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Influence of boundary conditions on the growth of condensate fraction in a finite Bose system~
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In a recent paper we carried out a rigorous, asymptotic analysis of the low-temperature behavior of a Bose gas
confined to a finite cubic geometry and subjected to periodic boundary conditions. That analysis is now
extended to Dirichlet, Neumann, and antiperiodic boundary conditions. As before, the thermogeometric
parameter y and the condensate fraction 1V~/N are studied as functions of temperature and are evaluated

explicitly for cubes with L/l = 40 and 100, where L is the edge length of the enclosure and l the mean
interparticle distance in the system. The finite-size corrections to the condensate fraction under Dirichlet or
Neumann boundary conditions turn out to be qualitatively different from those under periodic or antiperiodic
boundary conditions. This difference becomes manifest when one tries to express these corrections in a form
consistent with the standard scaling theory for finite-size effects.

I. INTRODUCTION

In a recent paper' (hereafter referred to as I) we
carried out a rigorous asymptotic evaluation of the
temperature dependence of the thermogeometric
parameter y and of the condensate fraction N, lN
for an ideal Bose gas confined to a finite cubic
geometry and subject to periodic boundary condi-
tions. The enhancement in the condensate fraction,
over the bulk value, was found to be

=eT —T, 1—

I."For a large. temperature range below T,(~),
where y2=0, the enhancement varies linearly with
temperature and can be written in the standard
scaled form, namely,

= ——'[&(-,')] '~' (C, = —8.913633),
P C

independently of the actual size of the system.
In this communication we present an extension of

the foregoing analysis to sysi. ;,ms under Dirichlet,
Neumann, and antiperiodic boundary conditions.

+~ '[C(a)] T („)

where e(x] is the step function (= 0 for x &0, 1 for
x& 0) while the other symbols have been defined in

II. DIRICHLET AND NEUMANN BOUNDARY CONDITIONS

Under these boundary conditions we encounter
sums running over quantum numbers 1, 2, 3, . . . and

0, 1, 2, 3, . . . , respectively. For an application of
the Poisson summation formula these sums can be
expressed as'
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where f(n„n„n,) is an even function of the quan-
tum numbers n„n» and n„while 8=-1 for Di-
richlet boundary conditions and +1 for Neumann.

To see what is expected, we may initially employ
a crude continuum approach whereby

N=N, + n(u) a(u) dn;
0

here, n(k) is the usual mean occupation number,
while a(k) is the density of states —modified, in a
gross manner, by the boundary conditions imposed

on the system. We have'

Vk' dk

where V and S are the volume and the surface area
of the enclosure. This leads to

N =N, + (I.lz)' g, g, (n) + a8(l. l&)' gg(o. ) .

For n «1, we obtain, af ter some rearrangement,
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(7)

N = n(k)

g=(l 6 ) /2
exp —j—— (n,'+n', +n,')

use (3) to express the partial summations over
n. 2. in terms of complete summations in three,
two, and one dimensions, and apply Poisson's
summation formula to these summations. %e get
(for L, » l).)

where y [=2r'i'o. 'i'(L, /X)] is the thermogeometric
parameter appropriate to the boundary conditions
in question. The first term here is the customary
bulk result, the second term is a surface correc-
tion which leads to an enhancement (8 = -1) or a
suppression (8 =+1) of the condensa, te fraction,
while the third term requires special attention.
Since, for Dirichlet boundary conditions, the
ground-state energy is nonzero, the parameter y'
ultimately assumes negative values —approaching
the limiting value -3n' as T -0 K. In view of this,
the third term in Eq. (7) represents a, nonanalytic
contribution to the condensate fraction No/N. We
hasten to remark that this unwelcome feature is
due to the approximations inherent in the continuum
approach and that this contribution disappears al-
together if we treat our discrete sums appropriate-
ly.

For such a treatment we write

7I 2——'- —+ (1 —8)—;
2r 2 37T

'

note that the primed summation in (10) excludes the
term corresponding to the ground s tate, viz. ,
(1, 1, 1) for 8 = -1, (0, 0, 0) for 8 = +1.

For comparison with the continuum approxima-
tion (7), we write (10) as

First of all, we note that the terms involving T ln T
and T lnN are given correctly by the continuum ap-
proximation, whereas the terms linear in T are
somewhat different. More importantly, however,
the nonanalytic terms appearing in the continuum
approximation cancel out exactly in the more accu-
rate analysis. This last fact has a specially im-
portant bearing on the case of Dirichlet boundary
conditions. Here, y' passes from positive to nega-
tive values whereas many of the mathematical
steps leading to (12) a,re strictly defined only for y'
)0. The attitude to take is that we initially carry
out our calculation in the regime y2&0; then in the

end, when all nonanalytic terms disappear, the so-
lution is analytically continued into the regime y'
&0. This procedure also has to be invoked in the
case of antiperiodic boundary conditions because,
there too, we have a nonzero ground-state energy
and hence a negative limiting value of y'.

Equation (12), coupled with the relation

+ ——[g,&,(a)+27)' 'o. "'g, (2 y)]+ 88 g, (o'),

4m I. '
(Dirichlet), ,

1.,
y2+ 3p'

No=
@+Pea

i
4v I 2

(Neumann),
y

where q=(q', +q', +q,')' ' and q'=(q', +q', )' '. App»-
cation of E)I. (7) of I a.nd Eq. (14) of Ref. 4 now

gives, for Q&& 1,

1 — —3g — ln —+D~—

(10)

can be solved numerically to obtain y(T) which in
turn can be used to determine the low-temperature
behavior of the condensate fraction N, /N for either
boundary condition. Results for cubes of two dif-
ferent s i.zes are shown in Figs. 1-3.

According to Figs. 1 and 2 there exists a broad
range of temperatures in which (y')~ =-Bv' and

(y')„=0. In this region the finite-size corrections
to the condensate fraction can be approximated as
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FIG. 1. Quantity 2(y +3~), for a cubical enclosure
with Dirichlet boundary conditions, as a function of the
scaled temperature T/T~ (). Curve 1 is for a cube
containing 10 particles, curve 2 for a cube containing
6.4 x 104 particles. Dotted line depicts the corresponding
bulk behavior.
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FIG. 3. Temperature depende'nce of the condensate
fraction (Np/N) for a cube containing 6.4x104 particles.
Dotted curve is for Dirichlet boundary conditions, dashed
for Neumann boundary conditions, and dash-dotted for
antiperiodic boundary conditions. Bulk behavior is de-
picted by the solid line.

and

[g( )]-2/3
(
No" l 3 T
N ~ L Tc(~)

& ln —1.5723
T

T (cc)

+ 8 —ln —[g(-')]-"'l I, , T
T,(~)

[g( )]-2/3No" l 3 T
N „L T,(c)

&& 2 ln, + 0.7885
c&

-8—ln = [g(—')] ' 'l I 3 T
L I

' T()'

(14)

(15)

tion provided by (14) and (15) is very good for a
considerable range of temperatures.

It is evident from Eqs. (14) and (15) that, unlike
the case of periodic boundary conditions, no uni-
form scaling factor can be applied to the finite-size
correction for either Dirichlet or Neumann bound-
ary conditions. Here, we encounter a rather ano-
malous scaling behavior in which the finite-size
correction to the condensate fraction consists of
two parts, each of which requires a different sca-
ling factor. Thus, in general, one may write

(18)

such that

These results are plotted in Figs. 4 and 5 which al-
so include the more accurate results obtained from
the full expression (12). Clearly, the approxima-
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FIG. 2. Quantity ~, for a cubical enclosure with
Neumann boundary conditions, as a function of the scaled
temperature T/T~ (). Rest as in Fig. 1.
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FIG. 4. Enhancement of the condensate fraction {Np/N)
for Dirichlet boundary conditions. Curve 1 is for a cube
containing 10 particles, curve 2 for a cube containing
6.4 x 104 particles. Dotted curves represent the approx-
imation expressed by Eq. (14).
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Q = [(q, + 2)'+ (q, + 2)'+ (q, + 2)']"'
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FIG. 5. Depression of the condensate fraction (No/N)

for Neumann boundary conditions. Curve 1 is for a cube
containing 106 particles, curve 2 for a cube containing
6.4 x104 particles. Dotted curves represent the approx-
imation expressed by Eq. (15).

Taking the Laplace transform of (20), we obtain
another identity:

y2 g 2/0

+ ( 1)2i'22'~2
w2'(y'+n'2') e )

are each independent of the actual size of the sys-
tem. Such a generalization of the scaling theory
for finite-size effects may be necessary in some
other problems as well.

The second sum here is directly proportional to
6t(y), which enables us to express Eq. (17) in the
form

III. ANTIPERIODIC BOUNDARY CONDITIONS

This model possesses features common to both
Dirichlet and periodic boundary conditions. On one
hand, since the quantization condition in this case
1s

k;=(2m/L)(n, + —') (n, =0, +1., +2, . . . ),

the ground-state energy is nonzero, and hence y'
has a negative limiting value, viz. , -+ 7t . Qn the
other hand, since the sum over states now runs
over the entire k space, the analysis closely par-
allels that in the periodic case.

Going through the same forrnal steps as in the
periodic case, ' we obtain

N= — g
—+-

y~ L 8g L
q2(y2 2q2) y2 3 2

~ 3

(22)

where the summations excludes the set of terms
for which Q'= —,', viz. , the terms with q. ..= 0 or
-1.

Identifying the ground-state occupation as

g(&2) 8W L '
oI+ pE y + 1T 7). — (28)

since the single-particle ground state is now eight-
fold degenerate (each of the three quantum numbers
n; being 0 or -1), we obtain

=( / )'[, .( )+ "' "'
( )]

where
OO ~-2&e

N, (y) =— g (-1)'~"2"22

Xq
2 2

(17)

y2 L 2

gN X '
y +m

(24)

[q=(q', +q.'+q,')"']; (18)

here, y =m'~2m'~2(L/A), as in the periodic case.
Starting from the generalized Poisson identity for
theta functions,

P e """' = — P e ' ' ~' cos(2))aq),
Q nw)2O

we can generate the three-dimensional identity

Equation (22) can now be solved for y(T) for any
given value of L. In Fig. 6 we show these results
for L/l =40 and 100. As in the case of periodic
boundary conditions, these curves pass through a
common point at the bulk critical temperature.
The temperature dependence of the condensate
fraction can now be calculated from (28); a typical
result for this is included in Fig. 3. As for the fi-
nite-size correction to N, /N, we find that, in the
temperature range where y' = ——,p',
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