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FIG. 2. Partial Grotrian diagram of Xe+.

I

and the laser cavity is made to track the etalon
by applying a similar but amplified ramp to the
output mirror's PZT, with automatic resets of
this voltage to keep it below the maximum allow-
able PZT voltage. Usually it is difficult to scan
over large frequency intervals by this means with-
out occasional mode hops and constant AM and FM
jitter. To overcome this difficulty, we added ac-
tive feedback stabilization to correct the output
mirror's position continuously (see Fig. 1). The
error signal for the loop was generated by modul-
ating the etalon PZT at 1 kHz, thereby producing
an amplitude modulation of the light output when the
etalon and cavity transmission peaks did not coin-
cide. A silicon photodiode viewing a portion of the
laser light provided the input signal to a commer-
cial lock-in amplifier. The output of the lock-in
was fed into the summing junction of the cavity
PZT drive circuit. The resulting frequency scan
was extremely smooth, with no mode hops and

reduced jitter. It was moderately linear, but for
accurate measurements a series of frequency
markers were required. These were obtained by
monitoring the laser output with a temperature-
stabilized confocal Fabry-Perot etalon of 1500-
MHz free spectral range. The light transmitted
through this reference cavity provided a signal to
one channel of the dual pen chart recorder which
was simultaneously recording the fluorescence
photo current.

The photocurrent versus laser frequency curves
obtained represent the combined spectra of all
the isotopes of natural xenon. The components
from one isotope are displaced from those of an-
other by the isotope shift (predominantly the nu-
clear volume effect' in this case) and by their rel-
ative Doppler shift. Because the Doppler shift
could be varied at will, a very simple and direct
method was available for the assignment of mass
numbers to the observed spectral lines. An ion of
mass M; and energy E, with a transition in its
rest frame at frequency v,.(0), will absorb light

of frequency (in the lab frame)

v,.(E) = v,.(0)(1+P,.cos8,) ',
where

P, = (2 E/M. c')'~'

Thus, if two masses differ by ~M,.~=M,. -M, ,
their absorption frequencies will differ by

v, (E) —v, (E) = v, (0) —v,.(0)

+ v,, cos8, (2E/M, ,c')' i'(6M, ,/2M, ,),
in which v, , is the average transition frequency of
the two isotopes, and M,, is their average mass.
This equation is correct to lowest order in ~M, ,
and v;(0) —v,.(0). If the observed frequency differ-
ence is plotted against E' ', a straight line whose
slope is proportional to 4M, , will be obtained,
making it quite easy to distinguish masses.

III RESULTS

Fluorescence curves were taken at six energies
in the 300-eV to 2-keV range. Examples at 300 eV,
700 eV, and 2 keV are shown in Figs. 3-5. As ex-
pected, groups of lines from a given isotope are
seen to shift without changing their separation, and
the lighter isotopes are shifted much farther toward
lower frequency (to the right on the figures) than
heavier isotopes. The intensities of the compon-
ents are not those predicted by the usual formulas
for weak light intensity because the laser is quite
capable of saturating the stronger transitions. As

I32

l34

l36 j

FIG. 3. Spectrum of fluorescence intensity vs laser
wavelength at an ion beam energy of 300 eV. Scale at
top indicates centers of calibration peaks; each division
is 1500 MHz. Vertical scale is in arbitrary units. Lower
case letters identify components from odd isotopes (see
Table III). Lines from even isotopes are identified by
mass number.



15 ION-BEAM LASER FLUORESCENCE .MEASUREMENT OF Xe'. . .
I

2295

l32
IOOO

700 eV

800

600

l36

l34

I30

400

200
Nx

0
I-
U

f) -200

Oz -400
LIJ

(3
hl
fL-'-600

-800

FIG. 4. Same as Fig. 3 for an ion energy of 700 eV.
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a result, even the weakest components (bE =bJ+2)
are clearly visible.

The locations of both the fluorescence peaks and
the frequency calibration markers were digitized
and recorded on punched cards with a Gerber
GDDRS-3B digital data reduction system. The
1500-MHz marker locations were then fitted to a
quadratic to yield a continuous frequency scale.
The differential nonlinearity was typically +V%%uo.

Once the corrected frequencies of the fluorescence
peaks were computed, Doppler shift analysis as
discussed above yielded a mass number for each

l32

2 keV

X)0 5007tm 000 600 2000
E {ev)

FIG. 6. Shift of spectral lines (relative to mass 132
line) vs ion beam energy. Horizontal axis is scaled as
E' . Lines for masses 129 and 131 were calculated
from observed hyperfine structure.

peak. Figure 6 shows the straight-line least-
squares fits for a number of frequency intervals
versus E' '. In all cases the reference frequency
is the mass 132 peak. (The odd isotopes'locations
were determined from the hyperfine structure
analysis which follows. ) The zero-energy inter-
cepts give the isotope shifts. directly; the results
.are summarized in Table I. These shifts are
very small, as would be expected for a transition
in which the number of s electrons does not
change, ' and it is quite remarkable that they can
be observed at all. The very small separation be-

I,
I34 cd TABLE I. Isotope shifts in the 605.1-nm transition

of Xe'.

l36

Mass

128
129
131
134
136

Frequency shift (MHz)~

66+ 20b
91+20
15+20

-130+ 20
-135+ 20

FIG. 5. Same as Fig. 3 for an ion energy of 2 keV.

~Relative to mass 132.
"Error estimates based upon systematic errors in

locating peak positions.
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TABLE II. Hyperfine coupling constants ~ in Xe'.

Run No.
Ion energy

(eV)
Ai28

(MHz)

128X +

A 128

(MHz)
A131

(MHz)

131X +

Bisi
(MHz)

Aisi
(MHz)

B»i
(MHz)

Average
Error

300
300
500
700

1000
1500
2000'

—1691.3
-1680.7
-1680.0
—1652.0
-1653.7
—1647.0

—1667.5
18.7

-527.3
-524.5
-518.3
—508.0
-507.0
-509.3

-515.7
8.9

490.3
491.8
484.8
495.5
486.0
481.5
482..5

487.5
5.2

-24. 1

-101.7
—59.2

—164.9
—106.4
-128.9
—165.2

107.2
52.3

150.5
149.2
145.9
154.0
147.4
146 ~ 0
152.9

149.4
3.2

90.2
58.3

111.8
50.2
43.5
71.4

107.5

76.1
27.5

Primed and unprimed constants refer to the 6P P5y2 and 5d D7)2 levels, respectively.

tween masses 134 and 136 may be the result of at-
taining the neutron magic number 82 at mass 136.

The analysis of hyperfine structure is accom-
plished without any reference to Doppler shift in-
formation beyond the initial assignment of mass
numbers. In the case of "'Xe' the nuclear spin is
~, so there is only magnetic dipole hfs and hence
only two coupling constants to fit, A», (5P 5d D,&,)
and A», (5p' 6p'P;&, ), which will be referred to for
the sake of brevity as Aypg and A,'», respectively.
The '3'Xe' nucleus has I= ~, and thus in addition
to A, , and A,'» there are also electric quadrupole
coupling constants. B», and B,'» to determine. For-
mulas for the hfs splittings are presented in the
Appendix. The analysis of each fluorescence
curve requires at least four frequency intervals
to fit the '"Xe' constants and two for '"Xe', in
some cases more were available. A separate
least-squares fit was used for each odd isotope
in each spectrum. The results are summarized
in Table II, and the computed hyperfine structures
are displayed in Fig. 7. To include the effects of
systematic errors from partial overlapping of
peaks, the error estimates shown in Table II were
chosen conservatively. One sample standard devia-

TABLE III. Hyperfine contributions to the 605.1-nm
Xe' trans ition.

Component E' E
128Xe+

dv hfs

Component I'

A i28 + A128
7 I 8

4 4

A128 + A128
8

4
5 i 74 -A128 ——A1284 4

"'Xe'
Dv hfs

tion is quoted rather than the standard deviation
of the mean. At present there are no theoretical
predictions with which to compare the measured
coupling constants. It is hoped that this experi-
ment will lend impetus to theoretical work on this
atomic system.

The ratios of the hyperfine constants can be used
to compute the magnetic hyperfine anomaly for
each atomic level. "' %ith the precision of the
present experiment, these values are not very
well determined; however, relatively modest im-
provements should bring them within our reach.
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i5 i 1 i ~ 13A i31 A 131 + Bis i + B1314 4 4 28
15 I 21 iA i31 A 131 + B131 B1314 4 4 4FIG. 7. Hyperfine structures of the 5d D7&2 and6p

levels of Xe+ based upon constants in Table II. Hyper-
fine levels are labeled by their P values.

&' and F refer to the total angular momenta of the
6p P5y2 and 5d D7g2 levels, respectively.
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IV. CONCLUSIONS ACKNOWLEDGMENTS

A precise measurement of the hyperfine struc-
tures of two excited levels of Xe' has been carried
out by laser-induced fluorescence spectroscopy on
an ion beam. The method clearly yields much bet-
ter resolution than discharge tube techniques. 4

With the planned addition of a mass spectrometer
it will be possible to investigate the spectra of
numerous ionized molecules and atoms without
any doubt as to the species under study. (This is
often a problem in discharge tube experiments. In
the present case the simplicity of the optical spec-
trum allowed us to avoid mass separation. ) Furth-
ermore, in the near future we expect to present
results of a radiofrequency investigation of Xe'
hyperfine structure by a method we have recently
applied to Na, molecules, ' This will increase the
resolution by three orders of magnitude and the
accuracy by an even greater factor.

We wish to thank I. Schmidt for valuable technical
assistance.

APPENDIX

The hyperfine interaction between a nucleus of
spin I and electrons in a state of total angular mo-
mentum J has the expectation value"

—23c(c+1)—2I(I+1)z(v+1)
I(2I 1)d'(2—Z —1)

in which I' is the total angular momentum of the
system and

C =Z(@+1)—I(I+ I.) —Z(@+1).
The hyperfine contributions to the optical transi-
tion frequencies are expressed in terms of the
hyperfine coupling constants in Table QI.
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