations. Thus, our model extends the“linear-
trajectory approximation” (LTA) of Kirkwood and
Helfand,” who were interested primarily in its
time-averaged version.

After approximation, Eq. (7) contains the diffu-
sion tensor
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Da6(51:t):_[deP'F e’”LoF &—(—Q@—? (9a)

fdeP, 1Be“LOF1a: (9b)

M,(p,)
with
N
. 1, @
iLo= 2 m; PR,

i=1

-

Note that
f d’p,M,(B)Dog(B;, £) = f dQdPp,FyetloF

=(FF (D,

is, in the linear trajectory approximation, the
autocorrelation function for the force experienced
by the test particle. The diffusion tensor is a real
isotropic tensor function of the vector p,. It is al-
so symmetric in its indices, and symmetric in
time. The first two properties are established
upon inspection; the latter two will appear as we
evaluate the tensor.

Since po_f‘1= kT (3/04,)P,, We may also write

3 .
Ml(ﬁl)DaB(ﬁv t)=-kT fdQ dP’ p, W ettLon
18
(11)

Since

. - . 1, - 1 .
exp(ZtLo)f((L'"qN)zf(q1+7n" p1t7" "qﬂ+m pNt>y
1 N

the g4 derivative may be exchanged for p g, and
we have D,g in the form

2
Daﬂ(ﬁyt)= BB; ¢oz )

where ¢, is an isotropic vector function of p,.
Thus, we must have

Dotﬂ(ﬁ: t): (3/3Ps)[Pa¢(P,t)] > (12)

and Dyg is symmetric. A general representation
of such a tensor is

The invariants D, and D, are the diagonal elements
of Dyg in the (diagonal) representation in which D
lies along a coordinate axis. We also have

D\l = pagg Pe y D.= %(6015 prB>DaB (14)

If we compare (13) with (12) we find

aB p; t) (pBDJ.) - (pot J.) ’

(15)
Du= ':; (PD_;_) .

The fact that D, and D, are related simply, does
not seem to have been noted before.

Equations (9) and (11) may be reduced by the as-
sumption of pair forces

N —
=9 F@, -4y -
k=2

Then, Eq. (11) becomes

Daﬂ(-f)p t): ‘(N_ l)kT fd3q1d3q2d3 2pz (ﬁuﬁz)Mz(pz)

0 0 -
Xe”le Fa(?h"qz)’
945

(16)
where p, is the two-particle distribution function
(test particle +bath particle) and
R _1_ 2
ml. pl aal pz 3q2 ’

With the introduction of §=¢, -§,, and the re-
placement of momentum by velocity, Eq. (16) be-
comes

T 0
Zle_

Dog(V,t) = =n kT f d%, M,(,)

x [ @a8,@ 5 Ful@r@-9)0

(17)

where g,(@) is the static, pair correlation function
(test-particle—bath-particle) and we have gone to

_ Pabs _Dabs the limit N,Q -, N/Q =n,. M(V) now denotes the
Deap(®, 1) p? Dy(p, )+ (6"‘5 2 )D*(‘b’ 0. normalized Maxwellian for velocities. We may re-
(13) duce Eq. (9b) instead, to obtain
Jd
Das=, | dgszz(@)( [ ¢4 2. @F.@ +no Jaa [ 00'8,@ T Fo@)) Fo @+ =D, (18)

The partial integration which converts Eq. (17) to

Eq. (18) is an expression of the first equation in the

Bogoliubov-Born-Green-Kirkwood-Yvon “hier-
archy.” In the weak-coupling approximation, the

second term of Eq. (18) vanishes. In either case,

Daﬂzfdaszz(‘.,_-"lz)SDaB(‘.’zt) ’ (19)



15 KINETIC EQUATION FOR A WEAKLY-COUPLED TEST PARTICLE 2457

where D,5, as well as Dyg, is of the form

Dap= (3 /004) (vsD,) (20)
and

Dog—~ Dopg as m,/m,~0.

At this point we introduce dimensionless vari-
ables. The two-body potential will have strength
A, and range a. Thus, V=A¢(¥), =at. The ve-
locity is V={wv, where 3m w3 =kT. Then,

2 1@,0)= e—-f dr D@, 7) - <*+2u>f(ﬁt -7,
(21)

Dog(@,t)= [ @ MG~ ) Dag(), (22)

by 2
e=%n0a3<ﬁ> ,

e~ w?/6?)
M @)= G
=(my/mj), (23)

Dog(wt)= [ @' Z,) 5, Fo(F + 1),

and

[1-g,®)] .

[In the weak-coupling limit, g,(¥)=~ ¢(¥).] These
are the equations we propose to study.

There are two natural units for time, ¢,=a/vg
and £,= (ma’ngvg)~ '. The first is a collision time
for a thermal test particle, the second is a mean
free time between collisions. Their ratio, t,/¢,
=b0=n,ma’, is familiar enough. It will be small for
dilute and moderately dense gases. In Egs. (21)-—
(23) we scale with ¢,. If we prefer ¢, as the unit of
time, we obtain a kinetic equation in which

21, (Ao LAY

=) = 770 i)
is replaced by (1/4m)(A/kT)? and D(u, T) by D(u, 7/5).
The Laplace time transform of the kinetic
equation, which produces D(, s) in the first case,
produces D(’ﬁ,és) in the second. The limiting case,
6~ 0 suggests that we replace D(, 6s) byD(, 0).
Thus, we arrive at the Markoffian approximation,
to be discussed later. Finally, note that after
“scaling,” both the exact and the approximate kin-
etic equations depend upon the three dimensionless
parameters 0, nyma®, and (A/kT)%. It is the selec-
tive suppression of these in the operator kernel of
Eq. 7 that produces the weak-coupling model.

8 r)“—

B. Diffusion tensor

The most important representation of D4 is
given by Eq. (22). Yet, other representations
must be explored, for they aid in getting the vari-
ous expansion needed in the analysis of the kinetic
equation. The reader who is bored easily may wish
to proceed at once to Sec. III.

We begin by noting that Eq. (20) and partial inte-
gration give

2
Dap= i fd3w Wy ~uy)wgM (G -W)D, (wt),

(24)

whence

1 > -
u®D, B fdsw @XM G- W)D, (wt),

WDy = 2 [ dw @ F )@ MG =)D, (1)

(25)
On the other hand, partial integration also gives

ule=fd3w M@ - %)@ D, (wt) . 26)

In both instances, D, = (d/du)uD,).
If the potential has a Fourier transform

‘P(—f) f (2 )3 e‘-i.;¢(ﬁ))

we find

3 - >
Das(¥1)= | s Rl () e T F, (21)

where ¥(K) = ¢ (K)g,(K). Since these functions de-
pend upon the magnitude of k only, we may do the
angle integration in Eq. (27). The identity

a s a s l( aaa§>< f_) sina
f AT Qaf2pe - 2 éaﬂ— a? 1+ aa’ a

asag 9 sing
a® aa® a

enables us to deduce

<®|I(Wt)> 5 2_[ dz Y(z)z* (f“(zwt)> , (27a)

D, (wt) Si(zwt)
with
£1@)= (smz) , fl(z)'_'%(l“*aﬁz;) sinz . (2Th)

We also need the Laplace transforms
9cxs(ay S) = f dat e-St:DctB(&t)
[\]

a’k (k)
2m)3 ko kg s—ikew

(28)
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and
Dop(@, s) = f &w M (T~ W) Dp(W, 5) . (29)

The Fourier transforms of D, and D, also play a
role in our analysis. One finds

<®J.(wt)> sz <‘P,L(k)) tkwt, (30)
@u (wt) - ‘Pu (k)

where
o= f T dk k()= [95(8) - o, ()],
kR

lP" = kzq) 1(k) ’

and we have introduced

)= [ SRR

[¢, will be used to denote ¢,(k=0) occasionally.]
The requirement that ¢, and ¢, exist limits the
Fourier-transformable potentials for which much
of our analysis holds. We shall also require that
a few terms in the expansion of ¢, and ¢; about
k=0 exist. The constraints at large and small &
would exclude Coulomb behavior at large and
small 7.

Returning to Daﬂ, we note that

Deo@t)= [ G55 kaks 0(8) expliR- it =2 O17],

(31)

courtesy of Eqs. (22) and (27). By analogy with
Eqgs. (27a) and (27b) we have

<D" (u’t)> o 2[ dzy(z)zt " @97 (f‘ (zut)> ,

D, (,t)/ S (zut)
(32)
and, by analogy with Eq. (30),
D, (ut,6t)= f 57 Vulk, ot)etrut |
¥, (%, 0t) =3 [®4(k, 6t) - D (%, 08)] , (33)

& ,(k, 0t) = fh %k"e‘ ®%/9© %y (p)

A similar expression holds for D, (ut, 6t). Finally
we have the Laplace transform of Eq. (31) which
introduces the function w (z) = exp(~z2) erfc(—iz).
One finds

Dasl@5)= J 1ok ks b8 1 w(e), o
z=i(s —iK-0)/k6 .

Similar mathematical expressions occur in the
literature of plasma physics.

Since the diffusion tensor is a complicated func-
tion of its arguments and the law of force, it is
useful to have a special example to contemplate.
We select the Gaussian potential ¢ (7) = exp(-7?),
¢ (k) =m3?exp(~5F%). Then, we have, in the weak-
coupling case:

T 3/2
:I)l(ut) = (5) e—(ut)2/2 ,

3/2 2
Dy (ut) = <'21> [1-(ut)?]e /2 (35)

_(1\*/? exp{ - 3(ut)?/[1+3(61)%] }
S)J_(ut,et)—<§> i +%(Gt)2]5/2 ’

9
Dy (ut, 60)=2-@D,) -

For the D tensor, the Laplace transforms are

u®, (u,s)=1r*w(o) ,

(36)
u®, u, s)=31%'20[1 =7 ow (io)],

where o =s/(2u)/?. The coefficients ¢,,,
=722"/2717(n/2 +1). Reference to Eq. (32) shows
that the ¢~° behavior is characteristic of the weak-
coupling case, holding for any potential that is fin-
ite at»=0.

[It has been remarked that it is possible to mimic
an attractive potential by combining Gaussians. It
would be interesting to see what ensues. Of
course, one is not limited to Gaussian potentials.
For example, the Lorentzian, (#*+a?)~* has an
easy transform, and one might use it to illustrate
the effects of long-ranged interactions. These
questions belong to a later paper.]

C. Autocorrelation function for force

Before descending into a detailed study of the
diffusion tensor, we consider Eq. (10), the expres-
sion for the autocorrelation of force, in the ap-
proximate theory. Thus,

(FleFla(t»o:fd3p1M1(-§1)Duﬁ(§pt)

f(f fdsszl(vl)Mz(vl—vz) s(Vat)

- f A% My(V,)Das(V5 1) 37

where we have reverted to “dimensional” variables.
The Maxwellian M,(V,) is characterized by the re-
duced mass m,=m,m,/(m,+m,). Interms of di-
mensionless variables,
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(FLBFla(t))0=n(,a7\2fd3w M (W) Dyp(WE)
(38)

(F,* F,(t), =n,ar%8mn f dw w*M (W) D, wt)
0

_4ngar® o, 901

n e Y

0o

where
M (S = (?/0h g2 lomm,
4(W)_W’ N T

and we have used trace D,z=div(WD,) to.aid the
calculation. The form of the last integral suggests
that the long-time behavior is powerlaw. Itiseasy
to see that the relaxation is ¢™°. The particular
case of the Gaussian potential gives

= = A 2 1
(Fl-Fl(t))o=3<—2—> N 10,077 (39)

with ¢ measured in collision times ¢,=a/vz.® Thus,
the weak-coupling approximation is not a uniform
approximation. Very likely the expansion in den-
sity has the same defect.

Another aspect of Eq. (39) is that it can be inte-
grated to obtain an approximate coefficient of self-
diffusion. A Kubo-Zwanzig relation gives

1

R
3‘§T; 3(kaT)? (F,* Fi(s)

€ ¢

0, vga

4
RN

_ 1 (ma®)(A%,) (m3>‘/2 _

3¢ (kgT)"® \2m,

27 (40)

If we compare this result with that arising from
the classical analysis of the Boltzmann equation,®
we note that the dependence upon density and mass
are alike, but that the 3 power of T suggests a
potential that is inverse-square repulsive. Though
the comparison ought not to be taken too seriously,
it is nice to see that the “corresponding” force is

" weak, and Fourier transformable. Of course, the

2459

weak-coupling analysis gives T2

potential.

independent of

D. Diffusion tensor (details)
1. Positivity

Both tensors D(U, t) and Dyg(Wt) are real iso-
tropic tensor functions of velocity. In the case of
weak coupling [¢ (%)~ ¢3(k)] the longitudinal and
transverse components of the Laplace-transformed
tensor are positive for positive s. This is not nec-
essarily so in the LTA. Positivity enables us to
rule out solutions to the kinetic equation which
grow exponentially at large time (see Appendix A).
Thus, the LTA “lies under a cloud.” Situations of
this sort have been remarked upon before, under
the notion of stability of the approximation.®

2. Analyticity

We shall be interested in D, (u, s) as a function of
complex u?, for s real and positive. The general
case is difficult, but the Gaussian case is easy.
There, one expands the exponential and observes
that D, is entire in u?

3. Dependence upon mass-ratio

"The dependence of D upon velocity and tirr}.e is
particularly simple. ®=D(t). The tensor D is a
function of velocity, time, and mass ratio [as well
as parameters appearing in g.(_x")]; Inspection of
Eas. (22) and (24) shows that D=D(dt, 6t), or
D,[®/06),6t]. Thus, expansion in terms of 6, the
mass ratio, cannot lead to solutions which are ac-
curate for all values of time. The expansion is
nonuniform. Mindful of this caveat, we neverthe-
less single out two limiting cases. In the first 8
-0 and D@, 6t)~ D(Ut). We call this the Lorentz,
or L limit. Here, the host, or background particles
are infinitely massive. No “thermalization” takes
place. The second limit is 6 ~«. Then D assumes
a form which is independent of U, and is coupled
to the long-time behavior. We denote this the
Brownian limit, for it gives (yet another) model
for Brownian motion. Specifically, the L limit—
and higher terms—are generated by expanding
Eq. (22):

- -~ 1 o2 - -~
Dap= fdsw M x(a —w) <®aB(Ut)+ 3 Dy = W)ty = W) ——— Dgte - ) =Dog(0t) +3 (02)*[ViDep(X)], .+,
i Bt 0u; X=T¢

or, through Eq. (31),
- a3k %5
Dag= Do) =4 (61" [ Gay® ke FUR) e

(42)

(41)

The function D, is represented compactly through
Eq. (33). We find the mass expansion

¥, (k, 08) =9, (k) = =5 (61)*[p 5(k) — BP(R)] +- - .
(43)
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Since all ¢, exist only for special potentials, we
infer that the expansion will produce singular
terms when extended to sufficiently high order.
Note that the small-6 approximation is in fact, 6¢
-0, ut=const, as one expects. For the Gaussian
potential we have

Dl(ut, ot) = ('é"ﬁ)s/ze_ (ut)z/z{l —%(et)z[l _%(ut)Z] Foee .

The Brownian limit may be obtained from an ex-
pansion which gives the long-time (6¢> 1) behavior
as well. We write Eq. (26) as

2 2 .
xD;(x,Gt)=We' zf dy y*D, (y61)
0

1
X f ann exp[-y*+2xyn] , (44)
-1

with x =4/6, and note that the exponential gener-
ates the Hermite polynomials. Then, the heavy-
mass expansion is

muuﬂﬂ~£¢f”§:ﬂ””$ﬁl, (45)

n=odd

with
1 d Hp,o(x)
an(x)= (n+2)! i x

and

o =f dyy"®, ().

0

The moments of D, (y) may be expressed in terms
of derivative of ¥, or ¥, and one finds that the
dominant terms at long times are affécted by the
potential at large distances. The first term gives
D, independent of x, so that the diffusion tensor
is isotropic, and independent of velocity. This
limiting form has been used by several investiga-
tors in studies of Brownian motion.®**' The par-
ticular behavior, (6¢)"°% is characteristic of the
weak-~coupling model. For the Gaussian potential,
the expression is

D*(x’et)z(g/z (eet): [ @ (- 2)+ ]
(46)

4. Large and small speeds and times

Expansions for small speeds may be generated
by considering ut small, and ¢ fixed. Forut<1,
the easiest expansion is via Eq. (33). Thus,

D, (ut, 6t)= f —'IIL(k 08)[1 -3 (ut)?++++]

=55 (20,00 - 5

(0, 1) )+ >,
(47)

Dy (ut, 9t)=§l-< 40, ot) - 3 (0, 0t)@t)? +«+ .> s

with
®,(0, 6t)= f ———k" Y(k) e~ F@n?/a

Note that the tensor is isotropic as ut -0 (the test
particle becomes stationary) and that the expansion
appears well behaved as long as 6¢+#0. The be-
havior at large speeds is not easy to extract.
Since we do not need the information—we need it
for the Laplace transformed tensor—we eschew
its calculation here.

The time dependence of D,g lies close at hand.
For short times (ut < 1,0t < 1) we expand Eq. (47)
to get

DJ_<%,9L‘> =‘¢>4 q>6[1+ < ) Bt) e |
Dn(% ) 9t)=—3}1;{¢4- %% [1+ %<%>2](6t)2+-’- } .

(48)
For long times, and u fixed, we simply refer to
expansion (45).

5. Laplace transformed tensor

Since we shall study the kinetic equation in its
Laplace-transformed version, Dae(ﬁ, s) is particu-
larly important. It is no surprise that D, (u, s) and
D,(u, s) are analytic in the half-plane. Res >0,
when 0 <u<w. The tensor components have a weak
singularity at s=0. Inspection of Eq. (32) or Eq.
(45) or the specific example of Eq. (35) shows ¢~5
behavior before transformation. Thus we expect
a singularity ~s*Ins. An Abelian theorem, ap-
plied to Eq. (45) gives
-(u/0)2

uD, (u,s)~ %— e
<[5 orme () 3) Tme e

for the singulav part of uD, (u,s). A similar ex-
pression holds for D («, s).

One would not expect this singularity to give the
behavior of the distribution function at long times.
It gives the t~° relaxation, characteristic of the
short time scale. The relaxation at longer times
is provided by the structure of the kinetic equation
itself. We shall find that the regular part of
Dus(U, s) near s=0 is important then. To get at
this portion, recall Eq. (32). The Laplace trans-
form of D; may be written

D, (u,s)= f ——k3 k)F”<ku ;;)

(50)

FH(U) (M)=;1 <(7 + jo‘m dte“”(‘)[cptt - (¢t)2]§{t_ni)’



15 KINETIC EQUATION FOR A WEAKLY-COUPLED TEST PARTICLE 2461

where ¢(t)=ot+a’? The function F (0, @) is ana-
lytic in a neighborhood of o =0, and the coefficients
of 0" may be computed by expanding the exponen-
tial, aslongas a®>0. The nonanalyticity of D,
arises from the subsequent integration over 2. One
can go ton=3 for the smooth potentials we are
considering, before encountering the singularity
s*1ns. In any case, the coefficients may be ex-
pressed in terms of the integrals

f,,(a)=j dte " sint, (n=-1,0,1,...),
0

which belong to the family of error functions
[f-.(a) =37 erf(1/2a)], for example. But the func-
tions themselves are too complicated to afford in-
sight. It is their large u (small @) limits that are
particularly important.

We may use standard techniques in getting ex-
pansions of the f, (= 0) for large «. In particular,
the f, for n odd are purely exponential and are
dominated by those for n even, which are 0(1) as
u/8~o, and are expressible as a series of powers
of 1/u. When the algebra is completed we find

1

1 0? 3 o2
Dy~ 7 ¢ 5 +S¢z?z¢?<1"2‘ 7+>

1 1 2 9?
2 . 3 —_ —— L ees
S0, 57 +5%00 i (1=5 Sy 4e) (6D
plus singular parts. In another grouping, accord-
ing to powers of 1/u,

1 1 1 1 o\ s
. 9) = bs= 0o [0 oG |
12 0\ s

‘%’[E“"*"%(?HF*“"

st -Ho-do )5

U

Ao dofd

We also need the behavior of D, and D, near «
=0, for arbitrary s. The calculation is straight-
forward. We may expand f, and f, to get a series
in«®. For example,

Dyl,s)= D

N=05254 0 ¢

(52)

c,,u"f ‘;—1’: Y(k)E®
(4]

X fdt e-ottne-eztz/é , (53)
(/]

with o =s/k. The inner integrals are entire func-
tions of ¢, related, again, to error functions. For
P(k) positive—as it is in the weakly-coupled Gaus-
sian case—the coefficients of #" do not vanish for

s real and >0, and have the same signs as the C,,
which oscillate. It is apparent that each of the co-
efficients has the s*lns singularity.

6. Markoffian limit

This limit is reached when 6=¢,/¢,~ 0 [see the
discussion following Eq. (21)]. If we replace
Dos(, s) by Daﬂ(ﬁ, 0) in the kinetic equation, we are
treating the equation “in the Markoffian limit.”
Memory has been suppressed, and correlations in
the diffusion tensor relax instantaneously when
compared with the relaxation of the distribution
function. This is the traditional form of the kinetic
equation. [Note that®, =D, (6 =0) vanishesass - 0.
This reflects the fact that in the Lorentz model,
the energy of the test particle is conserved in a
collision.]

D,(u,0) and D, (u, 0) may be obtained from equa-
tions like Eq. (50) at s=0. For variety, we give
another approach, based on Eq. (22). Thus,

D@, $) = Dop(@, 0) = f Pw MG -

w W 1
X <6aﬁ - —'Tav_zi> '—w— P35 (54)

- >
u-w
uw

1y (4 1 =4
~4¢3<dx +2x>2xerfx < —9>,

1 d/d 1
Dn(u,0)=~4§ 0} Ex_<;i; +2x>—2;erfx .

uD, (u, d) =50, fdzw M 4(T~ W)
(55)

Equation (54), with § ¢, replaced by 2m(e%/m)?InA,
is well known in plasma physics.

The Markoffian expression is equivalent to that
given originally by Chandrasekhar'? and then by
others. Our form is more compact. If the expo-
nentially small portions are neglected, we have

- Dy, 0) ~50,0°/u®, (56)
uD, (u,0) ~ 151 -6%/2u?).

These expressions were used by Mazo and Resi-
bois®® (MR) in a study of the Markoffian kinetic
equation for small mass ratio. Since the mass
ratio occurs in combination with the velocity, the
approximation, 6 small, is not uniform in« and
fails in a region of width 6, near x=0. However,
the gain in analytical simplicity is considerable.
We shall return to the “MR” model.

One can proceed to a “post-Markoffian approxi-
mation” by including the term proportional to s in
the expansion of Eq. (50). We must evaluate the
integrals f, and f,, whence we find

D(u,s) ~Du(u,0)+s}%% [1 __2:9lc—2 <3 - x%)fo] ,

2 (57)
fo==Vmixe™* erf(ix) .

The expansion in s, which is at best, asymptotic,
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does not give a sequence of approximations uniform
inu. One sees this from Eq. (52) for uD,. The
' Markoffian approximation gives uD, ~ 1,022 at
large speeds, while the post-Markoffian gives (1/
T)$,su"!, which dominates when s#0. Thus, one
anticipates that the Markoffian kinetic equation
does not give accurate information about the dis-
tribution of high-speed particles at long times.
One also notes the distinction between 6 # 0 and the
Lorentz model, §=0. For that reason, the latter
case will be treated separately.*

Figures 1-3 display D, (¥, s) and D, (u, s) for the
Gaussian potential. The Markoffian components
depend only upon #/6. The non-Markoffians are
computed for 6=1.

III. KINETIC.EQUATION

We shall analyze the kinetic equation in two
stages. First, we discuss general properties of
the equation and its solutions, as far as we can.
Then, since the solutions are not expressible in
terms of elementary functions, and do not lend
themselves to numerical computation, we shall

1.0 ; I . ; : .
o ]
os} _
Dy, Oux) 1
o6l -
0.4} -
5 Dy (x) 4
0.2 -
L | ! | L | L
o] | 2 3 4
=4
X=73

FIG. 1. Components of the Markoffian D tensor,
Dygtu,s=0). D, and D, depend only upon x=u/6.' They
have been reduced in scale for ease of presentation,
The corresponding functions of Figs. 2 and 3 are %-1r3/ 2
times larger. In all cases, the Gaussian potential is
used.

1.2 $:005

0.6 ~
$=3.05

s=6.05

0.2} =

FIG. 2. Laplace transform of the time dependent D, .
s may be thought of as inverse time; the scale is in
terms of the collision time, ;.

discuss simpler equations, which retain the im-
portant features of the weak-coupled equation.

The kinetic equation, Eq. (21), is best analyzed
through Laplace transformation. Thus,

1.8 T T T T
6=1
1.6} -
s=0,05
1.4l -
I.2F —
.D‘L(U'S)
1.0F —
0.8F .
0.6 .
0.4} 3
s =6.05
0.2 -
1 A 1 1
0 0.5 1.0 .5 2.0 2.5

FIG. 3. Laplace transform of the time dependent D, .
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¢ 2= B(,s)- (g’ﬁ— +2ﬁ>f(ﬁ, s) = sf@, s) = =f(G, £=0)
' (58)
or
&L py,9)( &+ 20) 1@, 9)+ 5 .0, VLS, )
=Sf(ﬁ, s) —f(ﬁ;t=0) s
where

VZ—L _a._singi.,_i_ .?i_ '
* sing o 39  sin’d ag?’
and U= (x,9,9). An expansion of (@, s) in spheri-
cal harmonics

f@,s)= Z Fim@,8)Y 8, 0)

produces

¢ diuuZD“<diu + Zu) Fimtey $)=[s62 + €l + 1)D ] funlt, 5)

= —ufip(u,t=0). (59)

In the particular case of the Green’s function
u?f(8,t=0)=062{ —,)8(u —u,) and the right-hand
side of Eq. (59) becomes =0 —u,)Y 79y, ¢,). In
the future, we neglect m dependence, and denote
Sim,t=0) by ().

We get another useful form of Eq. (58) by writing
f; = exp(-u®)g;. Then

d 2 d 2
e—d—l:uze U Duag,—[suz+el(l+1)Dl]e g

= —u? ). (60)

Often, we denote the function uze"‘zD“ by Au,s).

A is positive for « >0 and s real and positive. An-
other useful equation is generated through g;
=A"Y%n,(u,s). We have

ddTZZ'hl(u’s)-vl(u}s)e)hl(u7s)=%@’ (61)

with

s _I(I+1) D,
v €D|| * uz D“

b () (62)

We may bring the equation to a more familiar
form if we make the Schwarz transformation

oy 8) = @—;T/EHx(é‘,S),

with

_dé _ 1-

Then,

T HIE )+ D= (8, ) H, (5, )

1 (Dy\?
-—wn(3), e
with
A==s/e, A1=A/(D“)1/2=u2€—“2(Du)1/2:

and

wi (€, 5) = l(lui 1

DL+ OB - (64)

The homogeneous form of Eq. (63) is an equation
of the Schrddinger type, with eigenvalue A, and ef-
fective potential w,(§,s). Both forms of the equa-
tion will be used ahead. Effective potentials are
displayed in Figs. 4-6.

A. “Potentials” v, and w,

We consider these complicated expressions for
s real and non-negative. Since D, and D, are reg-
ular functions of u, free of zeros for finite », the
potentials are also regular functions. We begin
with v;. Expansion in u# gives

v,(u, s) =l—(l1£—2-—}—) +0O(s) +v@(shu® ++ - (65)

for small . The coefficients are, for example,
Co($)0u, $) = =3c,(s) +s/€ + [3 =3 1(L +1)]c,(s),
where
Dy, 8)=co(s) +cy(S)u? +o+
[see Eq. (53)]. The coefficients c,(s) have branch

0.5 T T T T T

L L L 1

|
0 5 10 15 20 25 3

13

FIG. 4. Markoffian “potential” for =0, wy(§). Note
the possibility of a “bound state of zero energy’—the
Maxwellian. The slow decrease of w, with increasing
¢ indicates a singular potential with continuous spectrum.
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points at s =0. The weak, logarithmic singularity
has been described earlier. This representation
for v,;(u, s) is continuous as s -0, the Markoffian
limit being obtained by replacing c,(s) by c,,(0).
The situation is different when « is large, for
the expansion is not so well behaved. We have

e 2o ook
(66)

with €,= (¢/m)$,. The terms involving € come from
s/eD,,, which is the important term in this region.
Note that the coefficients diverge as s—0, so that
Eq. (66) does not give the correct form, which is

3 1(1+1) < 6*

v,(u,0)=u2+m+ o2 l-z—uz- oo,

where the remaining terms (-« +) are exponentially
small. On the other hand, the Markoffian kinetic
equation produces

Ufl(u, S)=(S/€§2)u3+vl(u, 0)’ 5?.:%95392: (67)

whose leading term is quite different from that of
Eq. (66). The potentials are illustrated in Figs.
4-6. Note that the =0 potential has a negative

14

12

M
Vg (U,0)
10

FIG. 5. Function v¥,s), another Markoffian “poten-
tial,” in the limit s —0. The 7 =0 potential shows the
possibility of a state of zero energy—the Maxwellian—
as t—c, The [ =0 potential has the characteristic
“centrifugal barrier,” and admits no zero-energy states.

portion near »=0. In fact, v¥(0,0)=-3(1+3/56%).
If we make further approximation, and take Eq.
(56a) seriously for all u, we find

s 3
vMR @y, 0)=— ud+u’+——3,

€b, du

1i+1 6°
viﬂ(u,o)=v§m+“(‘éi;"l (1— 277) ,

(677)

characterized by pathologic behavior as u - 0.
Turning to w;(£,s), we note that since D, (0, s) does
not vanish, £ isproportional toy whenu is small, and
w, (£, s) resemblesv,(u, s) inthatregion. Thus, w,
~A,(s)/E%for 1 >0, w; - —B(s) for I=0. Whenu is
large, £ islarge, butthe relationship is singular at

s =0. Details may be extracted from the alternate
form

w1(8,9)= g [75 (B
ol

_(/AE) I(l+1) D,
- QAEu'V * uty Dy ” (68a)

We note that when « is large, the first term domin-

u

FIG. 6.. Function v},s) for various s. Note that this
“potential” whose time dependence governs the relaxa-
tion of the distribution function at long time, relaxes
according to the long (slow) time scale, whose unit is
€ty.



ates. Then,
1 242 21 1
(68.b)

with a,= (1/7)¢,;a,=1¢,0% —5¢,s%. The singularity
at s=0 is apparent. Otherwise, the function has
simple behavior. The Markoffian version is

1 1 1
wl©)=5 0 (G - g =) 69

with b =26(¢,)"/2. We are reminded of the Schr&d-
inger equation for a particle in a potential that is
of extremely long range.

B. Boundary conditions

The boundary conditions come from the require-
ment that f(V,t) be positive and integrable in any
region of ¥ space. Further, [ d% f(¥,t) is inde-
pendent of time. When applied to Eq. (58) the lat-
ter gives

©

{u Dy (u, s)( +2u>f0(u s)j\ =0 (70)

or

[A(u, s) %go]o =0

for the particular case, [=0. Since the solutions
to the homogeneous equation behave as g,
~u"'exp(+u) for small #, Eq. (70) enables one to
reject one solution. In the case of 1 >0, one finds
g ~u',u"%* D, and we reject the singular solution.
In both cases, the solution retained behaves prop-
erly as u—o.

Finally, it is interesting to note that the kinetic
equation based upon Eq. (56) yields solutions
(1=0)g,=1+au®+°++,g,=u?(1+bu®+-++) which re-
spond to Eq. (70). Thus, one may speak of particle
conservation in that case. When!>0, one must
face the approximate D, (x,0) which has the wrong
sign at #=0, in addition to being singular. There
is not much point pursuing the model further.

1. Aspects of the solution

As usual, the Maxwellian distribution plays a
special role in the solution of the kinetic equation.
The equation for the angle-integrated density is

E—f(u t)=—§— 2 f‘ dTDyw,t -7) <—§—+2u>f(u T)
at "o " ut au L ou o> 1
and it is clear that if f (u,t) is proportional to

exp(—u®), then f(u,t)=f,u,t=0) is a (time-indepen-
dent) solution. There is also a strong indication
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that f,(u, t) approaches a Maxwellian as =, in-
dependent of initial condition, as long as m,,/m,#0.
Consider f,(u,t) for t large. Then, # [(8/6u)

+2u] f,(u, t) approaches some ¢ (), we have, for
sufficiently long time

9

a_tfo(u,t)g% —u (f dt D, t)>q>(u)

The left-hand side will vanish if either ¢ (x)=0 or
f: dtD,=0. In the first case, the final distribution
is Maxwellian. The second case occurs in the L
model. There, since no moderation occurs, the
final distribution—if it exists—is not necessarily
Maxwellian. We give its precise form in a subse-
quent paper.

The distribution functions f;(u,t) evolve in a
complicated manner. At first glance, three dis-
tinct time scales are involved; the averaged dif-
fusion tensor relaxes ina time ¢, = a/v 5, character-
istic of the duration of a collision, the higher
spherical harmonics (I #0) relax after a few col-
lisions, with characteristic time ¢,= (ma*u.v3g) ",
while the isotropic mode (I =0), in its approach to
the Maxwellian, depends upon the mass ratio as
well. Inspection of D in the Markoffian limit
shows that this last time is ~[(m,/m,)ran.v g ~*
for m,/m,>1. These estimates, which suggesta
neat separation of epochs, are too simple. They
are blurred when the diffusive particles have a
wide range of speeds. Thus a very slow particle
will take a long time to complete a collision; a
very fast particle will undergo small deflections
upon collision (unless the potential has a hard
core) and the relaxation of higher harmonics will
be inhibited. We are led to suspect a continuous
distribution of relaxation times. The following ex-
amples illustrate the point.

Consider the case of no velocity dependence at
all:

df(t) =€ f atD(1)f(t = 1),

with D(7) = exp(-7). This equation, which is a dif-
ferential equation in disguise, has two exponential
solutions. They are, approximately exp(~t) and
exp(—€t). However, if we consider velocity depen-
dence, through, say

af(u Plu,t) f AT D(T)L, flu,t - 1),

with L, an operator having eigenfunctions ¢,) and
real nonpositive eigenvalues -x,, (A,=0) we have
two groups of exponential solutions. Their decay
constants are, approximately —1+ex, and —en,,
when €X, is small. The “blurring” is manifest.
We expect to find our distribution functions relax-
ing (to the Maxwellian for [ =0, to zero for [#0)
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in a nonexponential manner, controlled by the con-
tinuous spectrum of an operator upon the velocity
variable.

A final general remark about perturbation theory:
In the first example of the previous paragraph, an
expansion in € will lead to a regular perturbation
series (with “secular” terms). The second exam-
ple—with L, a differential operator of second
order—leads to approximate solutions which are
not uniformly good in« (and £). Straightforward
attempts to get approximate solutions to our kinet-
ic equation are plagued by nonuniformity. Such ap-
proximations lead to results which neglect “bound-
ary-layer effects.” We shall return to this point
later.

A more precise discussion of the initial value
problem for our kinetic equation rests upon the
eigenfunction expansions associated with Egs. (61)
or (63). Thus we consider the spectral theory of
the corresponding differential operators in the ap-
propriate Hilbert space of functions.’®*"*” The
Markoffian operators are easier to treat, and we
begin with them.

One sees immediately that the spectral problem
is singular, because of the infinite domain of the
independent variable, and because of the behavior
of the coefficients at u=0. Further inspection
shows that the singularity at # -« is of limit-point
type, and the singularity at # =0 is limit point for
1#0 and limit circle for /=0, the latter case be-
coming regular upon transformation Eq. (60) to
Eqn. (61). The equationin{ is essentially a radial
Schrddinger equation, one whose spectral theory
is well established. The slow decrease of the po-
tential to zero ensures that a continuous spectrum
fills the negative half-axis s <0. The point s=0 is
also present, and points s >0 are excluded by sta-
bility arguments. Mazo'® has analyzed the equation
in the case 6 =1. He shows, moreover, that the
point spectrum is restricted to s=0. McLeod and
Ong*® and Su,* have considered a closely related
equation. McLeod and Ong show that the relaxation
of smooth, initial distributions is uniform, and
0(1/t), but not as fast as O(e™?).

The full, non-Markoffian equations are complex.
As we noted earlier, their coefficients feature
nonuniformities as u -, and s—-0. We can obtain
an inkling of the nature of the spectrum, by con-
sidering v,(u, s). In the Markoffian case, this
smooth function diverged as su®(u —»). Thus for s
real and negative, the associated operator has a
continuous spectrum in (-, 0). Sincezeroisinthe
spectrum for all real, negative s, we expect a con-
tinuous spectrum in s<0. In the full case, v,(x,s)
~Au® ~ B(u/s)++ -+ [Eq. (66)] with A, B>0. Then,
the operator appears to have a discrete spectrum,
implying that the spectrum in s is very “thin” —

possibly discrete! At this stage these remarks
are little more than conjectures.

IV. FURTHER APPROXIMATION

Although v;(u, s) is a smooth and relatively fea-
tureless function, its analytical form is too com-
plicated to permit solution to Eq. (61). We must
seek useful approximations. It is natural to con-
sider solutions for short time, and long time.

When we refer to short time (s large) we may
mean ¢t <t ,<t,, ort,<t <t,. The latter case leads
to the Markoffian approximation. The former sug-
gests several possibilities: one might write Eq.
(58) as
16, 9)= 5 =00+ £ & B9+ (% +28) 1@, 9)

s s au ’ ol ’
and iterate, to obtain a Series good for a few col-
lisions. The result is not terribly interesting. Or,
one can replace D, t) by D@, #=0), which is also
independent of U, in the #ime-dependent equation
(21). Then we have a paradox. The equation
should be good only for the very short interval
during which the D tensor is unchanged. Yet,
since the approximate equation admits Maxwellian
solutions, and is relatively easy to solve, one
wants to study it in the full domain 0<¢<w.21:22 Tt
turns out that the relaxation to equilibrium is much
too simple.

We focus, therefore, upon the long-time behav-
ior of f;(u,t), and upon [ =0 in particular. In terms
of Laplace transformed functions, we seek their
behavior in the neighborhood of s=0. We have
noted a weak singularity there, associated with the
t7® relaxation of the diffusion tensor. That singu-
larity—associated with the short time scale—is
nol dominant. Rather, it is the singular behavior
of the large-u expansions of v, (or w;) as s—0 that
produces the dominant singularity, and the charac-
teristic behavior at long times. We shall try to re-
tain it in whatever further modeling we use.

We shall be seeking the Green’s function for the
kinetic equation in every case. It will be con-
structed for s real and positive and continued ana-
lytically. In our modeling, we neglect the weak
singularity in v,. Then, in cases where v; turns
out to be analytic in s in a neighborhood of s=0,
the Laplace inversion becomes a little simpler.

A. Markoffian equation

Consider the Markoffian model first, and the re-
sponse to an initial pulse, f(G,#=0)=0%W -0,). If
we focus upon the case =0, and replace D, by its
dominant part at large u, D, ~ 8,/u®, the kinetic
equation becomes
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d? 3
du—gh(u, g) - <cu3+u2+m>h(u, a)

1 2
Sy e ), (1)

with 0 =s/€b,. We are tempted to analyze the
equation for all u, 0 <u<c; unfortunately, it has
no simple solutions. The Schwarz transformation,
u?=2&,h=(1/Nu)y(&) changes Eq. (71a) to

2

36, 0) = [L+0@D¥] 3(E, 0)

1 .
:_W egé(ﬁ—ﬁo), (71b)

an equation noted first by Mazo and Resibois,®
who sought an approximate solution by replacing *
VE by a constant. The equation one obtains is
again too simple. Note, that extending Eq. (71a)
to the full domain of # introduces a spurious singu-
larity at#=0. The Markoffian version of the cor-
rect vy(u, s)=s/eD, +(1/VA)(/A),, is analytic at u
=0, and in a neighborhood of s=0.

We are forced to mutilate the kinetic equation
further. The choice is of approximate solutions
to Egs. (71), or exact solutions to a less-accurate
equation. The first approach seems promising,
for the coefficients seem to have the smooth form
that recommends the Wentzel- Kramers-Brillouin
(WKB) approach. However, we have been unable
to progress in that manner, for the WKB solutions
are not accurate in the full 27 domain of argo. We
need behavior on the negative real axis of ¢ for the
Laplace inversion, and there, the equation features
a turning point. We must make another alteration.

The approximation should be in terms of Dy, so
that we may transform back to f,(x,t) sensibly.
Further, since the boundary condition(s) become

d (&) \1"_
[ 3 (@) ], -0
under transformation, we might wish to keep them
simple. [The transformation leading to Eq. (71b)
requires dy/dé+y=0 at £=0.] Thus, consider the
transformation &y, s) = 1/(£,)¥?y(¢, s) which con-
verts Egs. (61) and (62) to

&’y [s 1 1 (@)gg] y

a8 " €p, " Vag,

- 1 6(5 - ‘;::Q)
T T e@n)r  yar, (122)

The choice A, =¢ 2% simplifies the second term in
square brackets. £, is positive and single-valued,
so that the transformation is not crazy. We are
particularly interested in « and £ large, when

2t =4 ~In@’°D,) - In[l ~3u[ln@°D,)],] + -

and the quantity in large square brackets in Eq.
(72a) is

s 1 1
42— s eee . (T2D)
Lk {1 - Z_u [1n(u3D")]'u}

We can aim for a tractable model by setting D,
~8/u*(k>0). Then, the leading terms in Eq. (72b)
are 1+5/e6(28)#?/2, Thus, k=3 (reality) pro-
duces the VE of Eq. (71b) while k=4, 6 lead to equa-
tions solvable in terms of known functions. We
shall study
2
GE—rotly= - e efoe-8), ()

1

o =(2/8)s/e, which is the large —u form of k=4,
extended now to all £, 0 <{<w. We shall retain
our boundary conditions, requiring that e™2%d/
dt)(e®y) vanishes at £=0 and £~

The function y(§,£,; o) of Eq. (73) is proportional
to the Green’s function, y=[e(4m)/2] *eb g, and we
consider the latter. It may be constructed from
the two solutions to the homogeneous equation,
yo(£) and y,(£), defined through y,=0, dy,/d§=1;
y,=1, dy,/d=0, at £=0. Note that both solutions
must be entire functions of s. Then, the Green’s
function is

N (= (142)
- 35?2%1‘?,)) ~92(£)p,(85) (74b)

where y,=y, -, satisfies the boundary condition
at £=0 and y;=y,+m(0)y, is the decreasing solu-
tion, which satisfies the condition at infinity. The
Wronskian, W(2, 3) is equal to 1+m(c). When o
=0, y, is sinhg, y, is cosh{ and y,= e . The sing-~
ularities of G(£,£,; o) in the finite ¢ plane enter
only through W(g). One notes, however, that the
two parts of Eq. (74b) are not separately Laplace
invertible.

The y(¢) are to be expressed in terms of known
functions; these are Airy functions of argument z
= g3t +1/5%/3, Thus,

90=10 "V [A(P)B; @) - Bi(p)A; ()],

y.=m[Bi(p)A;(§) - A{(p)B; ()], (75)

Y2=¥1=Yo .
=n[(LB;)(p)A;(§) - (LA)(P)B(8)],

with p = ¢ "% and (Lf)(p) =f"(p) +VP f(p). The
primes denote differentiation with respect to argu-
ment, and A; and B; are the conventional designa-
tions for the decreasing and increasing Airy func-
tions, respectively. Thus, inspection of Eq. (75)
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leads to R
W(o)=1+p Ay()/AY(D) . (76)

We are concerned only with the long-time behav-
ior of G(£,&,,t); thus we deform the Laplace in-
version contour in the usual way and restrict our
analysis to the portion enclosing the origin of the
o plane. Since y, and y, are analytic in o, we
need consider only the singularities and zeros of
W(o). Consider first the possibility of zeros, ac-
cumulating at 0 =0(p~»). For |p| large, and
|argp| =|argo "?/%| <7 we may use the asymptotic
expansion

InA;(p)=const -5 p¥2 —% Inp

’ +1nZ(—)“E,,p sk/2,
o

Wo)=1-15 (/7

)

f_lnz...>"

—_
49 8 3
= % [1+oW,(0)],

where W (o) is a (formal) power series in ¢. Thus,
there is no evidence of accumulation.?® Integration
around the circle gives 25¢e™ ¢+ %0 for G, thet
-~ portion of G(¢,£,;1), or (8/m)e™ for f,(u, t).
(The dependence upon 0 is a flaw in the model. One
might patch it by taking 6=2/AT.)

In getting G,, the contribution from the branch
cut, we note again that the second term in Eq.
(74b) is analytic. Thus

Galbiboit)= [ 35 € valk, 0)3alEey 0)

27

% ( 11 )
W.(0) W_(0))’
with W, =W, + iW, being the values of W(c) on the
upper and lower edges, respectively. The quantity
in large parentheses is 2i(W,/|W|?) and we express
it in terms of A; and B;. The key is provided by
the connection formula

Ay (pe?™ ) =3 e P4 (p) By (p)],
which we use for p real. Then, noting that B;(p)
is exponentially large for p -~«~, we find

.LV_L ~-4/30
[wi

1
TwWpBNp)
for p large (¢ small). We have arrived at the sim-
ple result that the approach to equilibrium, as ex-
pressed by G,(£,£4;1) is

€
Ga(6.605t) ~ e_(§+§°)f ! ds g™ §t+4/30)

(]

argo =0

2@ V2

~ o= (E¥EQ) [
e oavw
(at)¥*

a=4%0e.

)

The relaxation is faster than ¢~°% and, therefore a
little puzzling. It may be due to our modeling of
D,, or to a fundamental inconsistency in the Mar-
koffian approximation. The relaxation proceeds
according to a “slow time,” €t, and is independent
of £. This feature may be traced to the simple,
analytic form of the coefficients in the kinetic
equation.

B. Non-Markoffian models

One wants to consider the non-Markoffian ver-
sion of Eq. (72a) to understand matters more
clearly. Again, we claim that the large —u behav-
ior is crucial. The nonuniformity is expressed
through the asymptotic piece

1 0% 1 s o a

D”(u,S) ~Z ¢, '-u—3+ '; P, '1;2-—_-7(1+—2—Su> s
and we might wish to use it in factor (u®D,)”" of
Eq. (72b), ignoring all else. Unfortunately, the
[(26)*2]’s of Eq. (71b) reappear and we must fall
back onto a modified D, D= (8/u*)[1+(a/2)su?].
Then we get a kinetic equation (8=3ade),

d?y o

aez ~ 1" 1550t
whose solutions can be expressed in terms of
known functions. The equation displays nonuni-

>y= - €(4§1)1ﬁ egé(g —go) ’ (78)

_formity clearly enough. When §=0, the coefficient

of y increases as &, while for any 8+ 0, the coef-
ficient is constant at large £. The transformation
Box =y~Y1+Bot), with 2y=[8/(1+B)]*? converts
the equation to
2
%+<—-§-+%>y=—m-;)w5e€6(x—xo), (79)

with k =y/B%c. B, the key physical parameter,
gives the ratio of short to long time scales. Equa-
tion (79) is a special case of Whittaker’s equation.?®

Note the complexity introduced by nonzero 8.
First, the coefficient of y in Eq. (78) is not an en-
tire function of ¢, so that we can not construct the
Green’s function from entire basis functions, as
we did earlier. The singularities in the Green’s
function will be much more complicated; as a con-
sequence, the temporal relaxation will be £ depen-
dent. Second, the solutions of the homogeneous
version of Eq. (78) will be expressed in terms of
Whittaker functions of argument x = (1/y)(£ + 1/B0).
The argument is singular at 0 =0; so was the cor-
responding argument in the Markoffian case. How-
ever, here, k, the index of the Whittaker function,
is also singular at ¢ =0. This makes the asymp-
totic analysis extremely difficult.

One can proceed a bit farther, by remarking that
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the Green’s function associated with Eq. (78) may
be written

G(&,£0; 0) = =9,5(E<, 0)35(E5, 0)/W(2, 35 0),

as before. 3, is the solution decreasing, as
exp(~£/2vy), at infinity, and y, satisfies the bound-
ary condition at £=0. However, y, and y, are
singular at o0 =0 and, possibly, at other points in
the left half-plane. They are linear combinations
of the Whittaker functions M(y/f0; 3; ¥~ }(£ + 1/B0))
and W(k;3;x). The behavior at ¢=0, which
yields the relaxation rate, rests on the asymptotics
of M and W when |k|, | x| -, |x/x| = const. This
difficult analysis has yet to be done.

V. CONCLUSION

We have examined the kinetic equation for a test
particle weakly coupled to the rest of an N-particle
system. One can learn quite a bit about the struc-~
ture of the generalized Fokker-Planck equation
that governs the relaxation, through a study of the
assqciated diffusion tensor. The two time scales
which are present, are, strictly speaking, insep-
arable. Although we have not had much success in
solving the equation, there are strong indications
that the Markoffian approximation is inconsistent.
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APPENDIX A

A simple way to show the connection between the
sign of D, and D, and the possibility of “runaway”
solutions is to assume that for =, Eq. (22) may
be written

o o 2 [ a (2 o)
=e o= f_wd'rD(ﬁ,t—‘r) <a'ﬁ+2u f, 1)

oT
(A1)

or

. %.f dr D@, 7) - <*+2u>f(ﬁ,t—7)

(o}

(A2)
With this form, there is the possibility of a real
exponential solution fy (@, ) =9, [@e**, where

€'—°D°(ﬁ ( = +2u>¢x(ﬁ) NS (A3)
@)= [ " 4t D@, 1) =DE,5=0). (A4)

1]
Now, introduce ¥, through zp,\(ﬁ)=e"‘2$)\(ﬁ). Multi~

ply Eq. (A3) by ¥ » and integrate. After a partial
integration, we have

by fduzp)\sz——e fd“ LI D"ge 5%_ (A5)
_,,z
=—€ fdsu —e;z—
x {@xV$,)°DS + [ * v)9\]°Df},
(A6)

provided the integrals exist. Thus, the prop-
erty D}, D =0 ensures against “runaway” solu-
tions
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