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Rotational viscosity in the smectic phases of terephthal-bis-bntylaniline (TBBA)

S. Meiboom and R. C. Hewitt
Bell Laboratories, Murray Hill, New Jersey 07974

(Received 21 January 1977)

Measurements of rotational viscosity in the various liquid crystalline phases of TBBA (terephthal-bis-
butylaniline) are reported. The quantity measured is the viscous energy dissipation in the liquid crystal as it
oscillates in a magnetic field. This dissipation varies greatly in the different smectic phases. It is small in the
A and B phases, but large and strongly temperature dependent in the C phase. This behavior is explained in
terms of the structure of these phases. The smectic A to smectic C transition is of second order, and the
dissipation increases dramatically at the transition point. The critical behavior is found to fit mean-field
theory, rather than a predicted heliumlike behavior.

INTRODUCTION

'I

Nematic and smectic liquid crystalline phases
exhibit a long-range orientational order: the
long axes of the molecules are preferentially
oriented along a specific direction, which will
be referred to (for some phases somewhat loose-
ly") as the "director. " An important consequence
of this molecular alignment is that a magnetic
or electric field will produce a torque on the di-
rector through the interaction of the field with
the anisotropy of the magnetic or electric suscep-
tibility, respectively. In nematics such effects
are well known. For instance, the director will
follow a slowly rotating magnetic field, resulting
in a viscous drag which is detected as a torque
on the sample. Such experiments were first de-
scribed by Tsvetkov' some forty years ago. The
hydrodynamics of nematic liquid crystals as
formulated in the Leslie-Erickson equations4 in-
clude such rotational effects. More recently, it
has been shown' that reorientation of the director
in smectic C can also be characterized by a ro-
tational viscosity.

The work reported here was undertaken with the
aim of investigating the effect of an applied di-
rector torque over a wider range of smectic
phases. The compound chosen was TBBA [tere-
phthal-bis-(4-n-butylaniline)] . This material
has been quite extensively studied. ' " It exhibits
a number of thermodynamically stable liquid
crystalline phases: on cooling from the isotropic
liquid it becomes successively nematic, smectic
A, smectic C, and smectic B, (denoted by some
authors as smectic H). The compound supercools
easily to below the melting point, and at least
two monotropic phases, VI and VII, are known
to exist. '" The temperature ranges of the dif-
ferent phases are indicated in Fig. 1.

Basically, the experiment consists of slowly

oscillating the liquid crystalline sample as part
of the bob of a torsional pendulum placed in a
magnetic field. The frequency and damping of
the pendulum are measured as functions of tem-
perature for all the phases mentioned above. It
will be shown that dramatic changes in damping
behavior occur at the transitions of one smectic
phase to another. These changes can be corre-
lated with the structure of these phases.
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FIG. 1. Differential scanning calorimetry (DSC)
traces of TBBA. Reproduced from Ref. 7.

EXPERIMENTAL

A schematic of the experimental setup is given
in Fig. 2. The essential part is a torsional pend-
ulum shown at the left of the figure. It consists
of an open rectangular frame, about 60x 4 x 4 mm,
suspended between two thin gold ribbons, of the
kind used in moving coil galvanometers; upper
and lower ribbons are each about 50 mm long,
0.11 mm wide, and 0.006 mm thick. Inside the
frame is a sealed glass tube containing 0.0504 g
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FIG. 2. Schematic diagram of the apparatus.

of the sample. Woundaround the frame is a 1—,'-
turn coil of thin resistance wire. The gold rib-
bons serve as leads to this coil, electrical con-
nection being made at the clamped ends of the
ribbons as schematically indicated by A. and 8
in Fig. 2. The pendulum has a natural oscillating
period of about 1 sec. It is supported by a brass
tube, not indicated in the figure, and is surrounded
by a glass Dewar. A flow of heated nitrogen gas
is used to control the temperature. Temperature
sensing is done by a number of copper-Constantan
thermocouples. To achieve better temperature
uniformity, a heater element is wound on the out-
side of the Dewar, as indicated by the small
circles in the figure. The current through this
element is adjusted manually to a temperature
near the desired one, so that heat transfer through
the Dewar is minimized. The whole is placed
inside the gap of a 12-in. Varian magnet, giving
a field of 13.2 kG. It should be noted that the gold
ribbon and the thin resistance wire of the coil
are the only electrically conducting materials
in the oscillating part of the pendulum. This is
to keep eddy-current damping to a negligible value
(see Appendix). In the original instrument, the
frame was made up of thin glass strips, glued
at top and bottom to small plastic blocks. In a
later version, usable to higher temperatures, the
separate frame is eliminated, and the suspensions
and coil are made up of a single length of gold
ribbon. This ribbon is supported directly by the
glass tube containing the sample and kept in place
by Teflon forms fitted to the top and bottom of
the glass sample tube.

To operate the pendulum, two main functions
are required: One is the measurement of the
instantaneous position of the pendulum, and the
second is a provision for applying suitable ex-
ternal torques in order to keep the pendulum in
oscillation. The coil on the pendulum frame serves
for both functions.
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The setup for determining pendulum orientation
is indicated in Fig. 2. It consists of a pair of
modulation coils attached to the magnet poles,
giving an alternating magnetic field of 500 Hz and
a few gauss amplitude. This field induces a vol-
tage in the pendulum coil, which is amplified and
measured in a lock-in detector referenced to the'

ac of the modulation coils. The output of the lock-
in detector is proportional to the sine of the angle
between the plane of the pendulum coil and the
direction of the modulation field. This output
is digitized by the ADC (analog-to-digital con-
verter) and stored in the memory of a PDP 8E
computer for processing, as described below.

The pendulum is kept in oscillation by the ap-
plication of current pulses to the pendulum coil,
the duration of the pulses being short compared
to the period. The current interacts with the main
field of the magnet to give a torque pulse to the
pendulum. The timing and duration of the excita-
tion pulses is program controlled. In order to
maintain symmetry, pulses of alternating sense
are applied every third time the pendulum goes
through its equilibrium position. A convenient
way of applying the current pulses to the pendulum
coil without interfering with the position measure-
ments is the use of a bridge circuit made up of
four phototransistors (1, 2, 8, and 4 of Fig. 2).
The LED's of these transistors are switched on
and off by the computer at appropriate times,
alternating the 1, 3 with the 2, 4 transistors, in
accord with the sense of the equilibrium crossing
of the pendulum. The phototransistor bridge
thus serves as gate and commutator for the con-
stant current (i) applied to the pendulum coil.

The measuring program for the computer is
written in assembly language. It does the fol-
lowing functions:

(a) An interrupt applied every 0.01 sec by an
external clock initiates a reading of the position
ADC and its storage in memory. One thousand
memory locations are allocated to position stor-
age, each new reading overwriting the oldest
number. Thus the memory always contains the
one thousand most recent position readings, i.e.,
the history of the last ten or so oscillations. A
display routine exhibits these data on a scope.

(b) Between interrupt services the program
processes this history and keeps a running record
of the oscillation amplitude and of the timing of the.
zero crossings. From this the timing and duration
for the next pulse is calculated, and an output
routine is activated at the right time to give the
actual pulse. Pulse duration is determined by
comparing the actual oscillation amplitude with
the requested one (the latter is typed in at the
start of the measurement). If the amplitude is
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too low, pulse length is increased, if too large,
pulse length is decreased. For stability, the
feedback algorithm (in software) contains propor-
tional, derivative. , and integral terms in the am-
plitude deviation.

(c) On keyboard command, the computer will
output the actual oscillation amplitude, period,
and pulse length. The latter is directly propor-
tional to the energy dissipation, while the period
is related to the anisotropy of the magnetic sus-
ceptibility.

In a second measuring mode, the computer will,
on command, stop outputting the current pulses,
and plot the resulting decay of the oscillations
on a X-Y recorder. A program, written in
BASIc, will compute the exponential decay factor
of the oscillations by a least-squares fit. This
mode of operation is used mainly for calibration
purposes as described in the next section.

The terephthal-bis-(4-n-butylaniline) (TBBA)
was synthesized by ref luxing phthaldehyde and
p-butylaniline in ethanol. The product was re-
crystallized three times from a 1:1mixture of
benzene and petroleum ether. The final product
had a melting point of 113.1 C and a nematic to
isotropic transition of 235.8 C.

The sample used in the measurements was con-
tained in a Pyrex glass tube, 4-mm o.d. , 2.3-mm
i.d. , and 40 mm long. The TBBA was degassed
by repeated freeze-thaw cycles under vacuum, and
the sample was sealed off under vacuum. Weight
of the TBBA was 0.0504 g. The moment of in-
ertia of the pendulum, calculated from the di-
mensions and weights of the pendulum bob (mainly
the glass tube containing the sample) was 0.0747
gem

DATA REDUCTION AND CALIBRATION

In this section we collect a number of elementary
equations used in interpreting the measurements.
The apparatus is basically a pulse-driven harmonic
oscillator. The observed quantities are oscilla-
tion amplitude, oscil'lation period, and pulse
width. We wish to relate these quantities to the
energy dissipation within the liquid crystal. It
is convenient to introduce the quality factor Q
and the dissipation D —= 1/Q of the oscillator. The
quality factor is analogous to the well known Q
=&uL/R of an electrical LC circuit, and the same
equations apply. The most useful here is

1 1 (energy loss over one period)
Q 2n (stored energy)

In the steady state the energy loss is made up
by the energy delivered to the oscillator by the
current pulses. The energy converted into me-

chanical energy by a pulse is

F„„) = e,„dsv, (2)

where I is the moment of inertia and y is the
angular velocity at the equilibrium position. As
the latter equals'~, we get

(5)

and Eq. (1) becomes

D =1/Q = (CT/A)r, (6)

where T =2p/~ is the period, and C contains the
other factors (I,B,S, i). The form of (6) has been
chosen so that the quantities which vary during
a set of measurements are written explicitly,
while those that remain constant for a given sam-
ple have been absorbed in C. It is convenient
to treat C as a calibration constant, and to de-
termine it by observing the rate of decay of the
oscillations in the nematic phase when the driving
force is switched off. As will be discussed in
the next section, the decay is exponential in the
nematic phase. For this case, the number of
periods in which the oscillation amplitude decays
to 1/e of its original value is equal to Q/w. The
recording of such a decay is given in Fig. 3. The
computer software includes a least-squares fitting
routine to determine Q in this way. For the mea-
surements reported here, C = 2.25 x 10 ', if the
period is given in seconds, the amplitude in de-
grees, and the pulse length in the units used in
the figures.

Two remarks are in order regarding the dis-
sipation D First, it is ob. vious from Eq. (1) that
Q is additive, i.e., the effect of two independent
damping mechanisms is obtained by adding the
D's. Second, the definition of Eq. (1) is still use-
ful in the more general. ease for which the damping
term is not necessarily proportional to velocity,

where i is the electrical current, and 7 the dura-
tion of the pulse; e,„„is the voltage induced in
the moving coil by the magnetic field at the time
of the pulse, i.e., when the oscillator goes through
its equilibrium position. This voltage is pro-
portional to the magnetic field strength (B), the
area of the moving coil (S), and the angular vel-
ocity of the oscillator when going through the
equilibrium position; the latter is in turn equal
to the product of the amplitude (A) and frequency
(&u) of the oscillation. Thus

E„„, =iBSAm7.

The stored energy in Eq. (1) can be calculated
as the kinetic energy of the oscillator when going
through the equilibrium position:



ROTATIONAL VISCOSITY IN THE SMECTIC PHASES OF TBBA

FIG. 3. Free decay of the pendulum when the sample
is in the nematic phase. The temperature is 205.57 C.
A computer program automatically determines the
amplitude by taking the differences of the maxima and
minima. A plot of these points, connected by straight
lines, constitutes one of the two nearly overlapping
curves. The second is an exponential least-squares fit
to these points, also computed by the program.

as it is in the simple damped harmonic oscillator.
In fact, it will be shown in the next section that
the smectie C strongly deviates from this case.
As long as the damping is not too large (i.e., as
long as D «1), the oscillation is still nearly har-
monic, and the above arguments relating D to
pulse length still apply. However, D now becomes
a function of oscillation amplitude.

We close this section with a short discussion
of the factgrs which determine oscillation fre-
quency. For a lightly Pamped torsional pendulum,
the frequency is given by

(u = (I'jI}'~',

where I is the moment of inertia of the pendulum,
and I' the restoring torque per radian deviation.
(This equation neglects the effect of the damping
on the frequency, but is valid with good accuracy
for the experiments reported here for which O
«1.) For a specific sample I is a constant, but
the torque I', and therefore ~, will vary with the
liquid crystalline phase. There are two contribu-
tions to the restoring torque: the elastic torque
of the pendulum suspension, and the magnetic
torque on the liquid crystal. The latter is given
by

1'~ = 2X, ~Q' sin26},

where y, =
X ~~

—y~ is the diamagne tic a,nisotr opy
per unit mass of the liquid crystal, H the mag-
netic field strength, g the mass of the sample,
and 9 the angle between the magnetic field and
the principal axis of easy magnetization. Some-
what loosely, the latter can be identified with
the direction of alignment of the molecules, i.e.,

the director. The motion of the director in the
oscillating liquid crystal greatly depends on the
liquid crystalline phase: In the nematic, the di-
rector can reorient, and in a sufficiently strong
magnetic field 0 and accordingly the magnetic
torque remain small, and the frequency is es-
sentially that of the pendulum. Qn the other hand,
in the smectic A. , the director oscillates with the
sample, and thus the magnetic torque raises the
oscillating frequency. In a qualitative way, the
oscillation frequency is a measure of the motional
freedom of the director: Lower oscillation fre-
quency indicates easy reorientation of the director,
higher frequency a more rigid binding of the di-
rector. For a quantitative treatment, an equation
of motion of the director has to be postulated,
describing its behavior under an applied magnetic
torque. Integration of the equation must in gen-
eral be done numerically on a computer. Such
a calculation has for instance been made for a
model of the smectic C, ' but for our present dis-
cussion, the simplified treatment presented in
the next section suffices.

RESULTS

An overview of the results is given in Fig. 4.
In this figure the pulse length (which is directly
proportional to the damping) is given as function
of temperature. The stability ranges of the dif-
ferent liquid crystalline phases is indicated at
the top of the figure. It is obvious that dramatic
changes in damping behavior occur at the phase
transitions. These changes are directly cor-
related with the structure of the various phases.
We shall discuss each of the phases in turn.

Referring to Fig. 4, it will be seen that a small
damping is present in the crystalline phase (at
the low end of the temperature range), as well
as in the isotropic fluid (at the high end of the
temperature range}. This damping is predom-
inantly due to external air damping of the oscil.-
lator. Other contributions to the damping are
discussed in the Appendix. In the temperature
range under consideration, the viscosity of air
varies approximately as the square root of the
temperature, and this fits the observed slight
increase in damping on going from 50 to 280 C.
Accordingly, we have interpolated the dotted line
connecting these points in Fig. 4 and taken it as
the background damping. The distance of a mea-
sured point above this line is then the damping
due to the liquid crystal.

In the nematic phase, the director remains
essentially aligned with the strong magnetic field,
while under the conditions of the experiment the
orbital motion of the liquid nearly follows the
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part, the pulse length is
plotted as a function of
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different liquid crystalline
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oscillations (see Appendix). Any damping above
the background is thus due to the rotational vis-
cosity, characterized by the coefficient y, . Val-
ues for y, are easily obtained: In the nematic
phase the frictional term is proportional to the
angular velocity and the sample volume (p), and
the equation of motion of the oscillator becomes

Ijj+y,Py+ I"p =f (t ).

Thus the dissipation is given by

D = I/Q = y, V/rut, (10)

where e is defined by Eq. (7). Using Eq. (6), and
the value of C given in the preceding section,
one finds at the low-temperature end of the ne-
matic range at 202 C py 0 57 P while at the
high end, at 235 'C, y, = 0.19 P.

In the smectic-A phase the damping is much
smaller than in the nematic, though it is not quite
zero (see Figs. 4 and 5). It is known from the

Lal

L 150—

FIG. 5. Pulse length as
function of temperature.
This figure gives the data
of the upper part of Fig. 4
on an expanded scale, to
show the behavior in the
phases with low damping.
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FIG. 6. NMH spectra of TBBA in the slnectic-A
phase (175'C) as function of orientation with respect to
magnetic field. This figure is taken from Hef. 7.

NMR spectrum' ' that the smectic planes are
rigidly connected to the container: Figure 6 gives
the behavior of the NMR spectrum on rotation
of the sample. It is seen that the spectrum width

goes according to the (3cos'9 —1) law, where 8

is the angle between the director and the mag-
netic field. It should be noted that, at a given
angle g, the NMR spectrum does not change with

time, for periods of at least a few hours. Thus
it can be concluded that there is no measurable
relaxation of the director orientation. If the
smectic-A structure were completely rigid and
anchored at the container walls, no damping
(above the background) would be present. In fact,
it is seen from Figs. 4 and 5 that some damping
is present. At this stage the origin of this damp-
ing is unclear. One explanation considered is
that the smectic layers remain completely rigid,
but that the director can rotate slightly away from
the normal to the planes. Such an effect has in fact'
been discussed by de Gennes. " It consists of a
softening of the orientational rigidity of the direc-
tor as the second--order phase transition to the
smectic-C phase is approached. One expects a
very small effect over most of the temperature
range, and a critical divergence as the transition
point is approached. De Gennes" estimates for
the amplitude of the director deviation a mag-
nitude of SX10 ' rad (=0.02 ) at a temperature
1'C above the transition for a magnetic field of
10 kG. This number would diverge as the tran-
sition point is approached with a critical exponent
of 1.30. With these numbers, and assuming a

Combining Eqs. (V) and (11) gives

y, = I(cu'„—uP~)/WH ', (12)

where &„and &, are the oscillation frequencies
in, respectively, the smectic-A and nematic
phases. Qne finds for the susceptibility aniso-
tropy of the smectic A per gram

X, =4.32x10 ' cgs.

Referring again to Fig. 4, it is seen that in
the smectic-C phase the damping increases as
the temperature is lowered. The reason is that
in this phase the direction of alignment of the
long axis of the molecules becomes inclined to
the smectic planes and thus acquires a degree
of freedom —rotation about the normal to the
planes —which is lacking in the smectic A. When
the magnetic field rotates relative to the sample,
the long axes of the molecules will reorient so
as to make the magnetic energy a minimum, i.e.,
their direction will make as small an angle as
possible with the magnetic field, consistent with
the prescribed angle with the smectic planes.
As in the smectic A, there is good NMR evi-

viscosity coefficient similar to that for the ne-
matic, one estimates that a dissipation of the
magnitude of the observed one occurs at a tem-
perature about 0.02'C above the transition point.
Although this may be an observable effect, the
measured damping does not show the critical be-
havior, and thus cannot be interpreted in this way.

The explanation of the observed damping must,
therefore, necessarily involve a motion of the
smectic planes. It is easy to see that if no dis-
clinations are present and the ends of the smectic
planes are solidly anchored to the container, then
the planes will not distort on rotation of the mag-
netic field away from the normal to the planes:
any distortion of the planes would result in an
increase of magnetic energy. The damping me-
chanism must involve some motion of disclina-
tions, which are no doubt present. It must be a
limited motion, as the NMR results show that
no long-term relaxation is observed within the
sensitivity of those measurements which can be
estimated at 1'-O'. However, at this time, we
have no evidence that points to a specific model
for the process.

The change in frequency when going from ne-
matic to smecti, A is a measure for the aniso-
tropy of the magnetic susceptibility in the smectic-
A phase. The frequency is given by Eq. (I). In
the nematic, r equals the restoring torque of the
suspension, which we indicate by r, . In the
smectic A, for small amplitudes, Eq. (8) gives
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FIG. 8. Pulse length as function of temperature near
the smectic-A to smectic-C transition. The large
graph shows the experimental points. The inset is a
log-log plot of these data, in which the pulse length of
the smectic A has been taken as background, and sub-
tracted from the smectic-C data; the temperature axis
is relative to the transition temperature (173.75 t ).

a critical exponent of 0.58. If we allow for a
temperature dependence of the viscosity similar
to that of the nematic (a change by a factor of
about 2 for a change of 20 in temperature), then
the exponent is reduced to 0.55. This seems com-
patible with a slope of 0.5 expected from mean-
field theory. On the other hand, de Gennes" has
pointed out that, as the relevant order parameter
has two components (the magnitude of the in-
clination 6 and its azimuth), one expects a helium-
like behavior and an exponent of 0.35. This is
not borne out by the present results.

Finally, - we have a few remarks regarding the
low-temperature phases, the smectic B, (also
denoted as H) and the metastable VI and VII
phases. It will be seen from Figs. 4 and 5 that,
like in the smectic A. , a small but definite dis-
sipation above the background is observed in these
phases. Here too, the mechanism of the dissipa-
tion is unclear, but probably related to the motion
of dislocations ~ The dissipation is halved in going
from the B to the VI phase, and a small step can
also be seen between the VI and VII phases (al-
though the latter is not much above the precision
of the measurements). It should be noted that
these changes are reversible and can be repro-
duced on increasing temperature, as long as no
crystallization has taken place. Once crystalliza-
tion has occurred, heating to the melting point
is of course required to effect a transition to the
smectic B, as indicated by the arrows in the fig-
ures.

Another notable point is the behavior of the
oscillation frequency. Referring to the lower
graph of Fig. 4, it is seen that the period in the
B, VI, and VII phases is the same as in the
smeetic A. This must mean that in the low-tem-
perature phases, all the molecules are still

aligned very nearly parallel, as they are in the
smectic A. . This is in contrast to the crystalline
state, in which the period is clearly longer than
in the smectic phases. Thus part of the molec-
ular alignment is lost on crystallization. This
could be due to the fact that there is a distribution
in the alignment of the crystallites, or, more
probably, that there are molecules of different
orientation in the unit cell of the crystal. The
latter seems indicated by the fact that, when a
sample is remelted into the smectic-B phase,
the period drops to the same value as observed
for that phase after cooling from the nematic in
a magnetic field. The described behavior is in-
dicated by the arrows on the curves in Fig. 4.

CONCLUSION

It has been shown that the temperature behavior
of the rotational dissipation can be correlated
with the structure of the various smectic phases.
In particular, the high dissipation in the smectic
C is the direct result of the internal degree of
freedom that is characteristic of this phase. It
should be stressed that the decay behavior of
the smectic C indicates that the torque required
to change director orientation is directly propor-
tional to the rate of change of orientation [Eq.
(13)]. This means that it is a viscous torque,
characteristic of a liquid. Thus-in this sense too
the smectic-C layers can be appropriately de-
noted as a two-dimensional liquid.

As discussed in the preceding section, the
critical exponent for the temperature dependence
of the order parameter in the smectic-C phase
just below the transition from the smectic A was
found to be about 0.55, in much better agreement
with mean-field theory than with the heliumlike
model suggested by de Gennes. " Recently the
same conclusion was reached by Delaye and Kel-
ler, "who used Rayleigh scattering to measure
the critical fluctuations in the smectic-A. phase
of undecylazoxymethylcinnamate very near the
smectic-A. to smeetie-C transition.

Mention should also be made of two papers which
report on the temperature dependence of the
smectic-C inclination angle in TBBA over a wide
temperature range. They find agreement with
power law with exponents of 0.40 (Ref. 6) and 0.34
(Ref. 20). However, these exponents are mainly
based on measurements well away from the tran-
sition, and are therefore not characteristic of
critical behavior.

The small damping observed in the smectic-A.
and 8 phases remains unexplained. It is hoped
that a recent modification of the apparatus, in
which the pendulum can be operated in a vacuum
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so as to reduce background damping, will con-
tribute to its elucidation.
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APPENDIX

We shall estimate the magnitude of two con-
tributions to the oscillator damping: (i) eddy
currents induced in the suspension and coil and
(ii) viscous flow in the sample when it is in the
liquid state.

We consider a torsi. onal harmonic oscillator,
of moment of inertia I, angular frequency u,
and amplitude A. . The angular position is

~ =A sinmt . (A1)

We wish to estimate the quality factor Q which
is conventionally defined by

(stored energy)
(energy loss per period)

' (A2)

The stored energy equals the maximum kinetic
energy:

(AS)

(i) To estimate the eddy current losses, we
consider a conducting loop of area $ and total
resistance R. As the loop oscillates in the mag-
netic field 8, the magnetic flux through the loop
is given by (we assume small oscillation ampli-
tude)

=1.32 T, S=4x10 ~ m', ~=2m sec ', giving Q
=0.2R. It is therefore necessary to keep the
shunting resistance of the coil high. In practice
it is about 100 kQ, giving a Q of about 20000—
a negligible contribution.

In order to estimate the order of magnitude of
the contribution of the ribbon, we consider it as
equivalent to a loop of width one half the ribbon
width, length equal to ribbon length, and resist-
ance 4 times ribbon resistance. The ribbon has
a width of 0.011 cm, length of 30 cm, and re-
sistance for that length of 50 Q. Thus

Q = IR (u/B'S' = 5000.

The above calculation is for the worst case that
the plane of the ribbon is parallel to the mag-
netic field in the equilibrium position. In the
actual setup the plane is about perpendicular to
the field so that the actual damping is in fact
smaller than the above figure.

(ii) We wish to calculate the damping due to the
combined action of inertia and viscous flow in
a cylindrical sample of radius R. As we are only
interested in orders of magnitude, we simplify
the problem by consi. dering all the inertia con-
centrated in an effective rigid cylinder of radius
aR (where 0&a&1), while the viscous flow takes
place in the surrounding annulus between the
cylinder (of radius aR) and the container wall
(of radius R). The value of a is chosen to max-
imize the damping, and will be shown to be 0.73.

We consider a harmonic oscillation of the con-
tainer, its positional angle z being given by

(A 9)
4= BSA. sin~t

and the induced voltage is

(A4)

(A5)

We denote the position of the inertial cylinder
relative to the container by the angle P, i.e., P
is the "slip" of the cylinder relative the container.
The equation of motion of the inertial cylinder
is then

The average power dissipation of the resulting
current is I, (I7. +P) -VP=0. (A10)

(e,„„).' /2R = (BSA~)'/2R

and the energy loss per cycle

E„„=(BSAe)'(2 w/2R &u).

(A6)

(A 7)

I, = p (aR )' l /4

and P is the viscous drag torque:

(A11)

Here I, is the moment of inertia of the cylinder,

Thus v 2
2 1 Rln (A12)

Q = 2m(E„„,d/E„„) = IR(u/B'S'. (A8)

There are two current loops in the setup: (a)
the detection coil, which is shunted by the input
impedance of the amplifier and by that of the
phototransistor bridge and, (b) the loop formed
by the ribbon itself.

Estimating the contribution of (a), we'have
g =0.0747 gcm'=7. 47x10 'kgm', go=13.2 kG

In these equations p is the density of the sample,
L its length, and g its viscosity. In writing the
viscous term, the curvature of the annulus has
been neglected for simplicity, and an average
radius of ~(1+a)R, and a thickness of (1 —a)R
for the layer is used.

The steady-state solution of Eq. (A10) can be
written
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and by substitution of (A13) and (A9) into (A10)
one finds

where I is the moment of inertia of the pendulum.
Thus, using Eqs. (A14)-(A17)

(A18)
P/A =1/(1+ t Vjr, ~)

The phase angle between P and A is given by

(A14)
If &u»V/I„Q =a&I/V and damping increases with
frequency. If ~ «V/I, , Q = IV/I2 &u and damp-

—,'I—
d& max

(A17)

cosy = 1/[1+ (V/I, ~)']'i'. (A15)

We again use Eq. (A2) to calculate the damping.
The energy loss over a period is the integral
of the viscous torque, VP, with respect to the
angle o, . The result of this integral is

(energy loss per period) = —&u'V cosy.2s, jW[ fI )

(d

(A16)

The maximum kinetic energy is

I w(1+a)'
I, a'(1-a) (A19)

The value of a for which this expression is min-
imum is obtained by differentiation. One finds
g = 0.73.

In the actual experiment the values are R =0.115
cm, &=2gx0.6 sec ', q=1 P, p=1, /=1.2 cm, I
=0.074't gcm'. Substitution gives @=2.lx10'.
This is indeed negligible.

ing decreases with frequency. The latter case
applies here, as can be seen by substituting the
numerical values quoted below. Substituting (A11)
and (A12), one obtains for this case

~If the molecular environment has a threefold or higher
axis of symmetry, a unique director can be defined as
this axis. In other cases the definition has some de-
gree of arbitrariness. See, for instance, Ref. 2,
p. 314.
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