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The 'P —i 'D electron-impact excitation cross section within the ground configuration of doubly ionized oxygen
is calculated in the distorted-wave approximation. An essential element of the present treatment is that we do
not assume orthogonality between core and scattering orbitals of the same angular symmetry. Resonance
structures are included through the use of quantum defect theory. Near threshold the effect of an isolated

autoionization resonance in the dominant D' partial wave is found to be important, in agreement with

previous close-coupling results.

I. INTRODUCTION

Theoretical calculation of atomic collision pro-
cesses is important in understanding the behavior
of astrophysical and laboratory plasmas. For
electron-impact excitation of positive ions, theo-
retical knowledge is crucial since accurate experi-
ments are difficult for multiply charged ions. '
Near threshold for excitation, which is usually the
energy region of prime interest, the incident elec-
tron and the atomic electrons have velocities that
are comparable. For this energy range, strong-
coupling methods' employing a partial-wave ex-
pansion of the scattered electron should be used.

In electron scattering from neutral atoms, re-
sonances can occur just below the energies of ex-
cited states of the target atom. For electron ex-
citation of positive ions the energies of these
autoionization resonances can descend very far be-
low the parent excited state, in fact even far be-
low lower excited states of the target ion. For
highly charged ions, a full close-coupling calcula-
tion becomes impractical since one is forced to in-
clude many resonant closed channels even near the
threshold for excitation. The distorted-wave meth-
od, with its numerical simplicity and fast computa-
tional speed, becomes a reasonable alternative.

In recent years the distorted-wave method has
been applied to the calculation of resonant struc-
tures in electron-impact excitation of ions. Using
distorted waves calculated in a suitable central
potential, Hershkowitz and Seaton' found resonance
effects in the excitation cross sections for carbon
IQ and oxygen V to be quite important. Using es-
sentially only Coulomb waves, Presnyakov and
Urnov4 have also found average resonance effects
to be very large in various excitations of oxygen
VI.

In this paper we try to ascertain the accuracy
of the distorted-wave method by calculating the
low-energy resonance structures in the 'P-'D
transition within the ground configuration of oxy-

gen Gl. The distorted-wave equations are derived
using the Kohn variational principle in which we
do not assume orthogonality between core and
scattering orbitals of the same angular sym-
metry. ' Thus the distorted waves incorporate
exchange effects in a fully consistent way. In
Sec. II we review the resonant structure theory.
Qur distorted-wave results for oxygen III are then
given in Sec. III along with a comparison to an
elaborate configuration- interaction close-coupling
calculation. ' Section IV contains a brief summary.

II. RESONANCE STRUCTURE THEORY

The general theory of the distorted-wave method
as applied to atomic collisions is well known. In
this paper we use the distorted-wave approximation
to the close-coupling expansion for the total wave
function 4 as presented by Mott and Massey. ' This
formulation seems especially appropriate when
the energy separation between initial and final
states of the atom is small compared to the ioniza-
tion potential.

The expansion of the total wave function% is in
a representation (nL„S„k„l„sLSM,M/I) in which
the orbital and spin angular momenta of the scat-
tered eiectron (k„l„s) and the atom (nL„S„)are
coupled together. Qne assumes that the total and
component orbital- and spin- angular- momentum
quantum numbers L,S,M„M„as well as parity
II, are conserved during the collision. The gener-
alized Hartree-Fock coupled equations for 4 are
derived from the Kohn variational principle, where
no orthogonality restrictions are made on core
and scattering orbitals of the same angular sym-
metry. For a fixed set of conserved quantum
numbers I' =I.SH, the set of radial-coupled integ-
ro-differential equations have the general form

t AqN
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where

d' l,.(l,.+1) 2Z
ls dy2 y2 y

(2)

where

k,.x = k,r ——,'li«+ (z/k, .) ln(2k, r) + &r;,

z is the residual charge on the atom, 0,. is the
Coulomb phase shift, and 5, is the non-Coulomb
phase shift.

The asymptotic form of the radial functions
Fr, (r) of Eq. (1), for all N channels open, may be
written as

Fr, (r) ~ (1/&lk. )(&&,e-&0&&)(d&&;& Sr, e&0& "dni&)

(8)

The S~ matrix in the distorted-wave approximation
takes the form

—,'0',- is the energy, Z is the atomic number, and
atomic units (1 a.u. = 27.21 eV) are used. The
index i in Eq. (1) runs over all N channels in the
expansion, while i specifies the initial conditions.
The potentials Vr&.(r) contain both direct and ex-
change integrals.

By dropping all terms involving coupling poten-
tials in Eq. (1) we obtain the distorted-wave equa-
tions

[7,. 2v', ,(r)+k',.]f',. (r) =OI,. „„ (8)

The scattering orbitals f ",. (r) are given the normal-
ization

(4)

results of quantum-defect theory to calculate the
Sr matrix with M open channels (M(N). ' Weuse
Latin letters for open channels (1~i,j, . . .~M)
and Greek letters for closed channels
(M+1 —n, P, . . . —N). For closed channels n
= M+ 1 to.N, the distorted-wave equations (3) are
solved at negative energies given by

k2 /2 — g2 /2v2

where v is the effective quantum number. The
eigenfunctions Pr „(r) of the distorted-wave equa-
tions are bound scattering orbitals attached to ex-
cited states of the atom and thus may produce
autoionization resonances in the excitation cross
sections. The eigenenergies are given by -z'/
2v' „and the quantum defect p. „is defined by

I"e, n=n —vn, n &

where p, „ is of course a slowly varying function
of n. As has been shown, ' the analytically conti-
nued function f r „(r), at the eigenenergy -z'/2v2 „,
is related to the orthonormalized eigenfunction
Pr „(r) by

f' „(r)=(i«v' „/2~)"e P' „(r), (12)

where 0 is generally close to unity. '
We now analytically continue Sr of Eq. (7) into an

N-dimensional matrix Sr. Using Eqs. (8), (9), and

(12) the elements of the Sr matrix are given by

v3 1/2
I,.„=; f V,. (v)V, ,(x)P„„(r)dr,

ki s 0

1+&(1) ~ a o
1N (14)

S21 1 + i&(2) s'sI- s= '. (' 's)"' P." „(r)V.",(r)P; „.(r) dr,

where

Nl 1+ n(N)

s",, =1+~(z),

s.'.=1+~(~),
where

(16)

(17)

~(') =-, g Is;,]',
j =1j i'i

and (see Chap. 4 of Mott and Massey' )

(8)

and

~()=-l(g [8,",]'+ g [s;.]'l (18)

(dd Pi f fl(~)~i(~)fi(~)«,k,.k, , (9)

The form of the diagonal elements in Eq. (7) is
equivalent to that given by Seaton. ' In particular,
the h(i) contribution is necessary in order to re-
tain information about the resonance widths.

When some channels are closed, we may use the

t&
M

[s:,]'. Z l.s:.]' .
j=1 0=M+1

(19)

The specific eigenfunction P" „(r) is taken as the
one whose eigenenergy -z'/2v' „ lies closest in
energy to —z'/2v'„. Alternatively, ' one can calcu-
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late a function f r(3 ) [or Pr (r)] for all energies.
The function f r(3) at noneigenenergies increases
exponentially at large distances. An appropriate
convergence factor (lim3, e 3" ) must then be used
to define a norm for the state. '

The fundamental equation of quantum-defect

(2o)

where

I

theory is that the elements of the Sr matrix with
M open channels are given by'

$»»=go -Z Z 8» [+ 8] '8»»»
e=N+1 /=&+1

S~r, » ~„—Q(M+ 1) ~r
~@+is 9+2

qr"x+2,x+1 S"., „., —n(M+2)

Srv „—A(N)

Q(n) =exp[-2i(3v +5 )], (22)

and the analytic continuation of the phase shift 5,
is gP ~.

The total excitation cross section»7 (in units of
»»a,') for the transition nL»s» -n'L&s& is given by"

c= g o(r, f,.-f,),
z, si;g)

where

(2L+ 1)(2S+1)
2k3(2L» + 1)(2S, + 1)

(24)

Since

v3+p. 3=v, „+(v, v, „)+»13=n+(v3 —v, „),
where v3 „ is the eigen-quantum-number closest
to v„we may write'

83'3 —II(2) -=[1+&(2)]- [I —»~(v3 —v...)]
= 2i~[v. —v.,„-(i/2~)&(2)].

Equation (25) now takes the form

(26)

S, =2' A— (2'1).

where

Sr gr gr21 P 23 31 G P[8r)22i ' 4g ' 4g) 1

One should note that A, 8, and G are all real
quantities. Substituting Eq. (27) into Eq. (24), we

If we limit our consideration to a three-channel
problem in which the excitation 1-2 proceeds in
the presence of a single closed channel 3, we may
write Eq. (20) as

obtain for the partial-wave excitation (1-2) cross
section in the presence of a closed channel 3:

2(2L+ 1)(2S+ 1)
jP(2L + 1)(2$ + 1)

B' —2AB(v3 —v, „)
(v, —v, „)3+G' (28)

If only the first term inside the brackets of Eq. (28) is
kept, we retain the nonresonant excitation cross
section. The second term inside the brackets gives
rise to an infinite series of resonances converging
to the threshold of excitation of channel 3. The
Gailitis resonance-averaged cross section,
(o(r, I, -I,)),"is found from

(o'(r, I, -I,)) =
v3 „+l/2

o(1', l, - l3) dv, .
-1/2

3~5

(29)

This is a quite accurate approximation for non-
overlapping resonances associated with different
ion levels. Although for a group of degenerate
closed channels (i.e. , more than one value of l is

Substituting Eq. (28) into (29) and performing the
integration, we obtain

2(2L+1)(2S+1), &a'
13'(2L, + l)(2S, + 1) G

(30)

We may extend our consideration to a problem
in which the excitation 1-2 proceed»f in the pres-
ence of many closed channels n. Neglecting the
off-diagonal elements of the I,'" matrix of Eq. (21),
we may write Eq. (20) as

N r r
~3 2i7»[v —v „-(i/2»»)Z(e)]
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allowed for fixed values of 8,I,S,I, and II) one
should change to a reyresentation in which the
matrix

using Eq. (3) with

Vr(r) = QQ(C~, J"„,+ C„,K„",)+C~, I„(
kg

(33)

S~ ~ ~ 0 g~
3f 3 3, N

(32)

N03 N0 N

is diagonal (thus obtaining complex quantum de-
fects)~, Eq. (31) is still a fairly good ayyroxima-
tion. Expressions for o(I', /, -l, ) and (g(I', l, -l,))
may be easily derived from Eq. (31).

III. CALCULATION FOR OXYGEN m

In this section we ayyly the distorted-wave reso-
nance structure theory of Sec. II to the calculation
of the 'P -'D electron excitation cross section
within the ground configuration of doubly ionized
oxygen. The single-particle core orbitals for the
ground 'P state of oxygen GI were calculated nu-
merically" in the Hartree- Pock ayyroximation
using only the single configuration 1s'2s'2 p'.
As previously. found, "' it is a good apyroximation
to use these same radial orbitals for a11 low-lying
excited atomic states of oxygen HI. The scattering
orbitals were computed for different partial waves

where explicit coefficients C„, for the various di-
rect 7"„, and exchange E"„,potentials are given in
Table L The exchange-overlap I„, potential is a

ffp lp
consequence of the nonorthogonality of core and

scattering orbitals of the same angular symmetry. '
Experimental removal energies" are used in all
cases in order to have the excitation threshoMs
agree with experiment. States labeled kl are cal-
culated at yositive energies k'/2, while those la-
beled vl are calculated at negative energies &„
= -z'/2v'. The Sr matrix elements were computed
for different partial-wave transitions using Eqs.
(13) and (14), where the radial integrals over the
various coupling potentials for 'D' and 'P' are ex-
plicitly given in Table II.

Owing to the spin-forbidden nature of the 'P -'D
transition, convergence of the yartial-wave expan-
sion is rapid. In the low-energy region from the
'D threshold (at 2.51 eV") to 5.0 eV, the largest
yartial-wave cross section g('O', P -P) is domi-
nated by the resonance effects of an OD 1s'2s 2 p' 'D
3s 'D' autoionization state. Using Eq. (3) and
Table I we calculated the Ss orbital using a fixed
core and found the energy to be &„=4.20 eV rela-
tive to the 'P ground state. The threshold for the
opening of the 1s'2s2ps D channel is at 14.88
eV." This is an excellent illustration of how far
autoionization states can descend below the parent

TABLE I. Scattering orbital configurations, terms, aud potentials.

State
cJ" ' cÃK b

'Is is
C K C K

cJ2"s

C K

CE2Ks

C K

C
CI2s

C

JK

C K

CJ"
C K

CK2p

C K

CX2Kp

C K

cI2p
C

2S22p2 3P ~~ 2Do

S22p2 iD pp 2Do

2S2P D vs D'

2s2P PkP P
S22~2 iD $~2Po

s22~2 ig vP 2Po

s22p2 3P g

s22P2 'D yd2E'

s22P2 3P yd2Pe

s22P2 'D Pd2P~

2 0

2 0

2 0

2 0

2 0

2 0

2 0

—1 1 2
3
1 1 2
3

—1 1 2
3

5

5

2

1

2 0 —1

2 0 -- 1

2 0 -1 0

p 1

0 —1
3

0 +' 0
2

0
3

0 —1 1

0 -1 1
3

0 —2
5

p 1

5

p 1

5

0 1

5

-(e2S —~„)1 3D
2

2 0 -- 2

2 0 -~ 2

3 0

2 0

2 0

2 0

2 0 —— 2
35

2 0 -- 2
35

2 0
5

1

5

2

15

1 p
2

1 p

1

6

5

1 0
2

1 p
25 6

1 p
3

1
5

25
2 2

25

5
23 2
75

-2 2
15

—'3
48
3 3

9
70
3 3
14

-(~2 —~~)
1 3P.
2

—(6 —E'p)1 1D
2p

—« —&n)
2 2p

--(e —e~)3P
6 2p

Direct potential J„"&f&&(r) = P (r')(r K&lr"'1)dr'fI, )(r).

"Exchange potential E'„K&fz&(r) = P i,(r')fil(r')(r &/'r&")«' P.~(~ )

Exchange-overlap potential I„&f~~(r) = - P„)(r')fg,)(r')dr'P„)(r).
0
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excited state in electron-ion scattering. Recent
configuration- interaction close- coupling work
yields an energy of &„=3.83 eV for the
O&j: 'D 3s 'D' state, while isoelectronic extrapola-
tions of experimental energies place the energy
at &„=3.63 eV. '" Since our aim is to calculate the
cross section, we used the "experimental" energy
to position the 3s 'D' resonance as accurately as
possible.

Using Eqs. (13) and (14) and Table II, we com-
puted the 8~ matrix elements for the three-chan-
nel 'D' partial wave. Results for components of
the reactance matrix (Rr =—(8"—I)/2i are given in
Table III at various incident electron energies. We
computed o('D', P -p) in the low ener-gy region
using Eq. (28), and results are shown in Fig. 1 as
a solid curve. The nonresonant partial cross sec-
tion is shown as the dash-dotted curve in Fig. 1.
Also shown in Fig. I is a configuration-interaction
close-coupling result of Eissner and Seaton. ' The
difference in the positions of the peak heights is
due to the use of different energies for the 3s 'D'
state. If we had used the close-coupling energy of
&„=3.83 eV, instead of the "experimental" value
of &„=3.63 eV, the two curves would have lined up
much more favorably. If we had used the dis-
torted-wave energy of &„=4.20 eV, our curve
would have peaked even further to the right of the
Eissner and Seaton result. As shown by Fig. 1,
the distorted-wave method, when applied to reso-
nance structures for electron-ion scattering as
outlined in Sec. II, is in good agreement with the
more elaborate close-coupling method.

In the low-energy region from the 'D threshold
to 5.0 eV, the o(' 'PP-P) partial cross section
contains a series of resonances due to the acces-
sibility pf OG Is'2s'2p' 'S np 'P' autoionizatipn
states. The 5p, 6p, and 7p orbitals were calcu-
lated using Eq. (3) and Table I and were found to
have energies of &„=2.68, 3.56, and 4.07 eV,
respectively, relative to the 'P ground state. The
threshpld fpr the opening pf the Is'2s 2p S chan-
nel is at 5.35 eV." Using a quantum-defect extra-
polation from the experimental energy of the
OII 'S 3p 'P' state (e„=-4.13 eV") gives the np
(n=5-7) orbital energies e„=2.58, 3.51, and 4.04
eV. The 5p 'P' state lies only 0.07 eV above the
'D excitation threshold. We again use these "ex-
perimental" energies to position the resonances
as accurately as possible.

The g" matrix elements for the three-channel
'P' partial wave were calculated using Eqs. (13)
and (14) and Table II. Results for the reactance
matrix are given in Table III at various incident
electron energies. Using Eq. (28), we found the
resonance structures in the o('P', p -p) excitation
cross section to have smaller peak heights and
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TABLE III. Reactance matrix and phase shifts.

Partial
wave

Energy
(eV)

Sg( ~

Pkg p —Dk2p
(Rgs

Dvss —Dk2 p
$3(

Pkg p —DP3S

Phase shift
'Pk, P

2DO 3.0
4.0
5.0

0.2447
0.2436
0.2424

(R2g

Pk(P Dk pP

0.2137
0.2260
0.2405

823
'Sv2P - 'Dk2P

-0.0543
-0.0642
-0.0740

$3(
3Pk& p 'Svsp

1.2951
1.2847
1.2778

2po 2.6
3.4
3.9

-0.2308
-0.2305
-0.2302

-0.0083
-0.0073
-0.0072

0.1322
0.1262
0.1225

1.1636
1.1586
1.1555

~Q =- (S —1)/2j where 8 is defined by Eqs. (13)-(19).
bNon-Coulomb phase shift 6 is defined by Eq. (4}.

narrower widths when compared to the close-cou-
pling results. ' This is probably due to inaccuracy
in the 823 matrix element between the ground con-
figuration 'D and 'S channels since its calculation
involves an almost complete cancellation between
the quadrupole direct term and the other exchange
terms (see Table II).

The total excitation cross section for the 'P-'D
transition in doubly ionized oxygen is shown in
Fig. 2 from the 'D threshold to 5.0 eV. The par-
tial cross sections o('D', p -p) and o('P', p -p)
containing resonance structures have been added
to o('P', d-d) and ,

o('P', d -d) to give the solid
curve shown. Resonances due to the Ss 'D' and
5p 'P' through 12p 'P' autoionization states are
clearly seen. There are no resonances in the
d-d cross sections in this energy region. ' From

previous work' we estimate that the remaining
contribution from all other partial waves is quite
small, though there may be narrow spikes due to
resonances. Also shown in Fig. 2 is the total non-
resonant cross section (dash-dotted curve) and
the total resonance-averaged cross section ob-
tained using Eq. (30) (dotted curve).

Electr on- impact excitation- rate coefficients,
involving the integration of the cross section over
a Maxwell-Boltzmann distribution of electron
velocities, are requir'ed for astrophysical and
laboratory plasma work. For a temperature of
10000'K the mean energy of the electron distribu-
tion is only 1.&0 eV. The cross section for oxygen
IH 'P -'D, with a threshold at 2.51 eV, then falls
completely in the exponential tail of the electron-
energy distribution. For cool plasma tempera-
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bute resonance effects makes clear the need for a
distorted-wave method approach.

IV. SUMMARY

It can be concluded that the distorted-wave meth-
od based on a fully consistent incorporation of
electron-exchange effects can be used quite ef-
fectively in calculating electron-excitation cross
sections of positive ions. Resonance structures
may be calculated in the distorted-wave ayyroxi-
mation in a very natural way through the use of
quantum-defect theory. For the 'P - 'D electron
excitation of oxygenIII the agreement between the

distorted-wave method and a configuration- inter-
action close-couyling calculation was found to be
quite good even at energies very near threshold.
In the future we hope to apply the distorted-wave
method to electron-ion scattering problems of
general interest.
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