
PHYSICAL REVIE% A VO LUME 15, N UMBER 6 JUNE 1977

I,ow-energy electr'on-molecule scattering: Application of coupled-channel theory
to e-CO2 collisions*

Michael A. Morrison~
Department of Physics, Rice University, Houston, Texas 77001

and Theoretica/ Division (T-12), Los A/amos Scientific Laboratory, Los A/amos, ¹eMexico 87545

Neal F. Lane~ and Lee A. Collins

(Received 19 October 1976)

A theoretical coupled-channels investigation of e-CO2 scattering is reported for incident electron energies from
0.07 to 10.0 eV. The fixed-nuclei approximation is made with the molecule in the ground X'X~ state and the
nuclei frozen at their equilibrium positions. The e-CO2 interaction potential consists of an ab initio
electrostatic Hartree potential, an approximate local exchange potential, and a semiempirical polarization
potential. The coupled-channel equations are formulated in a body-fixed reference frame using single-center
coordinates and are solved by means of an integral-equations algorithm. Convergence of the highly anisotropic
interaction potential and of the expansion of the scattering function are discussed. The asymptotic decoupling
approximation and the Born approximation are also studied and found to be unsatisfactory methods for
computing quantitatively accurate cross sections for low-energy e-CO2 collisions. Converged coupled-channel
total integrated, momentum-transfer and differential cross sections are presented, and the former are compared
with experimental results, with special attention given to low scattering energies ( 0.1 eV).

I. INTRODUCTION

In recent years, there has been considerable
activity in the theoretical study of low-energy
electron-molecule scattering. ' With attention fo-
cused primarily on diatomic targets, progress has
been made using three different approaches: (i)
weak-scattering approximation methods (e.g. , the
Born approximation, ' the distorted-waves meth-
od'), (ii) techniques based on eigenfunction expan-
sions (e.g. , close coupling' '), and (iii) f.'-varia-
tional methods (e.g. , R matrix, ' T-matrix. expan-
sion, ' pseudo-bound-state, ' low-l spoiling" ).
Methods of the first type are frequently appropriate
at very low energies for special cases (e.g. , ro-
tational excitation) where long-range multipole
potentials dominate the scattering. " Eigenfunc-
tion expansion techniques have been applied with
success to low-energy elastic electron scattering
and to rotationally and vibrationally inelastic scat-
tering from small diatomic targets. The final
class of procedures are the newest and least test-
ed, but results to date are highly promising. Very
few applications of the latter two approaches to
electron-polyatomic molecule collisions have been
reported. "

One polyatomic target of considerable interest
is carbon dioxide. Cross sections for electron
scattering from CO, are relevant, for example,
to studies of planetary atmospheres" and to the
laser -fusion effort. " Considerable experimental
research has been done on e —CO, collisions, ""
beginning with the crossed-beam measurements

of elastic scattering of Ramsauer agd Kollath"
in 1930. Momentum-transfer cross sections have
been determined by Phelps and collaborators'
in swarm experiments, where anomalously large
values are obtained at energies below -0.1 eV.
Similar behavior was seen in cyclotron resonance
experiments by Tice and Kivelson, "who suggested
that this phenomenon was due to scattering of the
electron from a dipole potential caused by the in-
stantaneous (transient) dipole moment seen during
"zero-point" bending vibrations of the target.

At higher energies, a prominent resonance in
the elastic and momentum-transfer cross sections
is observed with a peak at 3.8 eV. First seen as
fine structure in the elastic scattering cross sec-
tion by Boness and Hasted, " this feature of the
scattering has been extensively studied experimen-
tally. Schulz and collaborators"' "have mea-
sured vibrational excitation cross sections for
e —CO, scattering and observed structure in the
vicinity of the resonance. In addition, Phelps
et al. have determined cross sections for vibra-
tional excitation. ""

Comparatively little theoretical attention has
been given to e —CO, ,collisions. Claydon et ul."
used a semiempirical approximation to the SCF
procedure to estimate the potential energy. curves
for several "resonance" CO, states and thereby
interpret various characteristics observed in such
collision processes. These authors comment on
the aformentioned 3.8™eVresonance, demon-
strating that it reflects the formation of a 'll„
compound state with CO, in the linear nuclear con-
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figuration. This resonance has also been dis-
cussed by Bardsley' and others. Nonresonant
vibrational excitation has been studied by Itikawa, '
using the Born approximation and dipole matrix
elements drawn from spectroscopic data.

Recently, we became interested in the empirical
fact that low-energy momentum-transfer cross
sections in CO, (Refs. 19 and 20) are observed to
be considerably larger" "than those of nonpolar
diatomics (e.g. , N, ) or even of some weakly Polar
molecules (e.g. , N, O). But CO, in its ground elec-
tronic and vibrational states is linear, on the aver-
age, and hence possesses no permanent dipole
moment. It seems unlikely to us that the observed
results are due to a transient dipole moment, ""
since at energies below the vibrational threshold,
the "transient" dipole is felt only through virtual
vibrational excitation. This is a second-order ef-
fect that can be represented by a polarization con-
tribution to the potential energy, which varies at
large y like r~. In electron-polar molecule scat-
tering, it is the r ' behavior of the permanent
dipole interaction potential energy that gives rise
to very large cross sections at low electron ener-
gies.

Therefore we undertook a study of e —CO, scat-
tering using a coupled-channels procedure con-
fining our attention to incident electron energies
from 0.07 to 10.0 eV. Working in the fixed-nucleus
approximation, "we have calculated total and mo-
mentum. -transfer cross sections for a model elec-
tron —CO, interaction which includes an ab initio
electrostatic interaction potential, an approximate
local exchange potential, and a semiempirical
polarization potential. The details of this theory
are discussed in Sec. II. The coupled equations
wMch obtain from this analysis are solved using
the integral equations algorithm" together with
certain modifications necessary to treat numerical
problems resulting from the large number of par-
tial waves required for convergence. This com-
putational procedure is outlined iri Sec. III. In
Sec. IV, we present converged eigenphases and
crosg sections for e —CO, collisions and discuss
briefly relevant convergence properties, sensitivi-
ty of the results- to changes in our representation
of the electron-molecule interaction potential, and
asymptotic mixing of partial waves. Section V in-
cludes comments on limitations of this work and
concludes the paper. Unless otherwise stated,
atomic units are used throughout.

II. THEORY (REF. 33)

A. Scattering equations

We chose to formulate the collision problem in a
single-center body-fixed coordinate system. ' Thus

the origin of coordinates is located at the center-
of-mass of the molecule (for CO„ the carbon nu-
cleus), and the z axis is chosen to lie along the
internuclear axis of the target, i.e., z =R. While
prolate spheroidal coordinates have certain ad-
vantages in the study of electron collisions with
diatomic targets, "the presence of the central car-
bon atom in CO, makes them less appropriate in
this case, and we shall work in spherical polar
coordinates. ", The choice of a body-fixed coordin-
ate system is consistent with the fixed-nuclei aP-
Pxoximation, "which we shall employ. Thus we
freeze the orientation in space of the target (spec-
ified by R) throughout the collision, making the
scattering function in the body-fixed frame inde-
pendent of R. One can calculate total and momen-
tum-transfer cross sections by transforming to a
laboratory-fixed reference frame and averaging
over molecular orientations. ' This approximation
should be excellent for e —CQ, collisions in the
range of scattering energies under consideration,
since" the energy spacing of the low-lying rota-
tional levels in the ground electronic and vibra-
tional state of the target is of the order 10 4 eV.

We further roake the approximation that the in-
ternuclear separations are frozen at their equi-
librium values, which for CO, corresponds to an
oxygen-carbon separation of Rp c= 2 ~ 1944a ~

' At
very low energies, this is a reasonable assump-
tion. However, the vibrational energy levels in
CO, begin" at 0.17 eV (symmetric stretch), 0.08
eV (bending), and 0.29 eV (asymmetric stretch).
We shall discuss the extent to which the neglect
of these channels might affect our results in Sec.
V.

Within this approximation, the nonrelativistic
time-independent Schrodinger equation for scat-
tering at energy E =-,'0' can be written

(K ——,'0')g„(~, r) = 0, (2.1)

where K,„„is the target molecular Hamiltonian
and the &' operator is defined with respect to r.
In this equation V. , is the electrostatic interaction
potential energy

(2.3)

with the fir st sum running over the nuclei of
charge Z„and the second over the bound molecu-
lar electrons.

The system wave function is expanded in elec-

where T denotes the coordinates of the target elec-
trons and r those of the scattered electron (we
have suppressed the parametric dependence onR).
The Hamiltonian is

(2.2)
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tronic-state wave functions, eigenfunctions of

X, „, and then only the ground state ('Z~+) retain-
ed, leading to an equation for the scattering func-
tion, which we denote E, (r), viz. ,

[ V' —2V(r)+u']S', (r) =0, (2.4)

~(,) „(,) r
l ~l

where V, p)(r) is the matrix element (1m[ V(r)) I'm),
and lp is a solution indexwhich denotes the initial
channel. These equations separate according to
the irreducible representations of the symmetry
group of the electron plus molecule Hamiltonian
(for the target in a linear nuclear configuration),
yielding sets of equations which can be described
by the symmety of the system, e.g. ,

n, :

m=O,

m=0,

m=1

m=1,

l=G, 2, 4, . . . ,

l=1, 3, 5, . . . ,

l=2, 4, 6, . . . ,

l=1, 3, 5, . . . .

The radial wave functions satisfy the usual scat-
tering boundary conditions,

u%, )(0) = 0, (2.6a)

uIk )(r ) „~„5» sin(kr —l ', w)+K(~", ) c—os(fr —l 2 g),

(2.6b)

the latter of which defines the g matrix.
The coupling matrix elements VIk")(r) appearing

in the coupled-channel equations (2.5) are eval-
uated by expanding the effective interaction poten-
tial V(r) in Legendre polynomials as

where V(r} is the electrostatic interaction poten-
tial V. ,(v, r) averaged over the ground electronic
state. Note that we do not arstisymmetri ge in the
coordinate of the scattering electron; doing so
would lead to the presence in Eq. (2.4) of an ad-
ditional term containing the exchange kernel. "
Instead, we shall add an approximate local ex-
change potential (to be described in Sec. II B) to
the static term. Finally, the truncation of the
electronic-states expansion to a single term is a
rather severe approximation even at very low

energies, and neglects the important long-range
polarization interaction as well as various short-
range correlation contributions. We can partially
account for the former by adding to V(r) an ef-
fective polarization potential (see Sec. IIB).

The scattering function Fn(r) is further expanded
in spherical harmonics to yield the usual body-
frame coupled radial differential equations,

—2V(", '(r)+k'}u'„,'(r)l (l+ 1)

V(r}= g v„(r}P~(cos}t),
& even

(2.7)

B. Interaction potential

In our treatment, the effective electron-mole-
cule interaction potential V(r) which appears in
Eq. (2.4) consists of three types of terms: (i) a
static contribution, which we determine ab initio;
(ii) an exchange contribution, which we approxi-
mate by a local (but energy dependent) function;
and (iii} a polarization contribution, which we
treat semiempirically. Thus we can write each
expansion coefficient v~(r) as v~(r) =v*„'(r)+v'„"(r)
+vP),"(r). As Sec. IV will indicate, we t'ind that all
three types of interaction are necessary to prop-
erly describe the physics of low-energy e —CO,
collisions.

The static term is simply {X'Z,'~ V,.„,(w, r))X'Z,'),
For the ground-state wave function in this integral
we use the near-Hartree-Fock SCFMO function of
Mclean and Yoshimine. " This wave function is
constructed from a basis set of double-zeta qual-
ity" augmented to include polarization functions
and corresponds to an electronic energy of
-18'7.7073 a.u.

In order to determine the expansion coefficients
due to the static contribution, vz (r), we first ex-
pand the target molecular charge distribution in
Legendre polynomials about the origin of coordin-
ates, giving coefficients a~(r). Then each poten-
tial-energy expansion coefficient vz (r) is given by
the sum of a nuclear contribution and an electronic
contribution, i.e.,

v d~ (r ) v nnn (r ) +v" (r ), (2.9)

where for CO„

vq"'(r) = —(6/r)&)„—16p, /p, '",

v~(r) =
2 I I az(r') ),;kr" dr',

+ )

(2.10a)

(2.10b)

with p, = min(r, llo c), r, =min(r, r'), etc. , and

where X is the azimuthal angle of the scattering
electron in the body-fixed coordinate system. We
note that since CO, belongs to the point group D„„,
only even-A. coefficients appear. Carrying out the
indicated angular integration, we obtain

V, ( (r) = (-1)"[(2l+1)(2l'+ I)]'~'

1
X v), r

~ even

x C(l l ' x; 00)C(l l '
Z; -m, m), (2.8)

with C(j,j,j,;m, m, ) the Clebsch-Gordan coef-
ficients. " In practice the summation in Eq. (2.8)
runs to some upper limit, ~,„.
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FEG. 1. Expansion coefficients v ~(r) in hartrees for
the static e-CO2 effective potential energy Vgt (r) for
~=0 (solid curve), & =2 (dashed curve) and ~ =8 (dotted
curve). See Eq. (2.7).

Qo e the oxygen-carbon separation. The electronic
contribution (2.10b) is evaluated by Gauss-I a-
guerre and Gauss-Legendre quadratures4' using a
cubic spline" to fit the mesh of points a~(r). A

few select v'„'(r) are shown in Fig. 1.
The conventional procedure for treating an

aspherical potential is to determine and include
more and more coefficients v'„'(r) until the cross
sections obtained from the scattering calculation
have converged. For CO„a different strategy is
required. As A. increases, the nuclear contribu-
tion to a particular v„"(r) completely dominates the
corresponding electronic term. 4' However, a
large number of the former are necessary, since
the convergence in spherical polar coordin3'tes to
the Coulomb singularities at the oxygen centers is
quite slow. This poses no practical difficulty since
any number of nuclear terms can be quickly com-
puted from the analytic form (2.10a). We find
that it is sufficient to include 15 electronic terms
to satisfy our convergence criteria on the cross
sections (see Sec. IV) but that 40 nuclear terms
are required.

As a partial check on the accuracy of our static
potential, we have extracted the permanent quad-
rupole moment from the asymptotic form

v, (r),~„-q/r'

k~(r) = [3n'p(r)] '~', (2.12)

p(r) being the ground-state charge distribution. In
further explication of Eq. (2.11), the function E(q)
is given by

E(q) = —+ ln
1+g

4q

where

(2.13a)

k' being the scattering energy (in Rydbergs) and
I the ionization potential. We use" I =1.0135 Ry.
The quantity K(r) can be usefully interpreted as a
"local wave number. " The form of V,„(r) here de-
fined gives a short-range attractive potential. We
expand this potential in Legendre polynomials
[using the coefficients a„(r) determined in the cal-
culation of V„(r)] and add the resultant coefficients
v'~(r) to v'„'(r) for A. =01, 2, . . . , 28, thereby augment-

obtaining q = -3.8598ea'„which compares favor-
ably with the theoretical value q = -3.9086ea', of
Vucelic et al."and the experimental value q
= -3.2014ea', of Buckingham. ' In the calculations
reported in Sec. IV, we used our value for q in the
long-range region.

The rigorous inclusion of exchange in eigenfunc-
tion expansion formulations of electron-molecule
scattering theory (by antisymmetrizing the sys-
tem wave function) leads to coupled integro-dif-
ferential equations" rather than the coupled
differential equations of (2.5). The solution of the
resultant problem is difficult even for compara-
tively small diatomics. Given the rather formid-
able computational problems attendant on the so-
lution of the staÃe problem in e -CO, scattering,
we elected to seek a simpler (albeit approximate)
way to account for the effects of exchange.

Stimulated in part by recent studies of electron-
atom scattering, 4' we chose to consider a local
energy-dependent exchange potential based on a
free-electron gas model. Such an approach treats
the electrons as a collection of noninteracting fer-
mions and is analogous to the free-electron ap-
proximation of solid-state physics. '

The only application to date of such an exchange
potential to lozv-energy electron-molecule scatter-
ing is that of Hara, "who studied e —H, collisions
in this approximation with some success." Our
potential is analogous to his, although we do not
spherically average the charge distribution. Thus
we use an exchange potential of the form

V,„(r)=-(2jz)k (r)E(q), (2.11)

where k~(r) is a Fermi wave vector (for the target)
defined as
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ing each electronic static term.
The final type of interaction we must take into

account is the induced polarization of the target
molecule by the incident electron. We chose to in-
corporate this into the problem making the usual
adiabatic approximation, "which has been used
extensively in low-energy electron-diatomic mole-
cule scattering calculations. ' " ' Thus, rather
than include closed electronic channels to introduce
polarization effects, we augment the potential
energy with terms having the correct asymptotic
behavior and cut off at small r, i.e.,

do
dhPi(cos6),

dn 4I
(2.19)

where 6 is the azimuthal angle of the scattering
electron referred to the space-fixed axes and
where d~ is given by

fixed coordinate system, and subsequently aver-
aging over the Euler angles which define the orien-
tation of the target with respect to the space-fixed
axes. ' The result can be written in a form con-
venient for computation as

V.s(r)= (- &', — ', p, (coss)) C(r),2y4 2y4
(2.14)

dl = C]J]]+2 p)) J]. , 220
=1 4=1 j& f

with
where n, is the spherical (isotropic, or average)
polarizability, &, the nonspherical polarizability,
and C(r) a cutoff function defined by

J;) =R;Fi!J + I; I),
where

(2.21)

C (r ) = 1 —exp[- (r/r, )']. (2.15) T =R+iI, (2.22)

C. Cross sections

We have determined three types of cross sec-
tions: (i) integrated totai o, (ii) momentum trans-
fer o ', and (iii) differential do/dQ in the theoret-
ical context defined above. All are calculated
from the g matrix, which was introduced in Eq.
(2.6b) and is related to the S and T matrices via'4

S =(1+iK)(1 —iK) '

T =1 -S.
(2.16)

(2.17)

In terms of the body-frame T matrix, , the inte-
grated total cross section for elastic scattering
plus rotational excitation at energy &' is given by'

I T „.I',
tl'~

(2.18)

where, in practice, one includes only enough terms
to converge o.

A formula for the differential cross section can
be obtained by squaring the body-frame fixed-nu-
clei scattering amplitude, transforming to a space-

Finally, y, is the single parameter in our treat-
ment, the cutoff radius. The manner in which r,
was determined will be discussed in Sec. IV. For
CO„we use" n0=17.90 a.u. and z, =9.19 a.u.

Thus, three models of the electron-molecule
collision can be defined: (i) the static model (S),
where V(r) =V„(r); (ii) an approximate static ex-
change model (SE), where V(r) =V„(r)+V,„(r); and
(iii) an approximate static exchange s-vith polariz-
atio model (SEP), where

V(r) = V„(r) + V,„(r)+ V~,)(r).

We have studied e —CO, scattering in all three
models (see Sec. IV).

and with

C~)) = [(2l; + 1)(2l,'+ 1)(2l) + 1)(2 l ) + 1)]'I'

xC(l; l, L; 00)C(l,' l,'. L; 00)

xC(l; lq L; -mq, m,. )C(l) lq L; -m, , m~) .

(2.23)

The index i labels a set of quantum numbers

(l;, l,', m& ) corresponding to T-matrix element
T),', , andi)l in Eq. (2.20) is the number of such
elements needed for convergence. Finally, the
allowed values of L are restricted by the condition

maxO l; —1&[, ) l& —l& I) & L& min(l;+l, , l&+ l,'),
(2.24)

)'rn
o =2m ) (do/dQ) sin8de = (w/h') d„

0
(2.25)

and the momentum-transfer cross section can be
written

40
(1 —cos6)(do/dQ) sin6dlt

= & —(n/Sh ') d, . (2.26)

Equations (2.20), (2.25), and (2.26) were used i~
calculating the results reported in Sec

and L,„is determined by the number of partial
waves included in the calculations as L =2l
where l,„is the largest-order partial wave needed
for convergence. For a molecule with a center of
symmetry, we also have the restrictions l;+ l,. +L
=even, l,' + I&+L=even, and the triangle relations
b,(l; l,. L) and t) (l,' 1& L).

In terms of the coefficients d~, the total cross
section becomes
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III. COMPUTATIONAL CONSIDERATIONS (REF. 33)

In order to solve the coupled differential equa-
tions (2.5), we choose to adapt the standard inte-
gral equations (IE) algorithm" " to our problem.
This is an efficient, rather stable algorithm, which
in its simplest form reduces the solution to a
series of step-by-step integrations from r =0 to
the asymptotic region, avoiding matrix inversion.
For small diatomic targets, one can simply apply
the algorithm as it is usually presented (in fact,
we have done so for low-energy e —H, scattering
to verify our codes and procedures). However,
when working with systems with highly anisotropic
interaction potentials (e.g. , e —CO, ) considerable
modification of the algorithm must be made to
avoid serious numerical errors; if these adapta-
tions are ignored, spurious results obtain. We
begin by briefly reviewing the theory and use of
the standard IE techniques and thereby establish
notation.

In matrix form, the coupled equations (2.5} for
K channels can be written

, —L(rlrk'}u "(r)=U~ (r)u"'(r), (3.1)

G "(r}r')U~" (r') I (r') dr',

where

(3.2)

G "(r[r') =G'(r)G'(r'},

with

(3.3)

[G'(r)]„,-=j,(kr)5„, ,

[G (r )]„=(1/k) n, (k r ) „5, ,

(3.4a)

(3.4b)

j,( r)kand n, (kr) being the Hicatti-Bessel and
-Neumann functions, " respectively.

The "physical solution, " u~ ~(r} of Eq. (3.2)
can be related to a homogenous solution, u'(r),
which solves a homogeneous Volterra equation
of the second kin.d." This homo/'eneous solution

where U~ (r) is an NxN potential-energy matrix,
the 1 l ' element of which is 2VIp~(r), L(r) is an
Ex% diagonal. matrix of the centrifugal barrier
potential energy, with l l ' element [ l(l + I)/r']5»r,
and where Q

' = Q
' 1 is an N xN diagonal "energy

matrix. " The wave-function matrix u~"'(r) is also
an XxN matrix, the columns of which correspond
to the N linearly independent solutions of (2.5).

We can convert Eq. (3.1) into an integral equa-
tion, obtaining

r
u (r) =G'(r) —

J
G"(r(r') U (r')u (r') dr'

0

satisfies the integral equation

u'(r) =G'(r) I'(r) -G'(r) I'(r), (3.5)

[i = 1, 2] . (3.6)

Then the physical wave function, which actually
solves Eq. (3.2), is related to u'(r) by

u '(r) =u'(r)(l+C), (3.7)

where

C =[1-I'( }l[I'( }]-'.
In fact, one need not compute u& ~(r) to determine
the g matrix, for

(3.8)

1/2 Il(~ )[ I2(~)] -lk-1/2 (3.9)

r, and w„being the appropriate quadrature points
and weights. " Then for a second-order quadra-
ture (e.g. , the trapezoidal) we have

u'(r, ) = G '(r&) I'(r, , ) G'(r,—) I'(r, ,), (3.11)

and the solution u'(r) can be developed nonitera
tively, since

I'(r~, ) = I'(r~, )+G'(r&, ) U " (r~, ) u'(r&, )u ~, .

(3.12)
The K matrix is calculated using I'(y ) rather
than I'(~), where r,„is in the asymptotic region,
i.e., large enough that the cross sections are sta-
ble in the final integration point.

The mesh of r values over which the quadrature
was carried out is (in units of a,} 0.0 to 0.02 in
steps of 0.001, 0.02 to 3.0 in steps of 0.01, 3.0 to
30.0. in steps of 0.1, and 30.0 to 120.0 in steps of
0.2. A trapezoidal-rule quadrature scheme was
used.

In the generation of the homogeneous solution ma-
trix u'(r) via the IE algorithm, it is possible for
the solutions (the columns of u') to become linearly
dependent due to numerical inaccuracies. To re-
solve this problem a procedure called &tabilization
has been developed. ".

, This entails decomposing
the homogeneous solution at a particular value
r& where we choose to stabilize intothe product
of upper- and lower-triangular matrices. The so-
lution matrix is replaced by the resultant upper-
triangular matrix, the columns of which are guar-

Computationally, it is convenient to evaluate the
homogeneous solutionsand the I' matrices by quad-
rature, replacing the integrals in (3.6) with sums
as

f-1
I'(r~, ) =15„+G'(r, ) U~ ~(r, ) u'(r~)co~,

A=a

[i =1,2] (3.10)
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anteed to be linearly independent. We find for
e —CO, scattering that one must stabilize frequent-
ly at small r& to avoid linear dependence; we
stabilize every six integration points out to r
= 4.0a, .

For very large numbers of partial waves, sta-
bilization is not sufficient to develop accurate
solutions, for a further problem beyond linear
dependence arises. Severe numerical difficulties
obtain because the homogeneous solution which we
are developing [via Eq. (3.5)] mixes "physical"
channels corresponding to large- and small-l par-
tial waves, leading to loss of significance at small
r& in important elements of the I' matrices of Eq.
(3.10).

To resolve this problem, we apply a transforma-
tion Procedure to the developing homogeneous
solution, applying a constant transformation D to
u'(r„, ), where r„ is a radius where we choose
to transform, and to I'(r„,), viz. ,

u(r ) =u'(r)D, I'(r) = I'(r)D at r =r„,. (3.13)

We develop the solution for r&r„, as

u(r, ) =G'(r&) I'(r&, ) 6'(r,. ) I-"(r&,) (3.14)

Depending on the number of partial waves involved,
it may be sufficient to transform only once at some
small-r integration point. In our problem, how-
ever, we have as many as 32 channels for certain
symmetries and energies, corresponding to par-
tial waves of order 0 to 62. In such extreme cases,
repeated transformations in the region of the tar-
get are necessar y. We transform every seven
points out to r = 4.0ao in the results presented in
Sec. IV, which are converged in frequency of trans-
formation.

In point of fact, most of the partial waves re-
quired for convergence do not contribute to the
cross section asymptotically. Thus T,', ,0 is
so small that it makes a completely insignifi-
cant contribution to o in Eq. (2.18). This is
a consequence" of the prese'-. ce of the centrifugal
barrier terms I(l +1)/r' in the scattering equa-
tion's. Thus high--l channels carry no flux into the
asymptotic region, although they do couple at
smaller r and cannot be completely neglected.

The K matrix obtained via Eq. (3.9) with either
singly or multiply transformed 1' matrices is
equal to that calculated with untransformed matri-
ces, so this procedure is not an approximation.

The ideal choice for the constant transformation
D would be [1'(~)] ', since this would give us
u~ ~(r„,), thereby directly addressing the problem
raised above. This is clearly impractical, how-
ever, so we use

(3.15)

(This fact is the basis of pseudo bound state' and
related approaches. '0)

To take advantage of this fact, we truncate all
partial waves with l ~ l, at some truncation radms
r, chosen to be well beyond the region of the nu-
clear singularities. To do so, we first transform
at r =r, according to Eq. (3.13) with D = [I'(r, )]
and then delete the appropriate (large I ) channels.
The choice of r, and l, depends on the symmetry
under consideration and the energy range of in-
terest. For all symmetries studied
(Z~, Z„, II~, II„), we use a truncation radius of
r, =4.0a, to achieve convergence in this parameter.
We find that it is sufficient to retain five partial
waves beyond r, = 4.0a, except in the H~ symmetry,
for which l, =16 is required for convergence in
l, . The mixing of the partial waves we have re-
tained will be discussed in Sec. IV.

The truncation procedure is an approximation,
albeit a very good one provided care is exercised
in the choice of r, and l, . Although it saves con-
siderable time in the solution of the coupled equa-
tions, this procedure is not mandatory. " We
should emphasize that, in contrast, it is necessary
to stabilize and to use the transformation proce-
dure (or its equivalent) if these equations are to be
solved using the IE or related algorithms. In ad-
dition, care must be taken in the evaluation of the
spherical Bessel functions" and the Clebsch-Gord-
an coefficients" required for the solution of the
problem, because large orders (I) are involved.
Further details of the various numerical proce-
dures employed can be found in Ref. 33.

IV. RESULTS

Using the procedure defined in Secs. II and III,
converged total and momentum-transfer cross sec-
tions were calculated including all symmetries
arising from I = 0 and m = 1 (i.e. , Z~, Z„, II~, and
1I„). Contributions due to m & 1 (e.g. , b, ) were
found to be much smaller over the energy range
studied than those for m ~1. This is consistent
with the fact the effective potential 2V„~(r)
+I (l + I)/r' becomes more purely repulsive as m
is increased. "

In Sec. II., we indicated that a large number of
electronic and nuclear expansion coefficients of the
static interaction potential energy are required to
converge the cross sections. Because of this fact,
a large number of partial waves (channels) must be
included to converge the results. To suggest the
convergence behavior typical of this problem, ' we
present in Table I cross sections in the static ap-
proximation for k' =0.05 Ry including only four ex-
pansion coefficients & q(r). In these calculations
N„, the number of coupled channels, ranges from
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TABLE I. Convergence behavior of e-CO2 cross sections with increasing number of partial
waves in the static approximation "corrected" to remove the long-range quadrupole interaction
(see text). Cross sections are shown in ao for a scattering energy k =0.05 Ry. Four expansion
coefficients V(r) are included: X=O, 2, 4, 6. The maximum order of partial waves included in
each case is l~. The corresponding number of coupled channels is N«.

10

Zg

~u
Ilg

bg
&u

5.2278
0 ~ 0776
3.2( 4)

20.9103
1.1( 4)
1.0( 8)

86.7671
0.0111
4.5( 4)

59.8970
1.1(-4)
1.0(—8)

76.1237
0.0006
0.0020

20.6928
1.1( 4)
1.O( 8)

69.8322
0.0008
0.0329
5.8042
1.2( 4)
1.1( 8)

68.7291
0.0018
i.1554
3.7624
1.2 (-4)
1.1( 8)

68.4519
0.0022
0.1119
3.3697
1.2( 4)
1.1( 8)

68.3818
0.0028
0.0846
3.3027
1.2( 4)
i.i( 8)

68.3717
0.0030
O. 0812
3.2929
1.2( 4)
1.1( 8)

Total 26.2162 146.6760 96.8193 75.6703 63.6490 71.9359 71.7716 71.7784

2 to 9. (The final converged cross section for this
case is t l.'l449a', .) In order to focus on the con-
vergence characteristics of the short-range inter-
action, we here remove the long-range quadrupole
contribution from v", (r) by adding to it a "correc-
tion term" of the form zy~(r) =+qr 'C(r), where C(r)
is given by Eq. (2.15)withr, = 4.0a, . Thus we replace
p", (p) with v~) (z) +~20"(r). The convergence be-
havior in X „is illustrated in Table II, where we
show cross sections in this model which are con-
verged in partial waves to (1%. Also shown is
the number of channels required to satisfy this cri-
terion.

Throughout these calculations, we used cross
sections as indicators of convergence. A number
of authors use eigenphase sums for this purpose, "'
where the eigenphases are determined by diagonal-
izing the E matrix for the symmetry under consi-
deration and taking the arctangent of the resulting
eigenvalues. Although useful as indicators that
convergence is at hand, we have found that at low

energies a small difference in two eigenphases (say,
2%) can correspond to a fairly large difference in
the corresponding cross sections ()10/g), since the
contribution to 0' from a parti. cular eigenphase q&

is (4m/k') sin'q, .
The addition of exchange and polarization inter-

actions only marginally affects the number of channels
required for convergence. In general, we find that the
"bonding symmetries" (Z„ II„, etc. ) converge more
slowly than do the "nonbonding" symmetries (Z„, II,
etc. ), and that cross sections in the Z~ symmetry,
whicI.. reflect the full static potential for the s-wave
(I =0) channel, are the most difficult to converge.
The final number of channels included in these cal-
culations is 32 for Z„15for Z„and H„, and 23 for
II„near resonance, 15 for II„far from resonance.
%e integrate to r,„=120ao in all three approxima-
tions (S, SE, and SEP).

In the SEP approximation, we must select a value
for the cutoff parameter in the pola, rization poten-
tial, r, defined in Eg. (2.15). In order to do this,

TABLE II. Convergence behavior of e-CO2 cross sections (in ao) with A, ~, the maximum-
order expansion coefficient included in V(r) [see Eq. (2.7)]. The static approximation is made

with the long-range quadrupole deleted (see text). All cross sections are converged in num-
ber of partial waves (l~) to —1%. N~ is the number of channels required to satisfy this cri-
terion.

10 12 14 16 18

Zg

~u
rr

IIg

48.8966
0.3159
0.0739
7.3529
7.4(-5)
8.4( 7)

94.1177
0.0520
9.5032
4.6366
1.4( 4)
8.5(-8)

68.3702 59.6961
. 0.00.30 0.1045
0.0867 0.3476
3.2916 4.0311
1.2( 4) 1.2( 4)
1.1( 8) 1.0( 8)

54.7470
0.4805
0.0689
7.7086
1.2( 4)
1.0 (-8)

51.6689
2.0771
0.0102

17.6299
1.1( 4)
1.0 (-8)

49.7088
25.8069
0.0045

40.9668
1.1( 4)
1.0(-8)

48.4416
20.4357
0.0029

89.5212
1.1( 4)
1.0( 8)

47.6084
3.2939
0.0022

174.3648
1.1( 4)
1.O( 8)

Total 56.6392

6 13 20

108.3100 7&.7449 64.1796 63.0052 71.3862 116.4872 158.4016 225.2694
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FIG. 2. Converged eigenphase sums for e-CO2 scat-
tering in the Il„symmetry in the SEP model using the
HFEGE potential. Three cutoff -parameters f &c in Eq.
{2.15)l are shown: x, = 2.5ap {dashed curve) & = 4.0ap
(dotted curve) and r, =2.59ap (solid curve). The latter
choice produces a Il„shape resonance at 3.8 eV,

we have "tuned" the potential so as to position
the well-known Il„resonance peak at 3.8 eV. This
requires a value of r, =2.59ao. This choice unique-
ly defines the SEP potential energy which we use
for scattering from 0.0'7 to 10.0 eV. It should be
pointed out that the value of the resonance energy
is rather sensitive to the choice of the cutoff radi-
us, as shown in Fig. 2, where the D„eigenphase
sums are graphed for three cases: r, =2.5a,
(dashed curve), r, =2.59a, (solid curve), and r,
=4.0a, (dotted curve)

Converged total cross sections at several ener-
gies in the SEP model appear in Table III and are
graphed in Fig. 3. The numbers in parenthesis are
the corresponding eigenphase sums. We show both
the cross sections in Z„Z.„, II~, II„symmetries
and their sum, +. The total cross section has a
peak value at the resonance energy (3.8 eV) of
110.2565a', . The width of the resonance is W. 5 eV.

As Fig. 3 demonstrates, at low energies the Z~
contribution completely dominates the total cross
section. Similarly, in the vicinity of the resonance,
II„ is the dominant symmetry. At other energies,
Z„contributions become quite important. It should
be noted that although we "tune" the polarization
potential in the ll„symmetry (at 3.8 eV), we use
the resultant form in energy ranges-where other
symmetries are much more significant. We also
see that, consistent with the effective potential ar-
guments mentioned earlier, the II~ cross sections
are by far the smallest of the four here presented.

To further analyze these cross sections, it is
useful to investigate the extent to which the various
partial waves that contribute to the cross section
mix in the asymptotic region. For low-energy
electron collisions with some smaller targets, this
mixing is often not appreciable, and one can use-
fully think about the scattering in terms of indivi-
dual partial waves. However, for CO, this is not
generally the case. This point is illustrated in
Fig. 4, which shows the contribution to the scatter-
ing over the energy range studied of the two lowest
-/ partial waves in Z~, Z„, and II„symmetries. '

TABLE III. Converged integrated cross sections (in ap ) for e-CO2 in the SEP model using
the HFEGE and a polarization cutoff re=2, 59ap. The corresponding eigenphase sums are shown
(in rad) in parentheses. The parameters required for convergence are described in the text.

E(eV) 0.07 0.1 0.5 1.0 2.0 3.0 3.5

226.7339
{0.2927)
3.7153

( o.o444)
0.2106

( o.ooe8)
9.5901
(o.o3vv)

179.4213
(o.312o)
3.4513

(-o.os23)

10.6070
(o.o4v9)

37.9246
(0.2982)
3.8029

(-0.1201)
0.1148

(—0.0096)
12.6696
(o.1225)

15-1480
(0.2279)
6.0101

(-0.2043)

9.3535
(0.1518)

6.8633
(o. ioso)
10,5967

(-o.3695)
0.1136

( o.oo13)
4.6191
(o.1546)

5.1104
{ o.oo92)
13.9785

(-0.51ss)

6.7117
(0.2291)

4.6909
(-0.0637)
15.1616

(-0.5802)
0.0948

{-0.0198)
30.5329
(o.5641)

Z(eV) 3.8 4.0 5.1 5.9 8.0 10.0

4.5012
( o.o9s3)
15.7306

{ o.eiev)
0.1146

( O.O259)
89.9101

( i.sv3e)

4.3939
( o. iisv)
16,0546

( o.e4oo)
0.1332

( o.o31s)
45.3868

(-o.8ei 1)

3.9877
(-0.2170)
17.1792

( o.vss2)
0.3106

( o.osee)
4.7014

( o.33vv)

3.8261
{ O. 2VS4)
17.4502

( O. 8269)
0.5096

(-0.0775)
3.7754

( o.33se)

3.8702
(-0.3405)
16.8578

( o.9v81)
1.2089

(-o.1318)
4.6436

( 0.4236)

5.3371
( o.2so9)
15.4439

( i.o9os)
1.9802

(-o.1763)
5.8722

(—0.5236)
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FIG. 3. ,Converged integrated cross sections for e-C02
scattering in &~, &„, &~, and Il„symmetries in the
SEP model using the HFEGE potential and a polarization
cutoff radius &~ =2.59&0. The Il„resonance energy is
3.8 eV.
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We find that while Z„scattering is essentially pure
P wave over the whole energy range, Z~ is s wave
at low energies (Sl eV), s and d wave at interme-
diate energies (1-8 eV) and predominantly d-wave
at higher energies (8-10 eV). The Il„resonance is
characterized by a mixture of P and f waves, while
scattering in this symmetry far from resonance is
predominantly P wave.

The first experimental studies of the angular dis-
tributions for e-CO, collisions near the 3.8-eV re-
sonance incorrectly ascribed it to s wave. '4 Sub-
sequently, Dannere and Spence et al."observed
that resonant scattering is predominantly but not
totally P wave in character. This conclusion is
supported by our calculations.

It is the enormous s-wave Z~ cross sections ob-
tained for energies smaller than 0.1 eV that are
responsible for the anomalously large, momentum-
transfer cross sections observed by Phelps et al.
In Fig. 5, we compare our values for ' to the
experimental results of Lowke, Phelps, and Ir-
win'; comparisons at several energies are pre-
sented in Table IV. We shall discuss possible in-
terpretations of these findings in Sec. V.

We also calculated differential cross sections
do/dQ [using Eq. (2.19)j for several energies in the
SEP approximation. Reliable theoretical calcula-
tions of differential cross sections require a great-
er degree of accuracy in the scattering wave func-
tion than is needed to determine total or momen-
tum-transfer cross sections, because d&/dQ is
more sensitive to interference among off-diagonal
T-matrix elements. In Fig. 6, we show results for

100—
I

e-CO SEP
I

a„SYMMETRY

I—z
LLj 60—
C3
K
LIJ
CL 40—

20—

'0 4 6
ENERGY (eV)

10

FIG, 4. Asymptotic mixing of partial waves for e-C02
scattering' in &~, ~„, and Il„symmetries in the SEP
approximation defined in the text. The vertical axis
shows the percentage of the scattering in the symmetries
considered due to each partial wave (Hef. 65).

angles from 0' to 180' at three scattering energies,
0.0'7, 4.0, and 10.0 eV. The behavior of the differ-
ential cross section at 0.07 eV is typical of ener-
gies &0.5 eV, and that of the 10.0-eV result is ty-
pical of energies from -5.0 to 10.0 eV „ the forward
peaking becoming more pronounced as energy in-
creases. The P-f character of the 'll„resonance
is clearly shown in do/d& at 4.0 eV, where this
symmetry is dominant.

One frequently-used approach to the calculation
of electron-molecule cross sections is the Born
approximation' (BA). The partial-wave BA to the
&-matrix (or T-matrix) elements & «. (or T „)at
loco scattering energies is expected to be reliable
for l and l' sufficiently large, since the centrifugal
barriers associated with these channels cause the
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FIG. 5. Converged momentum-transfer cross sections
for e-C02 scattering in the SEP model using the HFEGE
potential with &, =2.59~p compared with experimental
data extracted from swarm experiments (Ref. 20).

scattering to be weak. Clearly, for e-CO, colli-.
sions, we would not expect the BA to be valid for
Z~ scattering, since in this symmetry a very large
contribution obtains from l =I' =0.

In order to see where the BA does work for this
application we have carried out a simple partial-
wave Born analysis including long-range terms
only, i.e., permanent quadrupole and induced po-
larization interactions. The relevant equations are
briefly summa, rized in the Appendix, and the re-
sults for Z„, II„and II„symmetries are given in
Table V along with the SEP coupled-channel re-
sults for comparison. The BA appears to be suc-
cessful only for the II~ symmetry at low scattering
energies. This is hardly surprising, since II~ par-
tial waves at low energy are excluded from the re-
gion of the strong static potential by the l =2 cen-
trifugal barrier. Even in cases where the BA
clearly fails, e.g. , O„symmetry at 3.0 eV, a study
of individual T-matrix elements T«reveals that
for large EE', the agreement between Born and cou-
pled-channel results is good. However, these ele-
ments do not contribute significantly to the total
cross section. The BA appears to be an unsatis-
factory tool for calculation of the important contri-
butions to the total e-CO, cross sections.

In Fig. 4, we illustrated the mixing of partial
waves implicit in the SEP e-CO, wave functions.
The relative importance of the off-diagonal ele-
ments of the E matrix to the total and momentum-
transfer cross sections provides an indication of
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FIG. 6. Differential cross sections for e-CO2 scatter-
ing in the SEP approximation with the HFEGE potential
and a polarization cutoff of r, =2.59+0 for 0.07 eV (solid
curve), 4.0 eV (dashed curve}, and 10.0 eV (dotted curve).

the importance of this mixing and can be examined
by invoking an asymptotic decoupling approximation
(ADA), wherein we retain the full partial-wave
coupling (for r & r, ) out to the asymptotic region
but there set T» =T»&», in Eq. (2.18) for the to-
tal cross section. This approximation effectively
decomposes the scattering into individual-/ partial
waves. [This is somewhat different from, say,
pseudo-bound- state approaches, ' which neglect
couPLing altogether in the exterior (long-range po-

tential) region or the low-l spoiling approxima-
tion, "which neglects not only partial-wave mixing
but the entire exterior region itself. ] Results cal-
culated in the ADA are shown in Table VI, which
suggests that for purposes of calculating & and @mom,

one can get qualitatively correct behavior (versus
energy) in the ADA but that the neglect of the off-
diagonal 1'-matrix elements considerably changes
the value of these cross sections.

All results presented so far were obtained in a
model which includes electrostatic, exchange, and
polarization interactions. In order to study the im-
portance of these various interactions, we have
calculated total cross sections in the S and SE ap-
proximations defined in Sec. II B; the results are
shown in Fig. 7. Note the presence of a spurious
peak in o'(S), which is due to a false resonance in
II„symmetry. This disappears in the SE cross
sections. In the model SE results, the 3.8-eV II„
resonance (at -8.0 eV) is broad and quite small.
Once polarization is included, clear resonant be-
havior appears (in the eigenphases; see Table III),
and we can position the peak at 3.8 eV. This
achieved, the agreement of & with experiment is
satisfactory even at low energies, as shown in Fig.
6, which compares our SEP cross sections with the
early measurements of Ramsauer and Kollath" and
of BrGche. " These results suggest that within the
context of our model of the electron-CO, interac-
tion, all three types of interactions must be taken
into account, especially if one is interested in
scattering at low electron energies.

V. CONCLUSION

In this paper, we have reported converged total
and momentum-transfer cross sections for e-CO,
collisions calculated in the coupled-channel method
for scattering energies from 0.07 to 10.0 eV. To
our knowledge, this is the largest target (and the
only polyatomic) that has been studied at this level
of accuracy to date. Our results reproduce the

TABLE V. Electron-CO2 scattering in the partial-wave Born approximation. Long-range
permanent quadrupole and induced polarization interactions are taken into account {see Ap-
pendix). Cross sections are given in ao, and converged coupled-channel cross sections (from
Table III) are presented in parentheses for comparison.

E(eV) 0.07 0.1 0.5 1.0 2.0 ,3.0

2.7785
(3.7153)
0.1987
{0.2106)
10.2075
(9.5901)

2.1083
(3.4513)
0.1760

~ ~ ~

11.7177
(10.6070)

0.3050
(3.8029)
0.1134
{0.1148)
25.9399

(12.6696)

2.6969
(6.0101)
0.1922

37.8507
(9.3535)

10.3103
(10.5967)

0.4868
(0.1136)
50.0600
(4.6191)

16.3992
(13.9785)

0.8550

52.5170
(6.7117)
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FIG. 7. Converged total integrated cross sections
(including Z~, Z„, O~, and &„symmetries) for e-CO2
scattering in the static (S), static-exchange (SE), and
static-exchange-polarization (SEP) models. Experimen-
tal data: x, Ref. 15; &, Ref. 16.

low-energy experimental values for 0 and o'"' sat-
isfactorily, indicating that although approximate,
our model potential accurately reflects the princi-
pal features of the true e-CO, interaction.

It is true that our approach to exchange is rather
crude; at best it appears to mock in some average
sense the true effects of exchange. It is likely that
a fully accurate static-exchange calculation on
e-CO, would alter the quantitative SE results, per-
haps giving a better representation of the 'II„com-
pound state than we obtain. We do not believe the
low-energy results (&0.1 eV) would be significantly
altered. It is further the case that because of the
method we employed to determine the polarization
cutoff radius, our polarization potential probably
corrects to some extent the shortcomings of our
exchange potential. Similar procedures for dealing
with adjustable parameters have been employed by
other authors who treat exchange approximately. ""
For example, in their studies of e-N, scattering,
Burke and Chandra' approximate exchange effects
by ignoring the exchange kernel term but explicitly
enforcing orthogonality of the scattering orbital to
core orbitals of the appropriate symmetry; they
then introduce polarization as do we. However, in
the e-N, scattering problem, there is no core m~

orbital, so polarization must completely adjust this
symmetry to reproduce the 'II, resonance at -2.3
eV. In contrast, our exchange potential affects all
symmetries, leaving a minor but important adjust-
ment in the location (but not the existence) of the
resonance peak to be made by polarization. A pos-
sibly useful alternate procedure would be to use a
local-exchange potential and to orthogonalize ' as
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do Burke and Chandra. ' Such an approach would
have the further advantage of allowing an estimate
of the validity of the local potential used by seeing
to what extent orthogonalization affects the results.

The neglect of vibrational channels in our calcu-
lation will probably be important only in the vicini-

--ty of the resonance, where significant vibrational
excitation can take place. Inclusion of these chan-
nels is expected to broaden the resonance and re-
duce the peak value of the cross section.

By way of interpretation of our results, it is pos-
sible that the unusually large cross sections we
calculate for E& 0.1 eV are reflecting a "virtual
state'~~ (a zero of the S matrix on the positive
imaginary k axis). At these energies, the scatter-
ing is almost purely s wave in the Z, symmetry,
and there may be a nearly bound l =0 state in the
&-CO, potential.

The theory and computational procedures des-
cribed above should be applicable to a wide variety
of problems in electron-molecule collisions pro-
vided the target is closed shell and does not pos-
sess a stronger or more anisotopic electrostatic
interaction potential than does CO, . For calcula-
tion of total cross sections in electron-heteronu-
clear molecule collisions a frame transforma-
tione' to a laboratory frame would be required,
but provided this is carried out beyond the trunca-
tion radius for the problem, this procedure should
riot be arduous.
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where U~ ~ is defined in Sec. III and u (t') is the
free-particle (or Born) undistorted wave-function
matrix, with zj element

[u»(r)],, =j,.(kr)6, , (A2)

If we consider only long-range terms, then the av-
eraged electron-molecule interaction potential,
which is used to calculate Uf ~ as in Eq. (2.8), is
given by

V(r ) = - ' — — ' + —P (cos8) .4 2 4 + 2 (A3)

Substituting us(r) for u& ~(r) in Eq. (1) gives an
expression for the K matrix in the Born approxi-
mation. Using Eq. (AS) for V( r), we obtain for the
ll' element of K,

K „=kuoR~ ~(ll') 5),

4 x/2
+k

5
~ f,(ll'm}[a,R ' (ll') +2qR ' (ll'}],

(A4)

where

Iz(ll'm) =
J) Jt

YP(x)*Y~&(r)Y,i(r) dr". (A5)

R~~~(ll') =
4(2n —1}

I'(n+ &)

I'(n+ —') I'[-,'(l -l'+4)] I'[-,' (l'-l +4)]'

(A6b)

where we have introduced an integer

The radial integrais appearing in (A4) are found to
be

!!!&(u )= —,'.&n+!)r('-';")r('-,'")
(A6a)

APPENDIX
n = —,'(l +l'), (AV)

The K matrix can be written in terms of the scat-
tering wave function u™,which solves Eq. (3.2),
as

and where the case l =l' =0 is excluded. In the case
e, = a, =0, the diagonal elements of K are given by

1 BK= —
k

u (r)*U (r)M" (r) dr,
0

(A1)

K» = k —(-1)" C(ll2; 00)C(ll 2; m, —m ) .

(A8)
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