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Up to now, the problem of the influence of level degeneracy on superradiance has been neglected. We describe
here a first approach to this problem, in the frame of “small system” quantum model, generalized to the case
of a collection of atoms with two degenerate levels of angular momenta j and j connected by an electric or
magnetic dipole transition. The differences between this case and the well-known case of two (nondegenerate)
level atoms are of two types. The first type is due to the competition between different transitions sharing a
common state: superradiant emission on a transition inhibits or initiates superradiance on transitions with
smaller transition probability, depending upon which state, upper or lower, is the common one. This effect
does not come from the equality of the different wavelengths and would also appear with the same states even
if the degeneracy were removed; its qualitative influence on the features of the supperradiant pulse can be
easily estimated. The second type of differences is quite specific to level degeneracy and consists in
interferences between the transitions of the collective system having the same frequency and polarization. In
analogy with the description of collections of two-level atoms as spin-1/2 systems, a group-theoretical
description of the considered collection of atoms is found suitable; the problem of the determination of a basis
of collective states and its group-theoretical implications are discussed; in particular, it is found that the
isotropic character of spontaneous emission allows us to use tensorial formalism and simplifies the formal
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description of the problem.

I. INTRODUCTION

Superradiance studies, initiated by Dicke! in
1954, have been largely developed during the last
few years, mainly theoretically since up to now
only two papers®? describe a direct observation of
the phenomenon. However in the numerous theo-
retical papers concerning this subject, an inte-
resting aspect has been neglected: the influence
of level degeneracy. The atoms are described as
two-level*® or multilevel” systems, the levels
always being supposed nondegenerate. This basic
simplifying assumption is made in the quantum-
mechanical treatments*® as well as in the semi-
classical studies® and for “small systems’* (with
linear dimensions smaller than the wavelength) as
well as for extended systems.>®

This paper describes a first approach to the
problem of the influence of the level degeneracy
on superradiance; this approach is essentially
formal and will be applied in a following paper to
some simple particular cases. Our aim here is
to point out the specific effects related to the level
degeneracy which are responsible for the differ-
ences between the case of atoms with two degene-
rate levels and the well-known case of two (non-
degenerate) level atoms. For this aim we have
chosen to generalize the simplest quantum model
which explains the main features of the superra-
diance of a collection of two (nondegenerate) level
atoms, that is the “small system” model; we con-
sider here the case of a collection of atoms with
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two degenerate levels of angular momenta j and 5’
(the transition being supposed electric or magnetic
dipole). Such a model, in which the atoms are con-
sidered located on a same spot is not realistic (at
least for optical wavelengths), and it is known pre-
sently that the superradiance of small samples
would be strongly limited by the dipole-dipole in-
teractions.®! However, in spite of these limitations,
it is established that the small-system model al-
lows qualitative discussions of superradiance, at
least as far as the collective phenomenon itself is
concerned. The propagation effects, which are
added to this phenomenon in the case of extended
systems, are of course not taken into account
here; however, the influence of level degeneracy
on the propagation of pulses has already been
studied, for the problem of self-induced transpa-
rency, by several authors.® We also neglect, in
this first approach, the effects of inhomogeneous
broadening,'® which could attenuate in some sense
the effects of level degeneracy. Finally it must be
noted that, as is well known, the choice of a quan-
tum model allows one to account for the beginning
of the superradiant emission without additional
assumption even if the initial population inversion
is complete; moreover it allows one to evaluate
the quantum fluctuations of the radiated intensity
which could prevent the observation of the specific
polarization effects arising from the degeneracy.
The obvious advantage of this model is its rela-
tive simplicity which allows to géneralize the mas-
ter equation and the expressions of the expectation
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values for the radiation field to the case of atoms
with two degenerate levels: this is presented in
Sec. II. It turns out that the master equation is
more complex than in the nondegenerate case. Two
different types of effects are responsible for the
differences between the two cases. The first one
is the competition between the different transi-
tions sharing a common upper or lower state,
which would also appear if the degeneracy was
removed; it can be easily shown that the superra-
diance on the transition which has the greatest
transition probability inhibits (initiates) the super-
radiance on the other transitions having the same
upper (lower) state. The second effect is quite
specific to the level degeneracy and consists in
interference effects between the transitions of the
collective system which have the same frequency
and the same polarization (we shall say that such
transitions correspond to a same “degenerate tran-
sition” of the collective system). Concerning the
expressions of the expectation values for the radi-
ated field, the difference with the nondegenerate
case is that we have to take into account the polar-
ization properties of the emitted light. The evalua-
tion of these expectation values requires the solu-
tion of the master equation and consequently in-
volves the choice of a basis of collective states.
This problem, which is discussed in Sec. Il, is
also much more complicated than for the nonde-
generate case. The analog to the SU(2) group
spanned by the operators R,, R_, and R, in the
case of two (nondegenerate) level atoms is shown
to be here a SU(2j+2j’ + 2) group; the transitions
of the collective system appear only between states

of a same irreducible representation of this group,

which we may therefore call “cooperation group”.
The problem of the labelling of the states of an
irreducible representation is not simple since one
has here to choose a basis well adapted to the so-
lution of the master equation; in the general case
(that is for any j and j’) this constraint leads to
difficult group-theory problems, mainly because
of internal degeneracies which appear in the suit-
able reduction of SU(2j+2j’ +2) to a chain of sub-
groups. In fact we have performed such a group-
theoretical study only for the cases where the coop-
eration group is SU(4) that is for the different two-
level four-state atoms (j=0-~j5'=1, j=1-4 =0,
j=4%—j"=1%); these results which allow some quan-
titative conclusions will be given in a following
paper. However we show here, in the general
case, that the use of the SU(2) group correspond-
ing to the total angular momentum of the ensemble
of atoms allows one to take advantage of the in-
variance under the rotations of the master equation
and simplifies the formal description of the prob-
lem. Some difficulties remain which prevent the

solution of the master equation in the general case:
they are examined in Sec. IV and some qualitative
conclusions are given.

II. BASIC EQUATIONS FOR COLLECTIVE SPONTANEOUS
EMISSION

A. General form of the master equation

The relaxation by spontaneous emission of a
quantum system can be studied (see for example
Refs. 11-13) by considering the system as inter-
acting with a “reservoir” of photons, that is with
a quantized electromagnetic field of very large
spectral width which remains in its ground state.
Such a treatment leads, with convenient approxi-
mations,'® to a master equation for the reduced
density operatof (the trace on the states of the
reservoir of the total density operator). We are
interested here in systems with degenerate levels,
more precisely in systems which have transitions
between different pairs of quantum states that are
resonant with the same mode of the electromag-
netic field'*; such transitions will be said to cor-
respond to a same “degenerate transition.” For
such a system (that we shall call an atom, for sake
of simplicity), the general form of the master
equation can be written

b(t)=z %rik»jt{[pjiyp(t)pkl]+H'c'}' (1)

(i) The sum runs over all the two pairs of atomic
states 4,7'° and %, which are such that the energy
of state i is greater than that of state j and the
energy of k greater than /; the frequencies (w;; and
w,,;) and the polarizations (&;; and &,,) of the two
transitions ¢ —j and £ -~ are equal (for the fre-
quencies the equality is approximate; the detuning
must be less than or of the same order as the
width of the concerned atomic transitions).

(ii) The T';,.;, (we use here the notation of
Cohen-Tannoudji'?) are coefficients of the atom’s
coupling with the electromagnetic field of the re-
servoir; if the two pairs of states 7,j and %,! are
not identical, the coefficient I';,,;; is zero unless
a single mode of the field is quasiresonant with
the two transitions (w;; — w,,~0,&;;=¢&,;). The
dependence on ¢, j, % and ! of this coefficient is
contained in the product of the two matrix elements
of the atom-field interaction corresponding to the
two transitions; if we consider electric or mag-
netic dipole transitions only and if we write d for
the atomic dipole operator, we may therefore
write'®

T (Gl Eli)t|d-E|R), (2)

. ~D_-P _-b
with €=¢€;;=¢,,.
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{iii) The p;; are the atomic operators
pij=|i)(jl- (3)

The master equation describing the collective
spontaneous emission of an assembly of N identi-
cal atoms confined in a volume of linear dimen-
sions smaller than the wavelengths and interacting
through the common radiation field can be simply
derived from Eq. (1). The collection of atoms be-
haves as a single quantum system whose states are
products of monatomic states and the reduced den-
sity cperator of this system obeys a master equa-
tion which can be written

[.)(t)zz %rik—»jz{[Pji’p(t)sz]"‘H-C-}7 (1)

where the T';,, ;; are the same as for a single atom
[the remarks (i) and (ii) remain unchanged]; the
only difference with Eq. (1) is that the monatomic
operators p;; are replaced by the corresponding
collective ones, that is

Py;= E b, (4)
a=1, N
where the sum runs over all the atoms.

The main difference between Eq. (1’) and the
corresponding master equation in the case of
atoms with two nondegenerate levels comes from
the presence of T';,,;, with 4,k+7,1, which are
characteristic of two distinct atomic transitions
corresponding to a same degenerate transition of
the atoms. These coefficients account for the
interference effects which appear in the fluores-
cence light when a single mode of the electromag-
netic field is resonant with several atomic transi-
tions. These interference effects will be discussed
hereafter for the case of a collection of atoms with
two degenerate levels j and j’, and it will be shown
that they must be explicitly taken into account,
whatever the choice of collective basis states.

B. Master equation for a collection of atoms with two levels of
angular momenta j and j'

We shall now particularize the master equation
(1”) to the case of a collection of atoms having two
levels characterized by their angular momentum
j and j§’ (j concerning the upper level), the transi-
tion between the two levels being supposed electric
or magnetic dipole (which implies |j - j’|=0,1).
The T';,_, ;, coefficients in Eqs. (1) or (1’) different
from zero are, according to relation (2),

T ympormims, © 9, (G'm @ [ im,)(5'ms | dP | jmy)
Q

(5)

where d*? is the monatomic dipole operator (in

tensor form), m] —m,=m})—m,=q, q taking the
values 1,0, or —1. According to the Wigner-Ec-
kart theorem the dependence on m of the coeffi-
cients (5) is given by a product of 3j symbols and
they can be written ‘

= (2] T (= )7

i1 . .y .
(Lt )b o
—my g my ) \=-My q My
The constant T' in this equation is in fact the decay
constant of a state [jm) of the upper level for a

single atom; in effect this decay constant is ob-
tained from Eq. (1) in the form

Z me»mafq meq ? (7)
a

which is, according to Eq. (6), independent of m
and equal to I'. Moreover the 3j symbols of Eq.
(6) can be associated with the operators of the type
P, ; which appear in Eq. (17); precisely, we define

. L i
Ra:(27+1)1/2 E (-1) m( ! ]>Pj’m',jm’

’
= -m' qgm

mymy—>mim

R!=H.c., (8)
where the P operators are as in Eq. (4):
Pj’m'yim= Z {j,m'>aa<jm|' (9)
a=1, N

With these definitions, the master equation of the
collection of N atoms can be simply written

(1) = Fz‘ S {[R, p(ORY +Hoc}, (10)

or, in a more detailed way where the populating
and depopulating terms are separated,

p@)=TY {R,p()R} - 3 [p(NR,R,+ RL R p(1)] |-

(10")

The operators R, and RZ are closely related to
respectively the energy-decreasing and -increas-
ing part of the components of the collective dipole
operator D of the N atoms. Precisely one notices

-that these operators are components of two tensor

operators of rank 1 with respect to the total angu-
lar momentum J of the N atoms, which is ex-
pressed in terms of P operators by

T, = SO P it 23 P i,
m m'

J= Y [+ D) =mlm = D]V2P,
m

+ ; (7 +1) = m" (m" = DY 2P s e
(11)
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the operators R, and R} can then be written

= p(1)
Rq—Rq ’

R!=(-1)*R{)

-q

(12)

where R is the Hermitian-conjugate tensor op-
erator of R‘V).!” The components of the total di-
pole operator D'*) are related to those of R’ and
R'(l) by

1 . . 5
D:1)= (2_7‘+ 1)1 5 (] ”d(l)”])[R‘(Il)_'_R:I)]; (13)

the three values of ¢ correspond to the three in-
dependent polarizations 7, o,, and o_ (the choice
of the quantization axis is arbitrary, unless the
polarization properties of the initial excitation
determine a privileged axis), and (j’[ld*’|lj) is the
reduced matrix element of the monatomic dipole
operator.

The isotropic character of spontaneous emis-
sion appears in the fact that the master equation
is invariant under the rotations and then under
the SU(2) group related to the total angular mo-
mentum J; the two operators R’ and B’ appear
in Eq. (10) or (10’) only as coupled in a scalar
product and in particular the depopulating terms
involve the following scalar operator:

X=3" RIR,=(R™-RW). (14)
q

It is interesting to compare the master equation
(1) with the equation one would obtain in the cor-
responding nondegenerate case, that is by remov-
ing the degeneracy of the two levels j and j’ in
such a way that each atom has no longer degene-
rate transitions. In this case the only nonzero
T';,-;; coefficients are I, , .. and the master
equation for a collection of N such atoms can be
written

=5 >,

m, m'

{[R s ()R} ]+ H.C.}, (15)

with

Rp= (@4 D200 (I 0

Pss
_mlqm> Jmgm 3

(16)

The comparison of Eqgs. (10) and (15) makes clear
that the only difference between the degenerate
and nondegenerate cases is due to the interference
effects on the light emitted or absorbed with a

R! .=H.c..

(ﬁ .Z)f(ﬁ %)= z (- 1) - 6(1)}5!:)‘,,{}5(1) -RWHRY
k

[(ﬁ ) ]2(§ )= Z (- 1)Adfe v - g0} e . W R LB) ,{{}5(1) RN R0 ,R(l)}(kz)}(k)) .

Ry Roy B
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given polarization in different transitions between
Zeeman states |jm) and |j'm’).

C. Expectation values for the radiated field

The problem of the evaluation of the statistical
properties of the field radiated by a collection.of
atoms with two degenerate levels j and j’ is quite
analogous to the same problem in the nondegene-
rate case. As in this latter case, the validity
conditions of the master equation imply that the
field follows the atoms adiabatically'®: all expec-
tation values characterizing the field can then be
obtained from the reduced density operator p(f)
which is a solution of the master equation (10).
The only new point is that we have to take into ac-
count the polarization of the emitted light. If the
observation is made with a polarization €, the
expectation values of normally ordered creation
and annihilation field operators are proportional
to terms of the type:

(((R-O(R-)' N,
where (X )(£)=tr[Xp(#)] and R is the vector opera-
tor associated to the operator R’ [Egs. (8) and
(12)], related to the energy-decreasing part of the
collective dipole operator [Eq. (13)]. In particular
the intensity radiated in all directions with a
polarization € is

L) =L(R-ONR-ENO,
I, being the intensity radiated in all directions
with all polarizations by an isolated excited atom;
for a particular direction of observation o, one
has to insert the factor (3/87)(1- |(€+ 3)|2), which
describes the spatial distribution of the fluores-
cence light of polarization €. In the same way,
the expression for the squared relative disper-
sion of the quantum fluctuations!® of the intensity
emitted with a polarization € can be generalized

Q:(t) - [L(N]*

1

o%(8)= W ) (18)
where ‘
Q) =IX[(R-E) P(R-TP)N). (19)

In expressions (17) and (19), the polarization €,
which depends on the observation conditions only,
appears mixed in scalar products with the opera-
tor R. It is convenient to better separate the role
of these quantities; this is done by using the ten-
sorial properties of R and ¢ and by recoupling the
products of scalar products which appear in these
expressions.?® One has finally

(20)

(21)
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The intensity and the quantum fluctuations cor-
responding to any value of ¢ can thus be expressed
as linear combinations of the following mean val-
ues:

IP W =1,{R™ -RVYP)0) (22)
lek?(s)/(t)=1(2)<{{ﬁ(l) ,é(l)}(kl) .{R(l) .R(l)}(kz)};k)xt)'
(23)

We do not make explicit here the coefficients of |
these linear combinations, which are given by Eqs.
(20) and (21), for all possible polarizations. We
only give here the relationship between the inten-
sities corresponding to the 7, o,, and o_ polariza-
tions and the mean values 9% (¢):

)__ 9(0)(l‘)+£ 9(2)(t)

L(H)=- 7—;— 9901) £ 7 9(1) - 7= 89(0);

(24)

it can be seen from these equations that the polar-
ization of the emitted light at the time ¢ depends

on the relative magnitudes of the various 9{¥(¢).
One can show, more generally, that the term
9{(¢) corresponds to an isotropic and nonpolarized
radiation; if any other term is different from

zero, the emitted light becomes polarized and non-
isotropic.

III. SOLUTION OF THE MASTER EQUATION: FORMAL
DESCRIPTION USING TENSORIAL FORMALISM

A. Collective states

In order to solve the master equation, one has
first to define a basis of states for the collection
of atoms. The problem of labeling the collective
states of N two-level atoms confined in a small
volume is much more difficult for degenerate
levels than for the nondegenerate case. The Lie
group which plays the same role as the SU(2) group
spanned by the R,, R,, and R_ operators defined by
Dicke is spanned here by the operators R, and RE
[Eqgs. (8)]. It is easy to show that this group is a
SU(2j + 2§’ + 2) group,?* whose infinitesimal opera-
tors are the (2j+2j'+2)* P, ,, ;,m, (Where j, and
j, run over the values j and j’). This group can

. then be called the “cooperation group” of the col-
lection of atoms and its role is quite analogous
to that of the SU(2) group in the Dicke model: the
collective states can-be chosen as basis functiornsl

{d/dt+ 3 T[X (upd)+ X (u'y ' I 'y’ I’ M’ [p(t) | wyJM)

r 3

B do 118 B

of irreducible representations (irreps) of this
group and the operators R, and R}: being infinites-
imal operators do not mix states of different ir-
reps.2?2 Therefore the irreps {\} of SU(2j+ 2’ +2)
play the same role as the cooperation numbers 7
of Dicke’s model. However, the labeling of the
states of these irreps is difficult in the general
case (that is for any j and j’), in particular be-
cause of the internal degeneracies which may ap-
pear in the reduction of {A} according to a chain
of subgroups of the cooperation group. In this
paper we do not try to solve this general problem
and we label the collective states of the irreps
{x} with only a few quantum numbers, whose phy-
sical meaning is obvious: the energy and the
total angular momentum of the ensemble of atoms.
We shall see that this approach allows to take ad-
vantage of the SU(2) invariance properties of the
master equation; precisely the use of tensorial
formalism simplifies the evolution equations and
allows to show some qualitative results.

The Hamiltonian of the collection of atoms
(without field) can be written

- v
H= 70(2"; P im = Zm; Pj'm’,j'm’) ) (25)

where E; is the energy difference between the two
levels. The total angular momentum J commutes
with H; so does the operator X defined in Eq.

_(14), which, being scalar, commutes also with

J. Moreover, all these operators, H, J and X,
can be written as linear combinations of opera-
tors P; . joms and are consequently diagonal with
respect to the irreps {A} of the cooperation group.
Therefore the operators H, J2, J,, and X can be
simultaneously used for the labeling of the basis
functions of an irrep of the cooperation group.
They are not in general sufficient (except for
particular small values of j and j’) for a com-
plete characterization of these states. However,
in this first approach, we define the collective
states belonging to an irrep {\} only as eigen-
functions of H, X, J?, and J, and we call them
[{x}urIM); p is related to the energy E of the
collection of atoms by E=E u (u takes values
varying from 3 N to — 3 N by integer steps; the
case of complete population inversion corre-
sponds to u =% N) and y represents a set of quan-
tum numbers which are not stated explicitly. If
we call X {\HuyJ) the eigenvalues of the operator
X, the master equation (10’) becomes, in matrix
form,

(w'y'd' M’ |R®P | u' + 1y oM’ — q)

X (WM (R [+ 1y JgM = @) + 1y (I M = q | p(t) [+ 1, doM - q), (26)
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where we have omitted the symbol {A} since only
one representation should appear and where we
have taken into account the obvious action of R{"
on the quantum numbers p and M.

One notices here that the different matrix ele-
ments between states of given energy values p
and p’ are not coupled together but only with den-
sity matrix elements of energy values p+ 1 and
u'+1: Eq. (26) can therefore be solved, in prin-
ciple, step by step starting from the highest val-
ues of u (the difficulty comes from the large num-
ber of density matrix elements). This charac-
teristic of Eq. (26) is due to the fact that the oper-
ator X is diagonal in the chosen basis, which is
thus very convenient for the resolution of these
equations: therefore the complete characteriza-
tion of the collective states should be done with a
chain of subgroups of the cooperation group con-
taining the SU(2) group of the total angular mo-
mentum and such that X is diagonal with respect
to the irreps of these subgroups.

B. Interference effects

Mathematically, the aforementioned inter-
ference effects appear in the evolution equations
of the density matrix elements, (26), by the
presence, in the right-hand sides, of two diffe-
rent matrix elements of the collective dipole op-
erator. Such products represent interference
terms between the probability amplitude of two
different transitions of the collective system,
these transitions having the same frequency (the
resonance frequency of the atoms) and the same
polarization (characterized by gq).

Such products of different matrix elements of
R®) appear obviously when the density matrix
element of the left side of Eq. (26) is nondiagonal,
that is a coherence. The corresponding inter-
ference effect is called “coherence transfer” by
Cohen-Tannoudji*® and it appears also for a col-
lection of atoms with two (nondegenerate) levels.
However the density matrix elements useful for
the evaluation of mean values of the radiated field
such as intensity or quantum fluctuations of the
intensity are diagonal in energy and in irreps of
the cooperation group. In the case of two nonde-
generate levels this property implies that the in-
teresting matrix elements are, at least in the
basis of Dicke’s states, only populations; the co-
herence transfer can thus be ignored. The situa-
tion is quite different if the two levels are degene-
rate; it is in general impossible to simultaneously
diagonalize the various operators of expressions
(17) or (19) which correspond to different polariza-
tions: the corresponding mean values involve co-
herences and the coherence transfer therefore plays

an explicit role.

Furthermore, interference terms may occur in
the right-hand sides of Eq. (26) even if the density
matrix element of the left-hand side is a popula-
tion. This is due to the fact that it is generally
impossible to diagonalize simultaneously the three
products of operators Rf,Rq corresponding to dif-
ferent polarizations: it is then impossible to find
a basis such that the action of each operator R, on
a given basis state gives always a single basis
state. As a consequence, the evolution of the pop-
ulations is coupled, via the interference effects,
to that of some coherences, whatever the choice
of basis states. This result appears as another
difference between the case of degenerate levels
and the two-level model, which is clearly due to
the presence in spontaneous emission of three in-
dependent polarizations (instead of one in the two-
level model).

These interference effects are of course quite
analogous to the level-crossing interference ef-
fects.®® The great difference between the case of
superradiance and the case of a single atom (or
noninteracting atoms) is that, because of the col-
lective character of superradiance, the interfering
paths have to be found in the collective energy-
level diagram. Therefore the number of elemen-
tary interference processes is much larger than
in the case of a single atom. Let us take as an ex-
ample the symmetric representation {N} of
SU(2j+ 2j’ +2), whose states are symmetric under
the permutations of the N atoms. The states of
highest energy of this representation correspond
to a complete population inversion (u=%N) and
there are N+1 equidistant energy levels; since the
dimension of this representation is given by

_(N+2j+2j" +1)!

K= NU(Zj+2/+1)1 ’

it turns out that for large values of N there is in
general much more than one state for a given val-
ue of p and of M. As shown before, the inter-
ference effects we are interested in concern the
different transitions of a same polarization be-
tween two consecutive energy levels: the number
of such transitions and thus of elementary inter-
ference processes becomes very large when j and
j’ and especially N are important.

C. Decomposition of the density operator on a set of irreducible
tensor operators

In order to take advantage of the isotropic char-
acter of the collective spontaneous emission de-
scribed by the master equation (10), that is of the
invariance under the total angular momentum
SU(2) group of this equation, it is convenient to
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use tensorial formalism and to decompose the
density operator on a basis of irreducible tensor
operators T'®; we write

pt)= Y. puIT. (27

20,1, 000yt
q==ky~k+l, 0000 k

The SU(2) invariance of the master equation im-
plies that the evolution equations of the different
Prt) are not coupled together and that these equa-
tions are identical for all values of g correspond-
ing to a same value of 2. This allows one to write
the decomposition of p(f) in a different way, which
does not involve a particular basis of irreducible
tensor operators:

p()= Y. apP); (28)

k=0y1, 000y +
q==Ry=R4ly .00, R

the coefficients a,, are some constants (depending
on the initial conditions only) and the p{¥(¢) are
irreducible tensor operators of rank k; the values
of a,, and of the reduced matrix elements of p'*(¢)
can be deduced from the matrix elements of p(¢)
by

ap My I Np P (I )

_ g I kT
'M,ZM'(%H)(_ 1) M(_M,qM>

X (Nl a' | p(0) [{Muyd M), (29)

J

{a/dt+5 TX (wyd)+ X (w'y "Iy ' T e POl wyJ)

=T 2 (—1)J+J'o+k+1{J5k"o}

4
v Tty s I J1J

the dependence on & of a,, being arbitrary. One
notices that since the trace of an irreducible ten-
sor operator of rank £#0 is zero, the condition
on the trace of the density operator, tr[p(f)]=1,
implies that

antr[p(N]=1, ' “(30)

or equivalently

D a2+ DM 2Ny I p @O py =1,

w7,

(31)

but there is no analogous condition for the com-
ponents of rank %+ 0.

The SU(2) invariance of the master equation im-
plies that the role of the quantum numbers M or ¢
in its matrix form is inessential. This property
is made clear if one uses the development (28) of
p(t); precisely a simple calculation® using the
properties of the 3-j symbols contained in the
different matrix elements of Eq. (26) shows that
the reduced matrix elements of the operators
p'®(t) satisfy the following equation:

Xy TNRDNw + 1yl Iy IRVl p+ 1y, I ) + 1y s Jollp® Ol w+ 1%, J,) . (32)

Concerning the mean value of a tensor operator Vf,k’ it is clear, since the trace of a tensor operator

vanishes unless the rank is zero, that

(VN =tr[a,. .o R @)V P(D)], (33)
or, in a more detailed expression (and for V® diagonal in p):
1 - '+
VOD= D s (= DT (N uy T lp PO ) N py TNV P py T (34)
(A}, w7, I, I 2k+1

The interest of the present decomposition of p(¢)
in irreducible tensor operators is then twofold:
first, it eliminates from Eq. (26) the useless
quantum numbers M and ¢g; secondly, the mean
values of tensor operators with rank % involve
only the component p‘*(#) and the evaluation of
such mean values requires the solution of Eq.

(22) only for the considered value of %2: for exam-
ple the evaluation of the radiated intensity [for
any polarization observation, cf. Eqs. (17) and
(20)] requires only the values 2=0, 1, and 2 and

for the quantum fluctuations of the intensity we
have to consider in general %k varying from 0 to 4
[cf. Egs. (18), (19), and (21)].

IV. REMAINING PROBLEMS AND QUALITATIVE
CONCLUSIONS

In the formalism presented here, the derivation
of the properties of the radiated field (intensity,
polarization, quantum fluctuations...) requires the
solution of Eq. (32) for particular values of 2. In
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order to actually perform this resolution, we are
faced with two main difficulties.

The first one is a consequence of the choice of a
quantum model and appears in the determination
of a suitable basis of collective states, that is, as
shown before, a basis of states of an irrep of the
cooperation group with given energy and angular
momentum and for which the depopulating opera-
tor X is diagonal. This implies that one has first
to find a chain of subgroups of SU(2j+2j’ + 2) such
that X is diagonal in the irreps of these subgroups
and which contains the SU(2) group related to the
total angular momentum of the atoms. More-
over one has to deal with the internal degenera-
cies that generally occur in the reduction of
SU(2j+ 2§’ +2) in this chain; this latter problem
can in principle be solved, at least for the
symmetric representations, by assigning condi-
tions to the fractional parentage coefficients
which relate the symmetric states of N atoms to
these of N - 1 atoms; however, one has to con-
sider large values of N and the problem becomes
very complicated. Finally, except for particular
simple values of j—j (namely, $~3%, 1-0, and
0 -1, for which the corresponding group theoreti-
cal studies and some numerical results will be
published later), we have not yet obtained such a
convenient basis of collective states and we are
thus unable to compute in general the reduced
density matrix elements of R’ which appear in
the evolution equations (32) and in the expres-
sions of the expectation values of the field [cf.
Egs. (22), (23), and (34)].

The second difficulty lies in the complexity of
Eq. (32), which is much greater than for the non-
degenerate case®: first, one has to solve several
independent systems of equations corresponding
to the different values of 2 which appear in the
expectation values of the field (=0, 1,2 for the
intensity and £=0,1,2, 3,4 for the quantum fluc-
tuations); second, the states of the irreps of the
cooperation group are characterized by several
quantum numbers instead of only one in the non-
degenerate case; the number of different reduced
matrix density elements for a given # may become
very large, all the more since one has to deal not
only with populations but also with some coher-
ences, because of the interference effects; fi-
nally, the presence of a sum in the right-hand
side of Eq. (32) complicates also the solution of
these equations. Consequently, even in the most
simple cases mentionedbefore, the direct methods
of solution such as for example the Laplace trans-
form method can be used only for small N. For
large values of N, it might be however possible
to consider the quantum numbers as continuous
parameters and Eq. (32) as partial differential

equations.

The problems will be considered in more de-
tail, for particular cases, in another paper. We
conclude here by a few qualitative remarks con-
cerning the expected results.

Since the first-order linear differential coupled
equations (32) corresponding to different values of
k are not coupled together, it is clear that if all
reduced matrix elements of p®(¢) are initially
zero for a given k, the same remains true at any
time. This is particularly interesting if it occurs
for all % values except £=0 [it cannot occur for
k=0 because of the trace condition on p(¢), cf. Eq.
(31)]: in this case the emitted radiation remains
isotropic and nonpolarized at any time; further-
more it is simple to show that this situation ap-
pears if, at /=0, the only nonzero density matrix
elements in the basis |[{\}pyJ M) are populations
and do not depend on M (which implies that the
initial excitation had created neither orientation
nor alignment). Except for such particular initial
conditions, the emitted radiation is polarized and
non isotropic (cf. Sec. IIC); moreover the polari-
zation state will vary with . In other words, if
one observes the radiated light in different polari-
zation directions, the form of the corresponding
signals will in principle be different.

However, as far as delay times are concerned,
these differences are expected to be small, the
superradiance appearing in a single burst except
for very particular initial conditions. In effect,
since any atomic transition between Zeeman sub-
levels has either an upper and/or lower level in
common with other transitions, the competition
effects mentioned in the Introduction play an im-
portant role; the superradiant emission on each

.transition will be influenced (either inhibited,

either initiated) by the others. A more precise
discussion of these competition effects can be
done by a simplified solution of the master equa-
tion without interferences (15); one can show that
the maximal intensities of the superradiant pulses
corresponding to different observation polariza-
tions can be different but correspond to a single
delay time (small differences may remain, but
they can be masked by the quantum fluctuations
of the intensity, which are expected to be large

if the initial population inversion is important!®).
Furthermore one can show in the same way that
this delay time is always greater than the one
which would be evaluated by assuming that the
two levels were nondegenerate; the enhancement
factor depends of course on the initial conditions
and can reach the order of magnitude of the de-
generacy of the lower level. Finally we stress
that these qualitative results take into account the
competition effects only and ignore the interfer-
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ence effects which are the specific consequence
of the level degeneracy; however, the role of
these effects cannot be studied alone and their
influence cannot be predicted, even qualitatively,
without a more complete treatment.
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