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Expressions have been obtained for the multipole polarizabilities and shielding factors of the hydrogen atom

by application of the time-dependent perturbation scheme developed by Wiener, Aykar, and Demiralp utilizing

a hydrodynamic analogy to quantum mechanics. Our expressions reduce to the exact values in the zero-

frequency limit, obtained by Dalgarno with conventional perturbation theory.

I. INTRODUCTION

The hydrodynamic analogy' to quantum mechan-
ics follows by considering the equation for the
amplitude A. (x, f) and phase s(x, t) of the complex
wave function 4(x, f) instead of the Schrodinger
equation and then making suitable physical iden-
tifications. The resulting equation becomes non-
linear, reminiscent of those encountered in classi-
cal hydrodynamic. However, it is possible to
linearize the equation with the acoustic approxi-
mation.

Wiener and Askar' have worked out a scheme
using the hydrodynamic analogy to quantum me-
chanics to discuss the time-dependent perturba-
tion of real bound states. They have applied it to
derive the dipole polarizability of atomic hydro-
gen, reproducing the exact series solution in
agreement with previous solutions obtained by
different methods. "' Recently, Aykar and Dem-
iralp' derived a variational analog to the differ-
ential equation of an earlier work and applied it
to a derivation of the dipole polarizability of atomic
hydrogen.

The purpose of the present paper is to examine
the differential equation and its variational analog
following earlier papers, "for a study of the
multipoles of hydrogen atom. We use the notation
2L for 2~ multipoles following Dalgarno. ' The
dipole case corresponds to I. = 1. We present in
Sec. II the main outline of earlier approaches '

for the sake of completeness. We derive in Sec.
III the differential equation and its variational ana-
log to discuss the multipole polarizabilities and
shielding factors of atomic hydrogen. Sec. IV is
devoted to the solution of the variational analog
(equation) and in it we obtain the expressions for
multipole polarizabilities and shielding factors.
In Sec. V we elaborate on the dipole case and
draw our conclusions.

II. MAIN OUTLINE OF EARLIER APPROACHES

First, we point out the general perturbation
technique developed by Wiener and Aykar2 utiliz-

ing the hydrodynamics analogy to quantum me-
chanics. They added a small time-dependent per-
turbation (potential) to the unperturbed Hamiltonian.
Then they assumed that the bound state was real
and such that go(x) =Ao(x, 0), where A (x, t) denotes
the amplitude function of the Schrodinger equation.
Use of the acoustic approximation

A(x, t) =A.,(x) [1+a(x,t)], (2.1)

where e =O(A.) and A, is an arbitrary parameter,
led them to the linearized equation

(D' —&u') =DC ',
where

D =
2 V +(VA0/Ao) V,

(2.2)

(2.3)

and 4 ' is the spatial dependence of the perturbing
potential.

Now we turn to the development of Aykar and

Demiralp, ' which is simply a variational analog
of the linearized equation (2.2). It reads'

O'=-ER cose, e, =e "/vw,

e' =E(R) cos8, 8' =G(R) cos8.

Then the differential equation (2.2) becomes'

(D„' —(u') E(R) =E,

(2.5)

(2.6)

8 F2 dg dg dg g2'

Its variational analog equation (2.4)" is

(2.7)

-2R 2 dE
e 8 +2I" +4FCR —~R g (gdR

dG
+ R2 —;— + 2G' dR =0. (2.8)

dR

Ao 2VS' VS'+2(d E'4'+ —,(0 V6' V6'
V

+2 ~2m'8'] dv =0, (2.4)

where S' denotes the spatial dependence of the
amplitude of 4(x, t). In order to discuss the dipole
polarizability of the hydrogen atom we define
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DgF =-RE+G,

DzG =En

(2.9)

(2.10)

The Euler equation for arbitrary variation of E
and G becomes

C '(R, 8) = E-RiPi(cosO) . (3.2)

The ground state eigenfunction 40 is given by
Eq. (2.5). The substitution of (3.1), (3.2), and

(2.5) with (2.2) results in the following equation:

The substitution of (2.10) into (2.9) results in

Eq. (2.6) and shows the equivalence of the differ-
ential equation (2.6) and its variational ana. log,
(2.8).

(DJd z
—(3) )Fi =ELR

with

1 d ~ d d L(L+1)
2R2

(3.3)

III. DIFFERENTIAL EQUATIONS AND THEIR
VARIATIONAL ANALOG FOR THE MULTIPOLE

POLARIZABILITIES AND SHIELDING FACTORS
OF THE HYDROGEN ATOM

e'(R, O) =F (R)P (cosO), (3.1)

In this section we derive the differential equa-
tions and their variational analogs needed to dis-
cuss the multipoles of atomic hydrogen. For
multipoles of atomic hydrogen the spatial depen-
dence of e'(R, O) and C'(R, O) are

S'(R, 8) =G (R)P (cosO) . (3.5)

Substitution of (3.1) into (3.3) and (2.5) in Eq. (2.4)
results in the following equation:

(3.4)

where L stands for the multipole. For L =1, the
dipole case, it reduces to the earlier equation
(2 6).

Now, we derive the variational analog of the dif-
ferential equation (3.3); we choose for S'(R, 8)

()0 ll 2

5 e '"R' ~ Pi(cosO) +FOP~ (cos8) sin'8 +4FiGiPi2(cosO) —4Fi ERiPi2(cosO) &u'

R=o 8=0

dGz,+ s +G F' (cess)sin'HIsinsdsdR =0 (3.6)

With x =cose, the equation is transformed into

5 J
e '"R') Pi(x)+FiPz'(x) (1-x')+4FIGiPi(x) -4FiR EPi2(x) (4)'

0 -1

+ ~ Pi2 x +GiPiI x 1-x' dA dx =0. 3.7

We use the following relations:

J
1
P' (x) dx =

-1 2L+1 '

Pi (x) (1 —x') dx = 2L(L+1)
2L+1

(3.8)

(3.9)

Integrating (3.7) with respect to x, and making use of relations (3.8) and (3.9), we obtain

-2d3 2 J.+2 2 2 dGr.
'

il
J

e " R' +l(1+1)F +4F G R' —4F R + R te' HR +1 (I +1)G'IdR =0. (3 10)
0

D~ I I i =Gi —R E,
D~ ~GI =Ei(u

(3.11)

(3.12)

Equation (3.10) is the variational analog of Eq.
(3.3). It is easily shown to be equivalent to it by
writing down the Euler equations for arbitrary
variation of Fi(R) and Gi(R), namely,

IV. MULTIPOLE POLARIZABILITIES AND SHIELDING

FACTORS OF HYDROGEN ATOM

In this section we solve the variational equation
(3.9) to determine the multipoles of hydrogen
atom. We choose the following simple function
for Fi(R) and Gi(R):
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F~(R) =(CilR +C2~R~+')E,

G~(R) = (C s~R~) E .
(4.1)

(4.2)

(I +l)L L+1 '

C~~

The substitution of (4.1) and (4.2) into (3.10) yields
the following equations for C&~, i = 1, 2, 3:

e 2 "F-,(R)R'"dR,

8
2L+1

",-as &~(R) dRRL+ j.

it becomes

8 r

2L+1 ., (4.14)

(4.15)

(2I, + 1) (L + 1) 2L + 3

2(I. +1)(d2 (2I. +3) (L+1)+2 2L C,~

L+1
2L+ 3 . (4.3)

Substituting the value of F~(R) from Eqs. (4.1),
(4.4), and (4.5) we obtain

o, ,~((o') =o, ,~ [1—(1+2/L) (1+1/2L) (u~] ',
(4.16)

y, J ((()~) = y2~ [1—(1+2/L) (1+1/2L) &u~~] ',

The solutions of (4.3) are

Cxi, = 1 1+ 1+

0

(4.4)

where

(2L+2)! (L+2)
221+) L(L l)

(4.17)

(4.18)

(4.5) y', i =2/L(L+1) . (4.19)

C3L = —COg 1+ 1+

x 1- 1+— 1+ (4.6)

o.,z =(4 I P~(cos8)R~ Ig)

=2(@,I P~(cos8)R~I e'4, ) cos(df,

(4.8)

(4.9)

(4.10)

(4.11)

Therefore, if we let e' correspond to the case
E = 1, the multipole polarizabilities and multi-
pole shielding factors are given by

We have added the suffix L to + occurring in Eqs.
(4.4), (4.5), and (4.6) to distinguish between the
different multipoles. For &u~ =0, C, ~ = 1/L, C,~
=1/(L+1), and C,~ =0, so that

I P)= & + R'")z G (R)=0.1 1
L L+1

(4.7)

For L = 1, (4.7) is equivalent to the result obtained
earlier.

The multipole polarizabilities z» and shielding
factors y», produced by the applied electric field
E =Ee„cos&t are given by the following expres-
sxons:

o.,((u') = —',(1 ——', (d') ',
y( (d) =(1—2~') '

(5.1)

(5.2)

For u =0 we get the exact expression. Formulas
(4.18) and (4.19) represent the exact values for
the static multipole polarizabilities and shielding
factors of the hydrogen atom. If we had chosen
for the ground-state wave function 4o =e ~~Z'~'/

, then 'additional multiplication factors in Z
automatically enter in the expressions (4.18) and
(4.19) making them equivalent to Eqs. (4.6) and

(4.7) of the earlier reference.
From Eqs. (5.1) and (5.2) it follows that reso-

nance frequency for the dipole case occurs at
w =0.471. This is the result of Aykar and Dem-
iralp. ' The exact value for the resonance fre-
quency is 0.375. This can be achieved by solving
Eq. (2.6) numerically. We note that the choice
for the function E(R) in the variational equation
(2.8) is guaranteed by the indicial equation of the
differential equation (2.6) with the boundary con-
ditions that 4,E(R) is bounded for R =0 and van-
ishes atR =~. This suggests the choice of

V. DIPOLE CASE AND RESULTS

We discuss the dipole case in detail. Putting
L = 1 in (4.16) and (4.17) we obtain the dipole po-
larizability and shielding factor of atomic hydro-
gen

a.,~ =2&@OI P~(cos8)R~I eo&'&, (4.12) (5.3)

(4.13)

Substituting the values of e' and 40 and integrating,

This is also our choice for F~(R) for general L.
The Euler equations (2.9) and (2.10), (3.11), and
(3.12) impose a boundary condition on G~, namely,
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Case II: F(R) =(C,R +C2R'+CSR'+C, R )E,
(5.5)

G(R) =(C,R) E.
In both cases we find that the polarizability and
shielding factor are given by (5.1) and (5.2). Thus
the inclusion of higher-order terms of R in F(R)
only complicates the algebra without modifying the
polarizability expression.

Thus the only way to modify the resonance fre-
quency is through the function G(R). Thus we
discuss the third case:

Case III: F(R) = (C ~R +C2R ) E,
G(R) =(C,R'+C,R') E. (5.6)

We find that dipole polarizability and dipole shield-
ing factor take the forms

G~ = 0 for m~ = 0. As for co~ =0, we have C» ='0,
from Eq. (4.6), implying that Gz(R) =0 for all L.
For the dipole case we make the following alterna-
tive choices for F(R) and G(R)

Case I: F(R) = (C,R +C,R '+C,R ') E,
(5.4)

G(R) = (C ~R) E

coy=0.2135, co =0.462:. (5.9)

Thus the resonance frequency changes from 0.471
to 0.462 but remains far away from the exact
value 0.375.

We summarize the result of the present cal-
culations as follows. The method developed by
Wiener, Aykar, and Demiralp is interesting as
an alternative procedure which is equivalent
formally to the conventional method within the
framework of the acoustic approximation. We
have derived the differential equations and their
variational analogs to determine the multipole
polarizabilities and shielding factors of the hydro-
gen atom. Then by use of the variational equation
we obtained an expression for the multipole po-
larizabilities and shielding factors of the hydro-
gen atom. For ~ =0, they give the exact result
obtained by Dalgarno' with conventional pertur-
bation theory. Further we observe that the multi-
poles have the resonance frequencies given by

u)~ =[(1+1/L) (1+ 1/2L)]-' ' (5.10)

For the dipole case this is an approximation and
with a different choice of G(R), we could improve
on this estimate.

9+ 125&2
2 + 845 &u' —4000 e' ' (5.7) ACKNOWLEDGMENTS

6+ 800(g)2

3(2 + 845 &u' —4000 &o4)
' (5.8)

For + = 0 the correct static case follows, as well
as 6 =0.

Further, the resonance frequency is given by
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