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Transit-time effects in power-broadened Doppler-free saturation resonances*
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A density-matrix calculation of the line shape for a Doppler-broadened two-level system subjected to a plane-

standing-wave laser field with a Gaussian intensity profile is presented to fifth order in perturbation theory.
The primary new result is that, for fixed pressure and intensity, the power-broadening contribution to the
linewidth is at a minimum when the beam radius is approximately equal to the mean free path. In addition,
an analytic solution for the linewidth in the collision-dominated regime is presented for general collision param-

eters.

I. INTRODUCTION

In recent years, the attainment of ultra-narrow
Doppler-free satura'. ion resonances' ~ has made
necessary the consideration of line-broadening ef-
fects due to the finite spatial extent of the laser
field. " Several calculations which consider these
effects on the Lamb dip have been reported. Tran-
sit-time effects in third-order perturbation theory
were considered by Bautian and Shalagin. ' In their
paper the third-order line shape was numerically
integrated; the line shape in the extreme transit-
time regime was shown to be non-Lorentzian.
Utilizing the results of Rautian and Shalagin, Bak-
lanov et al. , using numerical techniques, have
given the linewidth as function of the ratio of col-
lision frequency to transit-time frequency. ' In
addition, they present closed-form expressions
for the linewidth in the extreme collision domi-
nated and transit-time dominated regimes.

Maeda and Shimoda have studied the effects of a
Gaussian beam in a gas-laser cavity and find as-
symmetry in the Lamb dip and a shift in the center
frequency. '

Borde et al. have. recently considered the tran-
sit, -time problem for a Gaussian beam including
the curvature of the phase front in a third-order
perturbation calculation and find a shift in the line
center. Hall and Horde have verified this result
experimentally. "

In the present paper, the line shape for a Dop-
pler-broadened two-level system subjected to a
plane-standing-wave laser field with a Gaussian
intensity profile is given to fifth order in pertur-
bation theory. " The fifth-order theory enables a
determination of the transit-time corrections to
a power-broadened line shape. As shown below,
a general conclusion is that the power broadening
contribution to the linewidth is significantly altered
by the transit-time effects. In Sec. II, the exact
line shape valid to fifth order in perturbation the-
ory is calculated including the effects of spatial
harmonics in the intermediate populations. In

II. CALCULATION OF THE LINE SHAPE

In this section the third- and fifth-order per-
turbation contributions to the line shape are cal-
culated. The resulting expressions are valid to
all orders in the transit-time effects which are
characterized by the small parameter nu2/y»
(defined below). The derivation closely follows
the method used by Lamb in his theory of the
laser. "

The density-matrix equations for a two-level
system traveling with velocity v and interacting
with an external field are giv.en by

P11 ( ~@ i »(P P1221) y1P11~-
P =( ~@) l 12(P21 P12) y2P22

(&)

(2)

Sec. III, by specializing to a collision dominated
regime, a closed-form expression for the lowest
order transit-time effects on the power-broadened
linewidth is obtained. Due to the approximations
which are necessary to calculate the linewidth in
the collision dominated limit, the contribution of
the transit-time effects must be limited to a few
percent of the linewidth in this regime. Thus the
primary reason for the calculation is to determine
the man~er in which various transit-time effects
are manifested in the linewidth. The results de-
monstrate that phenomenological transit-time
rates cannot be simply added to the decay rates
appearing in the density-matrix equations.

In Sec. IV, an analysis of the fifth-order con-
tribution to the linewidth for a general mean-free
path to beam radius ratio is presented using com-
puter evaluation of the multidimensional integrals
which emerge from the theory. The resulting
plots of linewidth at fixed pressure and intensity
versus transit-time frequency (defined below) in-
dicate that the power-broadening first decreases
and then increases as the transit-time frequency
is increased. The line shapes in fifth order do
not vary appreciably from the third-order line
shapes which are given in Ref. (7) and are not
shown.
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p» —-(2/ ) V»(pn-pu) +snop»-y»p»~

P21 Pl2 &

(3)

(4)

V (t) =-p ~ E =-p,E

E =Eo cos(ot sUlk [z 0+vg(t to)]

x U(xo+v„(t —ta)) U(yo+v (t —to)),

(5a)

(5b)

where p, is the transition electric dipole moment,
~ is the laser frequency, and k =&u/c is the wave
vector. V»(t) represents the potential as seen by
an atom which was created at position x, at time

where y, and y, are energy decay rates of levels
1 and 2, respectively, andy» is the polarization
decay rate. p» is the probability that the two-
level system is in the lower level and p» is the
corresponding probability for the upper level. p»
is the off-diagonal density matrix element and is
related to the induced polarization. ~o is the reso-
nance frequency and @ is Planck's constant divided
by 2m. V»(t) denotes the interaction with the ex-
ternal field and is given by

to with velocity v. By a suitable choice of phase
for the wave functions, one may take V»= V».
The electric field amplitude, E„ is assumed to be
a slowly varying function of z, i.e., (dEO/dz) l «Eo,
where / is the order of a mean-free path. Thus Eo
is taken to be locally constant and its z dependence
may be neglected in the calculation of the absorbed
power per unit length as discussed below [see Eq.
(29)]. The Gaussian intensity profile of the beam
is contained in the U factors in Eg. (5b), where

U(x) =e ', o. =1/ft', (8)

and R is the electric field 1/e radius. E, is nor-
malized so that the traveling wave power, &~,
is given by

00 C @ 2

exp( 2o.-x') 2m' dr .
o

For an atom created in state 1 at position xo and
time to with velocity v, one can obtain the follow-
ing expressions for p» to third and fifth order in
the interaction V».

t &3 t&

p'p&(v, t; x„t„1)=(i/k)' dt, dt, dt, exp[ (y»-i(o-, )(t —t, )] V„(t,)
to to .to

x (exp [-y (t, —t )] +exp [ y, (t, —t -)]jV (t )

x(exp [-(y» -iaido) (t2 —t, )] +c.c.}V»(t, ) exp [-y,(t, —to)] . (8)

t t5 t@ t3 t2
p~'~(v, t; xo, to; 1) =(i/k)' J dt, dt~ dt, dt, td, e xp[-(y»-i&o, )(t-t, )] V»(t, )

to to to to to

x(exp [-y2(t, —t~)] +exp [y,(t, —t~)]}V»(t~) (exp [-(y» —i&uo) (t~ —t, )] + c.c.}
x V»(t, )(exp [-y2(t~ —t2)] + exp [-y,(t3 —t2)] }'Vx,(t, )

x(exp [-(y» - i~, ) (t, —t, )] + c.c.}V»(t, ) exp [-y,(t, —t, )] . (9)

Since integral perturbation techniques are well-
known only the final results above are presented.
The contribution from atoms originating in state
2 is neglected in determining the absorbed power,
since the ratio of the number of atoms initially in
state 2 to the number of atoms initially in state 1
is determined by the Boltzmann factor which is
small for an infrared or optical transition.

Only atoms which arrive at position x at time t
influence a measurement of the polarization at
(x, t) Thus one mus. t replace xo by x —v(t —to) in
the potentials. Therefore, let V»(t„)-V»(x, t; v, t„)
in Eqs. (8) and (9), where

V»(x, t; v, t„) = -pE, cosset„iks[zn—v, (t —t„)]
x U(x —v, (t —t„))U(y —v, (t —t„)) ~

(10)

This result merely expresses the time dependence
of the potential as seen by a contributing atom with
velocity v in terms of its final coordinates (x, t)
instead of its initial coordinates (xo, to).

For a gas in thermal equilibrium, the number of
atoms created in state 1 with velocity v at time to
is given by N,~~ (v) y, dto, where

N, (v) =N, 'W(v),

and ~(v) is a normalized Maxwellian velocity dis-
tribution. Therefore, the total contribution to
p»(x, v, t; 1) due to atoms created at all initial
times, I;o, is given by

p»(x, v, t; 1) = Jf N,"( v) y, dt, p»(x, v, t; to; 1),

(12)
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dto dt5 . dt5 dto
0

Since V» is independent of to, according to Eq.
(10), the only t, dependence appears in the factor
exp [-y1(t —t2)]. Using Eq. (14),

gT

J y, dt, exp [-y,(t, —t, )]=1. (14)

where the cell diameter is large compared to the
mean free path so that the lower limit may be
approximated by -~. The t, integration can be
performed first by interchanging the order of in-
tegration in the standard way, i.e.,

The to integration is rendered trivial. Making the
following change of variables for p!,'~ [in Eq. (9)]:.

t const,

7~=t, -t~; t, const,

3 tQ t3 tQ const

y, =t, —t„ t, const,

(15a)

(15c)

(15d)

t, const, (15e)

and making a similar change of variables for p]'2

[Eq. (8)], one utilizes Eqs. (13) and (14) and re-
casts Eqs. (8) and (9) into the following forms:

prr(x, v, t;()=(-tpd /tt)tde(vr) f dv, f dv, JI dv, exp( (y, —tre )v-, ]
0 0 0

r

x cos(t)(t —72) F(x —v72) [exp(-y, 7, ) +exp(-y, 7,)]cos(t)(t —7, —7, ) F (x —v(7, +72))

x(exp [-(y12-i(t)2) 71] +c.cj cos(t)(t —72 —72 —71)F (x —v(72+72+71)) t (16)

p,' (x, v, t; () =(-ipz /It)'rvre(v) f dv, f dv JI dv, f dv f dv, exp(-(y„—rrv )r, ]
0 0 0 0 0

x cos~(t —7, ) F(x —v7, ) [exp(-y27~) +exp(-y, 7~)] cos(d(t —7, —7~) F(x —v(7, +7~))

x(exp [-(y» —iv, ) 7, ] +C.C.] costs(t —7, —7, —7, ) F (x —v(7, +7, +7,))
x [exp(—y272) + exp( —y172)] cosho(t —72 —7& —72 —72) F(x —v(7& +74 +72+72 ))

x(exp [—(y» —i~, ) 7, ]+C.C) costs(t —7, —74 —7, —7, —7, ) F(x —v(7, +7, +7,+7,+7,)), (17)

where

F(x —v7) = sink(z —v, 7) exp[- o. (x —v, 7)']

x exp[-n(y —v, 7)'].

The polarization induced in the medium is given
by

@21P12 V'12P'21 ( 921 all'' (19)

In terms of the polarization, the absorbed power
per unit volume is P ~ E where E is the applied ex-
ternal field. When 5 ~ E is spatially and tempor-
ally averaged only the terms in & proportional to
exp(+ikz) exp(+i+t) survive, assuming that the elec-
tric field amplitude F.o varies slowly over distances
comparable to a wavelength and that the mean free
path is large compared to a wavelength. Thus only
first harmonic terms need be considered in Eqs.
(16) and (17).

Consider first the exp(+i(t)t) terms which are
completely contained in the cosine functions ap-
pearing in Eqs. (16) and (17). Factoring out (1//2)'
from the product of five cosines in Eq. (17), one
obtains a contribution proportional to exp(ia&t) by
multiplying together three positive-frequency

terms and two negative-frequency terms. This
results in 10 (= 5!j3!2!)components proportional to
exp(i(dt). Since the cosine product is real, the
complex conjugate of these ten components yields
the result proportional to exp(-i&et). Inspection
of the factor exp[-(y»-im, ) 7, ] involved in the 7,
integral shows that terms containing exp( —iur7, )
are slowly varying in 7, as tends to +o, while
terms containing exp(i&7, ) rapidly vary and may
be neglected by comparison (rotating-wave ap-
proximation). Each of the first ten components
described above is proportional to exp[i(d(t -7, )]
[t -7, appears in the argument of each cosine func-
tion in Eq. (17)], and is slowly varying in 7,. Thus
the ten complex conjugate terms, which are pro
portional to exp [-i~(t —7,)], are rapidly varying
and may be dropped. In addition, of the ten con-
tributions which have been retained from the co-
sine product, those containing y, or q-4 in their
argument are rapidly oscillating since o is not
present in the factors exp(-y27~) +exp( y, 7~) and-
exp( —y272) +exp( —y, 72). Therefore, these terms
may be eliminated.

The product of the five sine functions (from the
F functions) in Eq. (17) may be treated analogous
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to the cosine product except that the complex con-
jugate expressions which are proportional to
exp(- ikz) are subtracted. All first harmonic
terms are retained until the v, integration is per-
formed . The sign of the exp(ikz) contributions is
positive since each results from the product of
three positive and two negative terms.

The p,", expression may be treated in a similar
manner, except that the exp(ikz) contributions are
negative, .resulting from a product of two positive
terms and one negative term.

A further reduction in the number of terms aris-
ing from the sine product can be accomplished by
performing the v, integration next. The total con-
tribution to p» from all velocity groups is given by

p„(x, t;1)=f dv, f dv„f dv, p,,(x, v, t;1).

(2O)

removed, the remaining terms vary slowly over
times of order 1/ku provided that the Doppler
width, ku, is much larger than all other frequen-
cies in the integrands. " Thus I(7 -y') [Eq. (22)]
is a sharply peaked function in the time domain,
and it can be approximated by a delta function,
M6(g -7'), where M is a normalization constant.
To determine M consider the integral

J exp [-(ku/2)'(~ —~t)'] d~
0

dq exp(-q') (2/kM)
-au&'/2

-=2~sr /ku, (23)

where ku~'/2 may be approximated by ~ since the
range of integration over y' is much greater than
1/ku. This gives

The Mmovellian velocity distribution defined by 1(T ~ ) =(WF/ku) 6(~ -~ ) (24)

=exp[-(ku/2)'(T ~')']. (22)

Because the rapidly oscillating terms in the z
integrals appearing in Eqs. (16) and (17) have been

W(v) =(1/u)()()sexp[-(vz+n2+va)/ua]; (21)

u =(m/2kT) '/2 is used in what follows. Consider
the u, integration. A typical expression from the
sine product looks like exp [ikv, (w -v')], where
g -g ' is some combination of 7, to 7,. Integrating
this exponential with the v, part of Eq. (21) yields

1
I(7 -v') —= I dv, e px[ikn, (T g )]exp(-v, /u )

1! 1T

for integrals having the form of Eq. (22). Expres-
sions of the form exp [ik6,(v+7')] give sharply
peaked functions proportional to 6(q. +T') after v,
integration. Therefore these expressions con-
tribute only for z =z' =0, since z and z' are ~0.
Hence the contribution from these expressions is
negligible compared to expressions of form of
Eq. (24) which contribute for all q- =w'. Note the
result, Eq. (24), does not depend on the sign of
v„so that the complex conjugate terms propor-
tional to exp(-ikz) contribute with equal amplitude.
Thus the v, integration of the first harmonic com-
ponents yields

(3) (x t. 1) . ~0 ~
pg(o)P12 t

X «, d&2 « eXP -y27, +eXP -+172 G3 XP t& T1P ~20 T3
0 . 0 0

where
Gt (x, t; T„g„T,) =if,(g; g„g „g,)If,(y, g„T„y,) exp(i(gt). [exp(ikz) —exp(-ikz)]

x [exp(- [y»+i(&u —(d), )]~,] (exp(- [y»+i (&u —(d), )]y, ].+c.c.) 5(y.,—'r, )],
with

(25a)

(25b)

tt, (x; v „v„v,) =(1/xtv ) f rtvvxp( —v,*/x*) vxp( —p(,x —v, v, )*—p (x —v, (v, +v, ))*—pr (x —v, (v, +v, +v, ))*),

(25c)

and a similar expression for If,(y; v„v„T,).

pr;r(x, t;t)=(-";). '' ~;rf dv, f dv, f dv, f dv, f dv,

xi[exp(-y2v~) +exp(-y, w~)] [exp(-y2&2) +exp(-y, z, )]G,(xt t;7~. . .z, )),
(26a)
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where

G,(x, t) v, . . .g, )

=H, (x; r, . . .r, )H, (y; v, . . .7, ) exp(i&et) [exp(ikz) —exp(-i')]
x [exp{-[y»+i (&o —&o, )]~,}(exp{-[y» —i(&u —v, )] (r, +~,)}+exp(- [y»+i(&o —ar, )]~, —[y» i—(&o —e, )]~,j

+exp(- [y» —i (&o —u&0)] r, —[y» +i (&u —&oo)] v, )+exp(- [y»+i (e —eo) ] (v, +

vs�)})

X [5(r5 —T g
-

T3 ) + 5 (rs —T r —'r5 ) + 5 (r r —73
- 7 5 )+5 (r5 —'rr —21 ~

—73 ) + 5 (7 j —t~ —27 ~ 'rs )]], (26b)

with

H, (x;~, . . .7, )

] oo

dv„exp(-v„'/u') exp(-n(x —v„r,)'- n [x - v„(v, +7,)]' ~ ~ -n [x —v„(~,+7, +~, +~, +7,)]'},
Q ff

(26c)

and a similar expression for H, (y; q-, ...~,).
The integrals in Eqs. (25c) and (26c) are easily

evaluated yielding:

H3(xl rIP r2$ 7 3)Hs( yt ril Tgr r3)

A = 5r, +474+ 3v, +2~, +~z. (28c)

In order to obtain the line shape, consider the
power absorbed per unit length

exp{- [3n n'D'/(n—C +1/u') ] (x'+y')}
~+QM C

P =J eh/ dy(1' R), (29)

(27a)

where

C =v', +(r, +~, )'+(w, +~, +v, )',

D = 37 3+2y~+7 z, (2Vc)

H, (x;7, . . 7.,)H, (y; .~, ~, )

exp(- [5n —n'A'/(nB+1/u')] (x'+y')}
~+au B

where the polarization, P, is given by Eq. (19)
andtheelectricfield, f, is given by Eq. (5b). The
angular brackets in Eq. (29) denote a time average
as well as a spatial average of sin'kz =-,'. In the
spatial average it is assumed that &0 is a slowly
varying function of z and that l/X» 1, where l is
the mean free path and X is the wavelength of the
incident radiation field. The limits of integration
in Eq. (29) are approximated by +~ assuming that
the cell diameter and detector field of view are
much larger than the electric field 1/e radius.
Performing the x and y integrations gives for the
absorbed power per unit lengthz4:

where pW+Z«iL (30)

B =Tg+(rg+'rg) + ' ' ' +(r 5+'jg+ rs+Tg+rr )', (28b) with

(e r&'~+e 4'3)(exp[-2(y»+i(ur —coo)]z, +exp(-2y»73)}
I ~ 4@ y~ z 2 3N; dv. , de, 1+nu~(g ~~+ 27~73+2' ~~)

2 2 +CC

(31a)

I

where the integration over q-, has been performed using the delta function appearing in Eq. (25b); the super-
script (4) on p~ refers to fourth order in the. field amplitude E,
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o ~o 'o 'o
x(exp(-2 [y»+i(&o -&u, )] (z, +7,)]+exp(-2y»&, -2 [y»+i(~ —&,)]r,]

+ exp(-2 y» z, —2 [y»+ i (+ —+o)]z,}+exp [-2y~2(z, + vs)] )

2(e. x2'a+e &x'2)

1+ 3 nu (3Tg+ 2) 2+ 5g g+2zg+ 3zy g 2+ 6g gg 3+ 3g ~ g 4+ 4rg w~+ 2r2ry+ 5Tsg 4)

~2 2+8 ~l 2

1+—, ou (5r, +2v2+ 5r3+2g ~+ 57.,r +28', g 3+4', q4+4r2g, +272' 4+ 5&.3v4)

2 (exp(-2[y» +y2/2 +i(&o —&uo)] v,] +exp(-2 [y» +y, /2 + i(&u —&uo)]T2])
1 v-,'v(3vv, v9 v* vv 1vv2 ++v'9 , v+v6v, v, v 3v v v &2v v, + 6v, v v 5v v ) ) (31b)

where use has been made of the symmetry of the
integrand under the interchange T,-z„ 7.2-7~,
and 73 g 3, after the x and y integrals are cal-
culated and where the resulting integrations have
been performed using the delta functions appearing
in Eq. (26b). The superscript (6) on P~ in Eq. (31)
refers to sixth order in the field amplitude po.
Equations (31a) and (31b) give (to sixth order in

ggoh) the exact contribution to the absorbed power
per unit length, including spatial harmonic effects
in the population, valid to all orders in the transit-
time effects. The entire transit-time dependence
is contained in the denominators of Eqs. (31a) and
(31b) in the terms proportional to o.u'.

III. TRANSIT-TIME EFFECTS IN THE COLLISION
DOMINATED REGIME

The integrals in Eqs. (31a) and (31b) are easily
evaluated in the limit o,u2/y, ' «1, (where y, = y~,
y2, or y»), using a first-order Taylor. expansion
of the denominators. Note that the last two terms
of Eq. (31b) which contain the factor exp [-2i(&u
—&ao)y, ] arise from spatial harmonic effects in the
populations. In order to facilitate the calculation
of transit-time contributions to the linewidth in the
collision dominated regime, it is convenient to
specialize to a rate-equation approximation
(REA)." Thus the last two terms of Eq. (31b) are
dropped. " By performing the ~tegrations one
obtains p +p ' correct to lowest order in the
parameter zu'/y, '.

Setting the resonant part of the total line shape
(sum of IT ~ +P '

) equal to half its maximum
height (&g = &go) allows the linewidth to be deter-

I

mined. The equation to be solved contains two
independent small parameters,

(32)

where 5, is the saturation parameter at beam cen-
ter and

2/ 252=QQ yyl2 ~ (33)

Assuming a half-width at half-maximum of the
following form:

2 = 2l" = y„+g, 5, +g, 5, +g„5,5„ (34)

then by Taylor expansion of each Lorentzian to
appropriate order and by comparison of the terms
proportional to 5„5„and 5,5„one obtains the
coefficients g„g2, and g». Note that retaining
terms proportional to 5, 5, does not imply that
terms of order (5, )2 or (5~)' should be retained,
since the perturbation theory and Taylor expan-
sion of the denominators are valid only to orders
linear in 5, and 5,. In addition, if a higher-order
perturbation treatment and/'or higher-order Taylor
expansion is carried out, the additional contribu-
tions obviously cannot affect the results which are
linear in 5, and 52. Using the fact that 5l and 52
are independent, one may calculate the "g" coef-
ficients by putting 5, =0 to determine g, and then
putting 5, =0 to determine g2. Then, after con-
siderable algebra, when both 5, and 5, are non-
zero, one may obtaing„by using Eq. (34) and the
previously calculated g, and g2. The resulting
HVfHM is given by

72 +3yl2yl+y2 y81 y2 +12 yl+y2 y2 yl 3 yl+y2 y2 yl
(35)
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The first term in Eq. (35) gives the pure collision-
broadening contribution to the linewidth. The next
expression is the power-broadening contribution to
the linewidth in the HEA for a plane standing wave
with a Gaussian profile. More interesting is the
increase in the linewidth due to transit-time effects
represented by the third term. For the case where

y, =y, =y», this result is identical to that given by
Baklanov et al. (Ref. 8). Note that if the decay
rates are linearly dependent on pressure then this
result varies inversely with pressure. The validity
of Eq. (35) is, of course, restricted to the collision
dominated regime where it is necessary to have
[~u'/y, ']'~'so. l (where y, =y„y„or y») in order
that the Taylor series expansion of the denomin-
ators converge. The last term shows that transit-
time effects cause a decrease in the power broad-
ening in the conision dominated regime. Note
that the terms in the square brackets are pressure
independent if the y's vary linearly with pressure.

In the next section, the linewidth is given as a
function of (nu')'~'y, by numerical evaluation.

IV. COMPUTER EVALUATION OF THE POWER-
BROADENED TRANSIT-TIME LINEWIDTH

As in Sec.. III, it is convenient to specialize to
a rate-equation approximation, and drop the last

two terms of Eq. (31b). This is not necessary,
but is done to considerably reduce the required
computer time. In add'tion, let y«=y~=y»=y
to avoid introducing an extra parameter into the
numerical evaluation. Consider the following func-
tion,

F(S P a) =P" (~) --'P" (n. =O) +P"'(~)

—;-P~'&(~ =0), (38)

where P denotes the resonant part of Eqs. (31a)
and (31b) with all the y's =y; where P= y/(o. u')'~' and

S= -2 2h' (3"I)

a =2((o —(o, )/y. (38)

Since ~ =0 defines the maximum of the resonance,
the zeros of p(b. ) holding S, p fixed represent the
full-width at half maximum, &~, in units of the
collision frequency. Explicitly, E(s, p, z~) is given
by

I

4v'~ P&o K&@ NP " " e "2e "&(cosb~x, ——,')
45 kg (yM o 0 p +(x~+2xyx2+2xg)

ch«dh, dh, dx4e "~'"4'e '"«'"3' cosa~ h«+h, +cosz~h, +cosa&h«2
0 0 0 0

2
p'+ —', (3x', +2x~2+5x', +2x24+3x.,x, +6x,x, +3x,x, +4x,x, +2x,x~+5x,x, )

1
p'+-', (5x,'+2x,'+5x', +2x,'+ 5x,x, +8x,x, +4x,x, +4x,x, +2x,x, + 5x, x4)

(39)

where dimensionless variables have been intro-
duced.

Equation (39) represents a well defined, if
somewhat complicated function of ~~. Using New-
ton's ru1e, the zeros can in principle be calcula-.
ted to any desired accuracy. This requires that we
determine sF/sZ as well as E(L). To solve Eq.
(39) in practice, the integrals are performed using
a multidimensional analog of Simpson's rule.
Given S, P, and an initial guess of g~. , the inte-
grals for E(a) and sE/sb. may be calculated si-
multaneously (since differentiation with respect
to ~ when taken under the definite integrals merely
modifies the cosine functions). A better guess for
g~ is then

F(s, p, z~.)

&+~ ~ BF(S,p, a~ )/Bb.
'

Iteration then gives the zeros of the approximated
y'(S, p, Z) to the required accuracy. Gare must, of
course, be taken to insure that the approximate
function F(g) represents the true integrals with
sufficient accuracy Figures (1.) and (2) show the
results of the calculation for S =0.20. The S = 0.0
curve of Fig (1) repres. ents the un-power-broad-
ened (fourth order) linewidth. This is in good
agreement with the results of Ref. 8, except that
the curve is plotted in a somewhat different man-
ner. The S =0.20 curve indicates that the power-
broadening contribution first decreases and then
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FIG. 1. Linewidthas afunctionof (~ ) /y tf' d

f
sure and intensity. y& =a~~=/& is the transit-t
requenoy where u= (2k&/m)' 2 and R is the 1/e radius of

the Gaussian field (not intensity). &8~&M/p is the half-
width at half-maximum in units of the collision fre-
quency. The upper and lower curves give the linewidth
for S=0.20 and 0.0, respectively, where S is the satura-
tion parameter at beam center defined by S= (@ED/25)2/y2.
E 0 is defined by Eq. (7).

increases as the transit-time frequency y =~o,u'
Yg

=u/R is increased at fixed intensity and pressure
To show this clearly, the difference between the
two curves is plotted on an expanded scale in Fig.
(2). [The zeros of F(g) have been determined with
suitable accuracy to make this possible. ]

V. DISCUSSION

The S= 0.0 (no power-broadening) curve of Fig.
1 shows that the linewidth increases as the beam
radius R is reduced. However, the rate at which
the linewidth broadens decreases as the beam
radius is reduced to a size significantly smaller.
than the mean free path A~. This behavior is dis-
cussed in Ref. 7, where it is suggested that for
R & ~~, the primary. contribution to the nonlinear
part of the absorption signal arises from molecules
with low transverse velocity which experience the
longest interaction time with the laser field.

The power-broadened (S=0.20) curve of Fig. 1
appears similar to that of the S= 0.0 curve. In
order to study the effects of the finite beam size

I I I I I I I I I I

1.0 2,0. 3.0 4.0 5.0 6.0 70 8.0 9.0 10.0
~au' iy

FIG. 2. Power broadening contribution to the linewidth
as a function of (n ) /y for S=0.20. This curve repre-
sents the difference between the upper and lower curves
of Fig. 1. The definitions are as in Fig. 1. Note that
the power-broadening contribution is reduced by ap-
proximately afactor 2when (p+~)' /y-1. Thedashedline
shows the plane-wave theory prediction for comparison.

on the power-broadening contribution to the line-
width, the difference between the two curves of
Fig. 1 is plotted on an expanded scale in Fig. 2.
The power-broadening contribution to the linewidth,
as shown in Fig. 2, exhibits two distinct regimes.
First, consider the regime where (nu'}' '/y& 1

7

corresponding to a beam radius R which is larger
than the mean free path. Define the nonlinear part
of the absorption signal as M. In this case, the
molecules which make the primary contribution to
M interact with the laser field for an average time
which is determined by collisions. However, as
the beam radius is reduced to a size comparable
to the mean free path [i.e. , (au')' '/y-1], a large
number of molecules from the transverse velocity
distribution interact with the laser field for a re-
duced time (compared to 1/y} determined by their
transverse velocity and the beam size. Since the
power-broadening contribution to the signal M
arises from a higher-order process (intensity
~E'} than the basic collision-broadened nonlinear
resonance (intensity ~Z'), the reduced interaction
time results in a decrease in the relative number
of transverse velocity molecules which appreciably
contribute to M via the E' process. In this way
the power-broadening contribution to the linewidth
initially decreases.

Now consider the regime where (au')' '/ & 1
corresponding to a beam radius which is signifi-
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cantly smaller than the mean free path. The in-
teraction time of the molecules which travel across
the beam with average thermal speed (-u) is re-
duced to such an extent that molecules with small
transverse velocities, although reduced in number
according to the radial Maxwellian velocity dis-
tribution, make th'e largest contribution to the non-
linear absorption signal M, because of their longer
interaction time with the field. Accordingly, the
relative number of molecules which make signifi-
cant E' (compared to E') contributions is altered
by tbe presence of the low transverse velocity
molecules contributing to the power broadening
(the E' term).

VI. CONCLUSIONS

In summary, this work presents several new
features of the transit-time corrections to non-
linear Doppler-free resonances. The most im-
portant result is given in Fig. 2, which shows that
the power-broadening contribution to the linewidth
can be drastically altered by the finite beam diam-
eter. This should be compared to the plane wave
result which shows no dependence on beam size at
fixed intensity and pressure. It is likely, even at
higher intensities, where the perturbation theory
is no longer valid, that the effect of the finite
beam size in selection of the low transverse veloc-
ity molecules will persist. This effect tends,
quite generally, to alter the relative numbers of
molecules which are able to participate in the
various higher-order multiphoton processes con-
tributing to the line shape. Hence, one expects
that a complex dependence of the linewidth on
pressure, intensity, and beam dimension will
continue in the region of strong saturation.

The closed-form expression for the linewidth
[Eq. (35)], valid in the collision dominated regime,
gives the dependence of the linewidth on pressure,
beam size, and intensity for general collision
parameters (y„y„y»). The result shows how the
transit-time parameter nu'= y', enters the line-
width. This should be helpful in introducing phe-
nomenological expressions to fit existing data.
af importance is the fact the square of y, enters
into the calculation and not y, itself. Assuming

that the collision parameters vary linearly with
pressure, one can see from Eq. (35) that the third-
order transit time contribution to the linewidth
varies inversely as pressure, whereas the fifth-
order transit time correction to the power-broad-
ening varies inversely as the cube of the pressure.
The small size of the transit-time corrections in
this regime make their effects on the linewidth
difficult to observe.

At low pressures, where the mean free path
attains centimeter dimensions, the transit-time
broadening as well as the transit-time corrections
to the power broadening should be observable with
beams of reasonable diameter.

In this paper, only a single two-level system has
been discussed. More generally, one must con-
sider the contr 'vution from many degenerate two-
level systems weighted appropriately by their
transition matrix elements p, . For the perturba-
tion regime (weak saturation), the required modi-
fications are simple. Assuming that the collision
parameters are identical for all the degenerate
two level systems, one replaces p,

' in Eq. (3la) by
a sum over p.

4 for the various contributing degen-
erate levels. Similarly one modifies p. in Eq.
(31b). These modifications will not alter the basic
results of Fig. 1 and Fig. 2 in any essential way.
However, for strong saturation, where the inten-
sity dependence of the linewidth (even for the
plane wave theory) becomes somewhat complex,
it is probably best to consider a single two-level
system. The A(0) (J=0) transitions of CO, or
N, O offer single two-level systems which can be
utilized experimentally to investigate the effects
of the finite beam size both in the weak- and
strong-saturation regimes.
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