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In a recent paper we carried out a rigorous, asymptotic analysis of the low-temperature behavior of a Bose gas
confined to a finite cubic geometry and subjected to periodic boundary conditions. That analysis is now
extended to Dirichlet, Neumann, and antiperiodic boundary conditions. As before, the thermogeometric
parameter y and the condensate fraction Ny/ N are studied as functions of temperature and are evaluated

explicitly for cubes with L/7 =

40 and 100, where L is the edge length of the enclosure and I the mean

interparticle distance in the system. The finite-size corrections to the condensate fraction under Dirichlet or
Neumann boundary conditions turn out to be qualitatively different from those under periodic or antiperiodic
boundary conditions. This difference becomes manifest when one tries to express these corrections in a form
consistent with the standard scaling theory for finite-size effects.

L. INTRODUCTION

In a recent paper' (hereafter referred to as I) we
carried out a rigorous asymptotic evaluation of the
temperature dependence of the thermogeometric
parameter y and of the condensate fraction NO/N
for an ideal Bose gas confined to a finite cubic
geometry and subject to periodic boundary condi-
tions. The enhancement in the condensate fraction,
over the bulk value, was found to be
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where f(n,,n,n,) is an even function of the quan-
tum numbers #,, #,,-and n,, while § =-1 for Di-
richlet boundary conditions and +1 for Neumann.

To see what is expected, we may initially employ
a crude continuum approach whereby

N=N0+f' n(k) a(k) dk s )

here, n(k) is the usual mean occupation number,
while a(k) is the density of states — modified, in a
gross manner, by the boundary conditions imposed

15

r

1.}% For a large temperature range below T (),
where y2~0, the enhancement varies linearly with
temperature and can be written in the standard
scaled form, namely,
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independently of the actual size of the system.

In this communication we present an extension of
the foregoing analysis to sysiams under Dirichlet,
Neumann, and antiperiodic boundary conditions.

II. DIRICHLET AND NEUMANN BOUNDARY CONDITIONS

Under these boundary conditions we encounter
sums running over quantum numbers 1,2,3,... and
0,1,2,3,..., respectively. For an application of
the Poisson summation formula these sums can be
expressed as®
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on the system. We have®
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where V and S are the volume and the surface area
of the enclosure. This leads to

N=No+(L/N)?® g4/5(@) +26(L/N)? g,(a) . (6)
For @ <1, we obtain, after some rearrangement,
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where y [= 27r1/201”2(L/7\)] is the thermogeometric
parameter appropriate to the boundary conditions
in question. The first term here is the customary
bulk result, the second term is a surface correc-
tion which leads to an enhancement (9 =-1) or a
suppression (6 =+1) of the condensate fraction,
while the third term requires special attention.
Since, for Dirichlet boundary conditions, the
ground-state energy is nonzerc, the parameter y?
ultimately assumes negative values — approaching
the limiting value —-37% as T —~0°K. In view of this,
the third term in Eq. (7) represents a nonanalytic
contribution to the condensate fraction NO/N. We
hasten to remark that this unwelcome feature is
due to the approximations inherent in the continuum
approach and that this contribution disappears al-
together if we treat our discrete sums appropriate-
ly.

For such a treatment we write
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use (3) to express the partial summations over
7,5 in terms of complete summations in three,
two, and one dimensions, and apply Poisson’s
summation formula to these summations. We get
(for L > )
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where ¢=(q2+q%+q?)" % and ¢’ = (¢%+q?)"/ % Appli-

cation of Eq. (7) of I and Eq. (14) of Ref. 4 now
gives, for a1,
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note that the primed summation in (10) excludes the
term corresponding to the ground state, viz.,
(1,1,1) for #=-1, (0,0,0) for §=+1.

For comparison with the continuum approxima-
tion (7), we write (10) as
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First of all, we note that the terms involving T InT
and T InN are given correctly by the continuum ap-
proximation, whereas the terms linear in T are
somewhat different. More importantly, however,
the nonanalytic terms appearing in the continuum
approximation cancel out exactly in the more accu-
rate analysis. This last fact has a specially im-
portant bearing on the case of Dirichlet boundary
conditions. Here, v® passes from positive to nega-
tive values whereas many of the mathematical
steps leading to (12) are strictly defined only for y?2
>0. The attitude to take is that we initially carry
out our calculation in the regime »2>0; then in the
end, when all nonanalytic terms disappear, the so-
lution is analytically continued into the regime y?
<0. This procedure also has to be invoked in the
case of antiperiodic boundary conditions because,
there too, we have a nonzero ground-state energy
and hence a negative limiting value of y2.

Equation (12), coupled with the relation
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L 2
F<X> (Neumann),

can be solved numerically to obtain y(7) which in
turn can be used to determine the low-temperature
behavior of the condensate fraction NO/N for either
boundary condition. Results for cubes of two dif-
ferent sizes are shown in Figs. 1-3.

According to Figs. 1 and 2 there exists a broad
range of temperatures in which (»?),= -372 and
(»®),=0. In this region the finite-size corrections
to the condensate fraction can be approximated as
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FIG. 1. Quantity 3(y2+37%)!/2, for a cubical enclosure
with Dirichlet boundary conditions, as a function of the
scaled temperature T/T (). Curve 1 is for a cube
containing 10° particles, curve 2 for a cube containing
6.4 x10% particles. Dotted line depicts the corresponding
bulk behavior.
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These results are plotted in Figs. 4 and 5 which al-
so include the more accurate results obtained from
the full expression (12). Clearly, the approxima-
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FIG. 2. Quantity 3y, for a cubical enclosure with
Neumann boundary conditions, as a function of the scaled
temperature T/T (). Rest as in Fig. 1.
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FIG. 3. Temperature dependence of the condensate
fraction (N/N) for a cube containing 6.4 x 104 particles.
Dotted curve is for Dirichlet boundary conditions, dashed
for Neumann boundary conditions, and dash-dotted for
antiperiodic boundary conditions. Bulk behavior is de-
picted by the solid line.

tion provided by (14) and (15) is very good for a
considerable range of temperatures.

It is evident from Eqgs. (14) and (15) that, unlike
the case of periodic boundary conditions, no uni-
form scaling factor can be applied to the finite-size
correction for either Dirichlet or Neumann bound-
ary conditions. Here, we encounter a rather ano-
malous scaling behavior in which the finite-size
correction to the condensate fraction consists of
two parts, each of which requires a different sca-
ling factor. Thus, in general, one may write
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FIG. 4. Enhancement of the condensate fraction (Ny/N)
for Dirichlet boundary conditions. Curve 1 is for a cube
containing 10® particles, curve 2 for a cube containing
6.4 x10* particles. Dotted curves represent the approx-
imation expressed by Eq. (14).
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FIG. 5. Depression of the condensate fraction (Ny/N)
for Neumann boundary conditions. Curve 1 is for a cube
containing 10° particles, curve 2 for a cube containing
6.4 x10? particles. Dotted curves represent the approx-
imation expressed by Eq. (15).

are each independent of the actual size of the sys-
tem. Such a generalization of the scaling theory
for finite-size effects may be necessary in some
other problems as well.

III. ANTIPERIODIC BOUNDARY CONDITIONS

This model possesses features common to both
Dirichlet and periodic boundary conditions. On one
hand, since the quantization condition in this case
is

ki=@m/L)n;+3) (n;=0,£1,%2,...),

the ground-state energy is nonzero, and hence y?
has a negative limiting value, viz., —372 On the
other hand, since the sum over states now runs
over the entire K space, the analysis closely par=
allels that in the periodic case.

Going through the same formal steps as in the
periodic case,® we obtain

N=(L/A[ g4,(e) + 722 2R(y)], (1)
where
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here, y =7'/2a'/2(L/)), as in the periodic case.
Starting from the generalized Poisson identity for
theta functions,
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we can generate the three-dimensional identity
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Taking the Laplace transform of (20), we obtain
another identity:
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The second sum here is directly proportional to
®(y), which enables us to express Eq. (17) in the
form
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where the summation 20* excludes the set of terms
for which @*=1%, viz., the terms with g, , ;=0 or
-1.

Identifying the ground-state occupation as
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since the single-particle ground state is now eight-
fold degenerate (each of the three quantum numbers
n; being 0 or —-1), we obtain
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Equation (22) can now be solved for y(T) for any
given value of L. In Fig. 6 we show these results
for L /I =40 and 100. As in the case of periodic
boundary conditions, these curves pass through a
common point at the bulk critical temperature.
The temperature dependence of the condensate
fraction can now be calculated from (23); a typical
result for this is included in Fig. 3. As for the fi-
nite-size correction to N,/N, we find that, in the
temperature range where y2= —%72,

(249)
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FIG. 6. Quantity (y2+37%12, for a cubical enclosure
with antiperiodic boundary conditions, as a function of
the scaled temperature T/T,(«). Rest as in Fig. 1.
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Comparing this with the corresponding expression
for the periodic case, Eq. (2), we find that the en-
hancement of the condensate fraction in the two
cases is comparable in magnitude. From (25) it is
clear that the finite-size correction in the anti-
periodic case is in conformity with the standard
scaling theory. In Fig. 7 we plot the finite-size
correction (N,/N)* for L/1 =40 and 100, as given
by the full expression (24) as well as by the ap-
proximate expression (25). The two results agree
very well over a considerable range of tempera-
tures. '

=-7.81085.

IV. CONCLUDING REMARKS

Although the foregoing analysis enables us to
make explicit calculations of the finite-size cor-
rections, and demonstrates the scaling behavior,
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FIG. 7. Enhancement of the condensate fraction
(Ny/N) for antiperiodic boundary conditions. Curve 1
is for a cube containing 10° particles, curve 2 for a
cube containing 6.4x 10 particles. Dotted curves repre-
sent the approximation expressed by Eq. (25).

in the case of an ideal Bose gas confined to re~
stricted geometries, it is not clear what results
would obtain for a more realistic interacting sys-
tem. To this end it seems desirable to examine
the properties of a weakly interacting Bose gas in
restricted geometries by studying the statistical
mechanics of the quasiparticle excitations. The
application of Poisson’s summation technique to an
excitation spectrum, such as of Bogoliubov or of
Brueckner and Sawada, would be quite complicated
because of the complex mathematical nature of the
spectrum; however, it is possible to study the
problem at very low temperatures where only the
linear phonon part of the spectrum is operative.
One expects that the above technique, when applied
to a system of phonons, will again lead to a de-
composition of the thermodynamic properties into
a bulk term and a finite-size correction conform-
ing to the scaling theory for finite-size effects;

the numerical coefficients will, of course, be dif-
ferent from the ones resulting from a quadratic en-
ergy spectrum.
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