
PHYSICAL REVIEW A VOLUME 15, NUMBER 6 J UN E 1977

Application of the many-body theory of atomic transitions to the photoionization
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Results are presented of calculations on the photoionization of neon and argon based on a recently developed

many-body theory of atomic transitions. The results of our calculation demonstrate that this approach is

capable of providing a reliable theoretical estimation as well as studying the individual contributions of various

many-body eAects associated with the atomic transitions.

I. INTRODUCTION

A many-body theory of atomic transitions has been
formulated recently as an extension of the ordinary
theory of atomic spectra. " Starting from a joint
Schrodinger equation for the initial and final states
of an atomic transition of a given symmetry, a
hierarchy of equations for the transition matrices
is constructed; Subject to various truncations,
these equations take a form similar to the ordinary
Hartree-Fock equations and can be identified as
equivalent to various forms of many-body theories
(e.g. , the random-phase approximation, the time-
dependent Hartree-Fock approach, many-body
perturbation theory, etc.).

Several distinct features in this approach provide
the much needed flexibility and simplicity in any

realistic

many-body approach. First, in contrast
to other many-body approaches which usually em-
ploy the quantum field theory technique, this ap-
proach takes a more conventional configuration-
interaction point of view. By selecting only those
important configurations associated with the rele-
vant physical effects from the outset, one is able
to concentrate his attention and computational
efforts on the relative importance of each contrib-
uting physical effect. This, in turn, provides a
more precise physical interpretation as well as a
more efficient calculational procedure. Second,
since the spin and ihe angular variables are
treated explicitly from the outset, one has effec-

tively avoided the unnecessary complication in
the evaluation of the angular factors. Third, within

a single numerical calculation, this approach per-
mits a detailed quantitative comparison of various
many-body approaches which was made only ap-
proximately in other separate many-body calcula-
tions where different numerical procedures were
used. In this payer, we report the result of an
application of this new approach to the photoion-
ization of Ne and Ar.

II. THEORY

Following the derivation of Ref. 1, with the
(np') and (np'mlm'f) configurations (where f = 0 or
2) included in the ground state and (np'el) con
figuration included in the final state, the dipole
transition matrix element for the photoionization
of the rare-gas atoms from its ground state is
given by
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where D is the dipole operator and X„~ is the
ground-state Hartree-Fock radial wave function
for the outermost shell np. It was shown in Ref. 1
that by selecting those terms included in the ran-
dom-phase approximation (RPAE) calculation of
Amusia and his co-workers, ' the single-particle
radial functions (l), and p, satisfy a set of coupled
equations
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where the effective single-particle Hamiltonian H~&„~'» for the 'P', dipole transition is given by
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(2b)

(ill V'(a, b; r) lll') = (lllC'"'lll')(E, IIC'"'lll, ) dr' a(r') b(r') (4)
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The matrix elements of C' ' are standard' and
H~ is the usual Hartree-Pock'radial Hamiltonian. '

Based on Eqs. (2), three separate calculations
can be reexamined within a single calculation.

A. Single-particle approach

By setting P, = 0 in Eqs. (2) (i.e. , by neglecting
the ground-state correlation effects introduced by
the configuration mixing of np' with np'mlm'l), the
single-particle calculation of Kennedy and Manson'
is obtained as the first step of our calculation.
The dipole matrix element (1) becomes

I2(~~+~&l (0 0 I)h el+I@ ) '

where (, satisfies the single-particle equation

(II~(„,'), —e„,—E)g,(~) = 0.
This step will be referred to as I.

B. Many-body perturbation theory

It was shown in Ref. 1 that by dropping the
coupling term
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from Eq. (2a), the dipole matrix element (1) can
be identified as to include the dominant many-body
effects corresponding to diagrams 1(a)-1(f) with
P=q=r=nP in the calculation of Kelly and Simons. '
In the second step of our calculation, we have ob-
tained this same result by solving the semicoupled
Eqs. (6) and (2b). (An alternative calculation,
with identical physical effects included, has been
carried out recently by Swanson and Armstrong'
using a multiconfiguration Hartree- Fock ap-
proach. ) One should, however, point out that Kelly
and Simons have also included the contributions from
the excitation of Bs electron such as those repre-
sented by Fig. 1(a)-1(f) with p = x= 3p and q = 3s in

their Ar calculation. ' These effects are not pres-
ent in Eqs. (2) but can be included in our derivation
by adding additional configurations which are rele-
vant to the ns'np'-nsnp'ep transition. This step
will be referred to as II.

C. Random-phase approximation

The last step of our calculation is to solve the
full coupled equations (2). As mentioned earlier,
the dipole matrix element (1) has been shown in
Ref. 1 to be equivalent to that calculated by
Amusia and his co-workers. ' We should point out
here that the coupled equations (2) can also be
derived from the time-dependent Hartree-Pock
approach" by neglecting the couplings between
the excitations of different shells and subshells.
This step will be referred to as III.

III. RESULTS AND DISCUSSION

In Figs. 1 and 2, we present the combined photo-
ionization cross sections for the np'-np'qd and
np'-np'es transitions of Ne (n=2) and Ar (n=3),
respectively. Curves I give the results of the
single-particle calculation (step I in the present
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FIG. 2. Combined photoionization cross sections for
the 3P —ed and 3p —qs transitions in argon. The solid
lines are the velocity results and the dashed lines are
the length results.
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FIG. 1. Combined photoionization cross sections for
the 2p ed and 2p cs transitions in neon. The solid
lines are the velocity results and the dashed lines are
the length results.
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calculation) which are identical to the results of
other previous calculations. "' Curves II give
the results which include the dominant ground-
state correlation effects (step II). For Ne, our
results are identical to our previous many-body
perturbation calculation" and agree very well
with the equivalent calculatiori of Swanson and
Armstrong. ' The detailed comparison with the
calculation of Kelly and Simons' is difficult due to
the additional effects included in their calculation.
However, we should point out that while at higher
energies the present calculation seems to agree
well with that of Kelly and Simons, ' a discrepancy
of up to 10/p can be seen at lower energy side.
Curves III (step III) give the results which are in
excellent agreement with the RPAE calculation of
Amusia and his co-workers '(A.lthough it is ex-
pected that in a complete RPAE calculation, the
length and velocity results should be identical, the
present calculation, however, has neglected the
interchannel interactions between the excitations
of different shells and subshells and the effect of
this approximation can be seen in the small dif-
ference between the length and velocity calcula-
tions. ) Our calculations also agree well with the
results of a recent R-matrix calculation. "

'gfhile both step II and step III in our calculation
have greatly improved the theoretical calculation,
a substantial difference exists between these two
calculations. In particular, a maximum of up to
30'% difference is seen in the Ar results. The
existence of this difference suggests that the ef-
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FIG. 4. Comparison of the present calculation (step
III) and the experimental results in argon. The solid
line gives the experimental results. The dashed line

gives the velocity results and the dashed-dotted line
gives the length results.

feet of the coupling term (7), which represents
the correction to the single-particle wave function

g, of the outgoing photoelectron due to the ground-
state configuration mixing, is significant. This
large difference is actually within our expectation
in view of the large correction to the transition
matrix by the ground-state configuration mixing
in Ar.

Figure 3 compares the final results of the pres-
ent calculation (step III) with the experimental
values" "of the total photoabsorption cross sec-
tions of Ne. The seemingly large discrepancy at
higher energies results from the absence in our
calculation of the contributions from the ns'- nsqp
transition and the double ionization. These con-
tributions account for about 5-20/g of the total
absorption cross section in that energy region. "
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FIG. 3. Comparison of the present calculation (step

III) and the experimental results in neon. The solid line
gives the experimental results. The dashed line gives
the velocity results and the dashed-dotted line gives the
length results.
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FIG. 5. Comparison of the calculated asymmetry pa-
rameters p with their observed values ($, Itef. is) for
neon. Only velocity results are given here.
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In fact, when we include the contributions from
those two transitions, "an excellent agreement
between the calculation and the experimental re-
sult is obtained. Figure 4 compares the results
of our Ar calculation (step III) with the experi-
mental measurements"*"'" of the total photo-
absorption cross sections. The calculated angular
distributions of the outgoing photoelectron, repre-
sented by the asymmetry parameter P,'" are
compared with their observed values" in Figs. 5
and 6 for Ne and Ar, respectively. Since the phase
shifts used in our calculation are obtained from
the solutions of Eq. (2a) rather than that of Eq.
(6), curves III in Figs. 6 and 6 are slightly dif-
ferent from the calculation of Amusia et al. .

"
In conclusion, our calculation has demonstrated

that the present approach, with its much simplified
calculational procedure, is capable of retaining the
dominant many-body effects as well as providing
the reliable theoretical results. More important,
with the dominant physical effects explicitly in-
cluded, this approach can be used as the zeroth
order approximation in a more refined investiga-
tion where other minor many-body interactions
can be included either by treating them as pertur-
bations or by adding the relevant configurations
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FIG. 6. Comparison of the calculated asymmetry pa-
rameters p with their observed values ($, Ref. 18) for
argon. Only length results are given here.

in the joint Schrodinger equation (Eq. (I) of Ref. I]
for the transition of our interest. Such an exten-
sion to include the additional many-body effects
such as the interchannel interactions among the
ns'np'- ns'np'ed, ns'np'- ns'np'&s, and
ns'np'- nsnp'&p transitions is currently in
progress.

T. N. Chang and U. Fano, Phys. Rev. A 13, 263 (1976).
T. N. Chang and U. Fano, Phys. Rev. A 13, 282 (1976).
M. Ya. Amusia and N. A. Cherepkov, Case Stud. At.
Phys. 5, 47 (1975); M. Ya. Amusia, N. A. Cherepkov,
and L. V. Chernysheva, Zh. Eksp. Teor. Fiz. 60, 160
(1971) [Sov. Phys. -JETP 33, 90 (1971)]; M. Ya.
Amusia, N. A. Cherepkov, L. V. , Chernysheva, and
S. I. Sheftel, Phys. Lett. 28A, 726 (1969).

4For a more explicit expression, see, for example, D. J.
Kennedy and S. T. Manson, Phys. Rev. A 5, 227 (1972).

5A. R. Edmonds, Angular Momentum in Quantum Mechan-
ics (Princeton U.P., Princeton, N.J., 1957), p. 76.

6See, for example, Eq. (7) of Ref. i.
VD. J. Kennedy and S. T. Manson, Phys. Rev. A 5, 227

(1972).
H. P. Kelly and R. L. Simons, Phys. Rev. Lett. 30, 529
(1973).

9J. R. Swanson and L. Armstrong, Jr. , Phys. -Rev. A
15, 661 {1977).

~ A. Dalgarno and G. A. Victor, Proc. Roy. Soc. Lond.
A 291, 291 (1966); M. J. Jamieson, in Wave Mechan-
ics—The First Fifty Years, edited by W. C. Price,
S. Chissick, and T. Ravensdale (Wiley, New York,
1973), p. 133; R. F. Stewart, Mole. Phys. 29, 787

(1975).
T. N. Chang and R. T. Poe, Phys. Rev. A 12, 1432
(1975); T. N. Chang, T. Ishihara, and R. T. Poe, Bull.
Am. Phys. Soc. 17, 69 (1972).

' P. G. Burke and K. T. Taylor, J. Phys. B 8, 2620
(1975).
G. V. Marr and J. B.West, At. Data Nucl. Data
(to be published).

'4J. A. R. Samson, Advances in Atomic and Molecular
Physics 2 (Academic, New York, 1966), p. 177.

'~F. Wuilleumier and M. O. Krause, Phys. Rev. A 10,
242 (1974).

~R. W. Carlson, D. L. Judge, M. Ogawa, and L. C. Lee,
Appl. Opt. 12, 409 (1973).

' J. Cooper and R. N. Zare, in Lectures in Theoretical
Physics iic, edited by S. Geltman, K. Mahanthappa,
and N. Brittin (Gordon and Breach, New York, 1969),
po 317+
R, G. Houlgate, J. B. West, K. Codling, and G. V.
Marr, J. Phys. B 7, L470 (1974); K. Codling, R. G.
Houlgate, J. B. West, and P. R. Woodruff, J. Phys. B
9, L83 (1976).

~9M. Ya. Amusia, N. A. Cherepkov, and L. V. Cherny-
sheva, Phys. Lett. 40A, 15 (1972).


