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We propose in this article that the non-Hermitian equations typical of some many-body scattering theories be

used to help solve many-body bound-state problems. The basic idea is to exploit the channel nature of many-

body bound states that must exist because bound states are obvious negative-energy extensions of scattering

states. Since atomic, molecular, and nuclear systems all display multichannel effects for Z & 0, at least through

Pauli-principle effects if not through mass-transfer reactions, this use of positive-energy methods for solving

bound-state problems could have wide applicability. The development used here is based on the channel-

component-state method of the channel-coupling-array theory, recently described in detail for the E & 0 case,

and various aspects of the formalism are discussed, Detailed calculations using simple approximations are

discussed for H2+, one of the simplest systems displaying channel structure. Comparison with the exact, Born-

Oppenheimer results of Wind show that the non-Hermitian-equation, channel-component values of the

equilibrium separation and total binding energy are accurate to within 2/o, while the dissociation energy is

accurate to 10%. The resulting wave function is identical to that arising from the simplest MO calculation,

for which these numbers are less accurate than the preceding by at least a factor of 3, We also show that

identical particle symmetry for the H, case reduces the pair of coupled {two-channel) equations to a single

equation with an exchange term. Similar reductions will occur for larger numbers of identical particles, thus

suggesting application of the formalism to atomic structure problems. A detailed analysis of the present

numerical results, their general implications, and possible applications is also given.

I. INTRODUCTION

One of the most obvious physical differences be-
tween the positive energy (Z &0) two-particle and

n-particle problems is the existence, for n&2, of
different arrangement channels. These channels
correspond to the different ways in which the n
particles can be partitioned into clusters of bound
states, and subsequently observed. ln the language
of nuclear physics, they are the various reaction
channels, although it is evident that such channels
occur in atomic and molecular problems as well as
in nuclear ones. Channels are easily described, as
the following schematic example shows. Let A. , I3,
C, etc. , denote clusters of bound states containing
at least 2, particles, and let a, b, c, etc. denote
single particles (where we assume that the n parti-
cles of interest are distinguishable). A repre-
sentative group of channels are

a+A, 5+8, W+ F, 2-body channels;

a+ b+ C, B+T+8, 3-body channels;

a+ 5+ c+D, 4-body channel;

a+ b+ c+d+ ~ n, n-body (break up) channel; etc.

These different channels are defined in different
parts of configuration space, and correspond to

states which are asymptotically orthogonal.
The existence of channels implies that the theory

underlying the analyses of the n =2 and n&2 prob-
lems is also very different. For the n=2 case,
either the Schrodinger equation plus the outgoing-
-wave-boundary condition or the Lippmann-Schwin-
ger (LS) equation may in principle be used. How-
ever, when rs&2, it is well known that a single LS
equation alone is inadequate to uniquely specify the
total scattering state, while on the other hand it is
a nontrivial problem to introduce the various chan-
nels into the Schrodinger equation, i.e., through
proper specification of the boundary conditions in
all channels (especially m-body channels, rn ~ 3).
These latter problems have been eliminated by re-
formulations of the many-body (n&2) scattering
problem. The most common procedure for effect-
ing this is the use of coupled, integral equations
for the transition operators whose on-shell matrix
elements give the amplitudes for transitions be-
tween states in the various channels. These are
collectively known as connected kernel equation
(CKE) methods, since the equations are construct-
ed to have kernels whose finite iterates are con-
nected, i.e., do not suffer from divergences due
to the presence of noninteracting particles. '

The effect of these CKE methods is to make
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FIG. f. Schematic spectrum of H, showing bound
states (horizontal lines for E&0), resonances (cross-
hatched regions), and thresholds for various m-body
channels.

manifest the coupling and interaction of the various
channels. That is, for sufficiently large E &0,
asymptotic states can be found in different chan-
nels, and in order to understand the behavior of
the n-particle system in one channel, we must in

principle understand its behavior in every chan-
nel. This is easily seen in a schematic represen-
tation of the spectrum of H, as in Fig. 1. At the
value of E =E, , which is well above the thresholds
for various channels, it is apparent that the pro-
cesses occurring in one channel influence those
in another. This is seen in a more quantitative
way on examination of the relation obeyed by the
discontinuity of any transition operator: it is
given by an on-shell sum of products of transition
operators, with the sum occurring over all open
channels 3

These comments about the n &2 problem em-
phasize well-known aspects of the E &0 part of the
many-body spectrum. Since there are very obvi-
ous connections between the E &0 and E &0 portions
of the spectrum, one may well expect to find direct
effects of the channel nature of the E &0 part of
the spectrum in the E&0 portion. This is, of
course, not a new idea. In nuclear physics, one
manifestation has long been known as clustering

effects in nuclei, while in molecular physics it oc-
curs as, e.g. , LCAO descriptions of molecular
orbitals. 4 To our knowledge, however, there is no
systematic, theoretically well-founded method for
including such effects in the description of many-
body bound states. Bather, ad hoc prescriptions
only seem to be followed. Nevertheless, many-
body scattering methods do exist which can be
used as a basis for including E &0 channel effects
in the E&0 case. Our purpose in this article is to
examine one such class of methods and to empha-
size the role that channels may play in bound-state
problems. To some extent this paper is specula-
tive in nature, since the stress is mainly on prob-
able roles of channel effects. However, our spec-
ulations have been motivated by the results of cal-
culations for a particular system, that of H, ; these
are discussed in the final section of this paper.

The many-body formalism on which our discus-
sion is based is that of the channel-coupling array
theory' as expressed in the channel-component
state form."There are two reasons for this
choice of method. First, the channel-coupling ar-
ray theory is general. For n =3, there is a choice
of the channel-coupling array 8' w'hich leads to the
Faddeev equations for the channel-component
states, while for arbitrary n, an analogous choice
of W leads to the Bencze-Bedish transition opera-
tor equations. ' In addition, there is also the chan-
nel permuting array (CPA) choice of W which
leads to an alternate set of CKE's.' The second
reason for using the 8'-array theory in channel-
component form is that the channel components

~g,.), when E&0, display the property that when j
is a two-body channel, , only

~ (,.) contributes to the
scattering in that channel:

~ P ), mt j, does not
contribute. ' This allows for simple interpreta-
tions of l g,) and also provides suggestions as to
how the

l P,) may be approximated when E & 0.
In the remainder of this paper, we consider how

the E &0 channel coupling method can be applied
to the E &0 case. Section II deals, in two major
subsections, with the theory. Subsection A re-
views the E &0 case, discussed in detail in I,
while in subsection B we examine various aspects
of the E &0 situation. In the final section, several
of the approximation methods of Sec. IIB are ap-
plied to the simple but nontrivial example of the
H, system. Effects of particle identity are dis-
cussed in detail for this example as well.

II. THEORY

A. E)0
As in previous work, we assume that the (dis-

tinguishable) n-particle Hamiltonian H can be par-
titioned into a channel Hamiltonian Hz and a chan-
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H, =K,.+h (2)

where K,. is the Hamiltonian for the relative mo-
tion, and h,. is th'e Hamiltonian for the internal
states:

(3)

where y is a complete set of quantum numbers for
the state. We shall use the subscript b, i.e., yb,
to indicate bound states and the label j=0 for the
n-body breakup channel, so that Ho is the sum of
all kinetic energy operators and V, is the sum of
all interactions.

The Schrodinger equation is

(E —H) I4'& =0, (4)

subject to the usual boundary conditions for E &0
and E)0. In the channel-coupling-array theory
which we follow here, channel-comPonent states

I g~) are introduced via

(5)

where Z& is assumed to include at least all two-
body channels. Then, in analogy to (4), the

I ( ~&

are defined"' to obey the set of coupled equations

(6)

or in matrix form

with

and

H=H +V,
(ll,),.„=H,5,.„,

(8)

(9)

(10)(V),,=W„V, .

The quantity W, , in (10) is an element of the
(real) channel-coupling array W, an N xN matrix
chosen for E &0 to yield connected kernel integral
equations. ' The free channel index l may be cho-
sen as is convenient, and it has been shown, e.g. ,
in I, how to select l and S'» so as to derive the
Faddeev equations (n= 3, Ã = 3)." General discus-
sions of W can be found in Refs. 5 and 7.

For E)0, (7) is to be solved subject to the
boundary conditions

nel interaction V,. in N ways:

H=H+V, , 1~j N .
Here H~ describes the internal states of the clus-
ters forming channel j plus their relative motion,
and V,. is the set of intercluster interactions. The
number of channels N is assumed to include at
least all two-body channels. We also write

where

[G,(+ )]»= G, (+)5,,-=(E+ i0 —H~) '5»

and

(12)

when j is an m-body channel, m)2, as discussed
in Ref. 7. In each case, these matrix elements
give the correct transition amplitudes.

A time-dependent analysis of scattering based
on the channel scattering states was developed in
Ref. 7. An apparent drawback to such a procedure,
viz. the fact that H or approximations to it are not
manifestly Hermitian (due to Vt v V), was seen not
to be a problem if H was invariant under rota-
tions (at least about an axis of symmetry) and
time reversal. For in this case, the vector I(t)&

could be defined to have a unique phase under ac-
tion of the time reversal operator T, which is
sufficient to guarantee that the energy E in Eq.
(7) is real. ' That is, imposition of the symme-
tries of H onto the solutions

I g& of 8 ensures that
these solutions correspond to real energies. Al-
ternatively, those Ig& which belong to complex en-
ergies do not have the requisite symmetry char-
acteristics displayed by I4&, and thus, are inad-
missable expansion states in (5).

For our needs in this work, we recall two im-
portant results of the time-dependent results. '
First, it was shown that at time t=0, the time-
dependent vector of states

I P(t = 0)) was identical
to the solution

I P& defined by Eq. (11). Second,
and most important, it was shown that for m a
two-body channel, only the state (()„& in I+&
=Q&

I g&) contributed to the scattering in channel
m. That is,

(r„,q&„(y',) I g,&
~ 0, j w m = 2-body chan~el .

Hence,

(r., r.(rl))&) (r r (rl)lg(=,)., .
,„= &r., ~.(~t) I4&

fy&. r&
b

e &&m&m

+f.;,, &,,(p. , p,)
m

(14)

(I0)), = Ic' (E)&5; -=Ip,)IV,(7 )&5;, . (13)

We assume that the initial channel k is a two-body
channel; Ip~& is then a relative-motion plane wave
state in channel k of momentum p„. Solution of (11)
leads to matrix elements of the transition opera-
tors T»(+) when j is a two-body channel and to
matrix elements of the transition operators

U~(;)(+) =g G-,'(+)G„Z „,(+)
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where f is the exact two-body scattering ampli-
tude:

f.,;,~,(p., p.) &p. ~-(~l) I7'„,(+)I~,(r ), p & .

(I5)

The meaning of this result is that
~
|jI„& is the por-

tion of ~4& in channel m, i.e. , ~4'& is asymptoti-
cally equal to

~ p ) in channel rn, I being an arbi-
trary two-body channel. Thus, Eq. (5) is a valid
"expansion" of ~C & into its various arrangement
channel components.

As noted above, when m is a many-body chan-
nel (m &2), then (5) yields the matrix element of
U' »(+) =Z;G„'(+)G,T,„(+) a.s t. he (correct) transi-
tion amplitude. Since P,. ~ PJ& must include all
(open) two-body channels in order to obtain (14),
but need not include any many-body channels by
the preceding result, we draw the important con-
clusion that (5) is a valid expansion for ~4& as long

as Z, includes all but no more than the set of two-

body channels. This is precisely the same con-
clusion resulting from the analysis of Benoist-
Gueutal, "whose work implies that the minimum
number of channels required in the coupled equa-
tions for the T,.„ in order that the proper discon-
tinuity relation be satisfied is the set of two-body
channels. We shall thus assume that in (5), Z;
includes the set of two-body channels, and further,
we shall carry over this assumption to the bound-
state case. (E &0).

B. E(0

those based on Eq. (7) is given below. Before dis-
cussing this topic we examine a number of aspects
of the bound-state formalism provided by Eqs. (6)
or (7) including the non-Hermiticity, the character
or exact solutions, the meaning of the

~ g;&, various
approximation methods, and the effect of choosing
different kinds of S'.

l. Non-Hermiticity ofEquation (7)

Although the physical arguments presented in the
Introduction indicate that the inclusion of channel
effects into many-body bound-state problems is not
unreasonable, the use of non-Hermitian equations
to calculate such effects may seem surprising if
not actually incorrect. In fact such equations arise
in a straightforward way and are one of the differ-
ences between the n =2 and n &2 cases. Their ex-
istence is a direct manifestation of the non-Her-
miticity of H when E &0, i.e., when (4) is no longer
an eigenvalue problem.

Let us consider the n =2 case first. The non-
Hermiticity of H is trivial to demonstrate. We
shall use an arrow under the operator to indicate
the direction in which it acts. Writing H =H, + V,
where H, is the kinetic energy and V is a local,
real c-number potential, we have

H~e&=z~e& and H, ~i&=z~i& .
Then

&kiz Hip&=0

while

&a~z H~@&=&i
~

V ~y&w0,

The E &0 solutions of (7), subject to the boundary
conditions implied by (ll), lead to the correct
scattering amplitudes, given as on-shell matrix
elements of either T»(+) when j is a two-body
channel or else of the operator U,'.„'(+). Corres-
pondingly, the poles of T,»(or U~&, ') will g. ive the
n-particle bound states. These could be obtained
by solving the coupled equations for the T,.~, but
it is clearly easier to deal with the original equa-
tion for the

~ (&, viz. Eq. (7), from which the cou-
pled T-operator equations can be derived. The
E &0 solutions of (7) will yield the bound states
~4& [through Eg. (5)] and the bound-state energies
E of (4). In either case, that is, by finding the
poles of the T,, or the E &0 eigenvalues of (7), we
incorporate into the description of many-body
bound states the arrangement channel nature of the
E &0 portion of the many-body spectrum as dis-
cussed in the Introduction. This may well prove
to have useful consequences, as implied by the
results of the H, calculation discussed in Sec. DI.
A comparison of shell-model calculations and

thus establishing the non-Hermiticity of H for E
&0. That is, in order for H to be a Hermitian
operator, we must have

for any pair of states ~q& and ~g&.

Still continuing with the case n = 2, we now ask
for solutions to H ~+& =E ~C & subject to the boundary
condition implied by

~e&= ~p&+(E+zo-H, )-'V~+& .
This is the only boundary condition required be-
cause of the single-channel nature of the problem,
and as is well known yields a unique solution of the
Schrodinger equation. The differential form of
this integral ecluation is of course just H ~4&=E ~4&.

Now consider the many-channel- case, n &2.
When E &0, the preceding proof qf the non-Her-
miticity of Hisvalid, except that it can occur in
many more ways, since unperturbed states analo-
gous to

~
k& of the n =2 case will occur in every

channel. On the other hand, to solve the Schro-
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dinger equation, it is insufficient to impose the
boundary conditions by means of one integral equa-
tion alone, as proved in detail by Glockle for the
n =3 case,"since this does not lead to a unique
solution. As remarked on in I, there are at least
two distinct (families of) ways of specifying the
boundary conditions. These are through the chan-
nel scattering states IX„) and through the channel-
component states

I $,&. The differential form of
the boundary-condition equations obeyed by both
the IX„) and the IP,.& are non-Hermitian matrix
equations. This non-Hermiticity arises from the
facts that H is non-Hermitian when E &0 and that
an n-particle problem is also a multichannel prob-
lem. It is amusing to note that the differential
equations for the channel scattering states all col-
lapse to the Schrodinger equation once it is re-
called' that each IX„& is equal to I4'&. However,
the non-Hermitian form for the Ip&& is of persis-
tent character. When different approximations for
each channel are introduced however, both sets of
equations remain in non-Hermitian form. As we
show next, the exact solutions

I &1&~& to Eq. (6) pro-
vide the real eigenvalues and eigenstates of the
Schrodinger equation.

where we have used Z, W, , =1. Since m is a dum-
my index, (17) is easily seen to be equal to

H;+V. ~
=z

or

«Q l&,&=~+ I&;& (16)

3. Meaning of the j P;& when E (0

~hen E&0, I$„& is the portion of IC) in channel
m. For example, let m be a two-body channel.
Then we have

+ dy
I &.(y}&IF.(y)& (19)

Because H is Hermitian for bound-state boundary
conditions, (18) clearly implies that Im z = 0 and

Z, I (,&
= IC'&, which establishes the proof. Note

that it is essential that in the sum on j, Eq. (17),
the full Hamiltonian H is recovered from the sums
ZH&IPJ& and ZI&' Igg for ea, ch channel.

Hz I P~&+g w, ,v I $„&=z
I (,& . (16)

2. Exact solutions of (7)

When n=N=3, it is possible to choose W so that
(6) become the Faddeev equations for the wave-
function components as shown in I. In that case,
as proved by Faddeev, "the E &0 solutions of (6)
are precisely the solutions of the Schrodinger
equation (4). This proves that Im E =0, even
though H~WH, as remarked on elsewhere. " For
arbitrary n and N, Eq. (5) is the generalization of
the Faddeev wave-function decomposition (see I
for further discussion of this point). Although (6)
[or (7)] is obtained from the Schrodinger equation
whose bound-state energies are real, it is a non-
Hermitian matrix equation and may admit of com-
plex eigenvalues. We now show, independent of
any assumptions about rotational or time-reversal
invariance, that just as in the case of the Faddeev
equations, exact sol'utions of (6) yield the (real)
eigenvalues and the corresponding eigenstates of
(4). This proof is based on that: given in Hef. 6 and
is similar to Faddeev's for the n =3 case."

Let E in (6) be replaced by a possibly complex
energy parameter z. On using Eqs. (8)-(10), (6)
becomes

where gdy means an integration over breakup
state quantum numbers y. The Iy (y. „)) are the
bound-state parts of the asymptotic states, and
the usual outgoing wave boundary condition means
that (r„IE„(y,)& obeys the boundary condition of
(14). Since E &0 is the negative-energy continua-
tion of the E&0 case, it follows that for E&0,
since there is no plane-wave term in IE (y,)),
we have (tI&„-in):

(2o)

where n is a number characteristic of the state
yb and the bound-state energy E. Similar com-
ments hold for the states y, and for general c-
body channels.

The implication is that for E&0, IP ) is still
the "portion" of I4& in channel m, in the sense
that for large t, (r„p„(y„)I+&=(r, q„(y,) Ig )
~e "I/~„, t„~.Hence, when E&0, Ip„& can
still be meaningfully expanded in the set of states
$y„(y')}, exactly as in (19), although now bound-
state boundary conditions apply. The expansion
(19) will always hold when exact solutions are
being considered, and suggests possible approxi-
mation procedures as well, which we consider
next.

Summing both sides of (16) on j yields

H, , + V =z (17)

4. Approximations

For practical calculations it will be necessary to
approximate in some way the solutions of Eq. (6).
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This means that the resulting Z, I(j),.) and E will
be an approximation to I4') and its Schrodinger
equation eigenvalue. Hence, the first task is to
ensure that the E obtained from the approximate
calculation is real. We may distinguish two types
of approximations: those that permit the summa-
tions similar to (17) to be done leading to an equa-
tion similar" to (18) and those that do not. In the
former case we are ensured that Imp=0. In the
latter case we have no such assurance, as already
discussed in detail for the n =3,%=3 problem using
the Faddeev equations, "and we therefore must
rely on the (assumed) invariance properties of H
and the behavior of

I g) under the time reversal
operator T to guarantee the reality' of the negative
energy eigenvalues of (6) under such approxima-
tions. For example, we assume an n-body system
invariant under arbitrary rotations and T, and
choose l)1)) so that

T
I th)(JM)) = q~e I

If'(JIM))' -, (21)

where JM 'are the total angular momentum and its
projection. Then (21) guarantees' that E of (6) is
real. On the other hand for

I g) which does not
have a fixed phase under T, no statements about
reality can be made for approximations of the
second kind, and we must expect E to be complex.
Such values are to be rejected on the ground that
invariance of H implies (21), so that I)1)) which
do not conform to (21) are unphysical. This is
analogous to rejection of those I4) which are sym-
metric under particle interchange for systems of
identical fermions. We consider several different
types of approximation schemes below.

a. Projection (diagonalization) techniques. This
method has been briefly discussed in Ref. 13 for
the three-body case, and we enlarge on that dis-
cussion here. The method appears to be one that
could be used for a wide variety of physical sys-
tems. It is analogous to both coupled-channel
approximation techniques for collisions and shell-
model schemes for bound-state approximations to
the Schrodinger Hamiltonian H.

We form projection operators P,. in each channel

j as follows:

(22)

where Z, includes at least one bound state. The
approximation of interest here is then

Q,.)- I g,.) =P, Ig,.).
(23)

That is, in each channel, at most the totality of
bound states occurring in Eq. (19) is retained as
the approximation. A further and to be expected

(v),„=p,w, ,v.,p, .
In order to see how to use (24) to solve bound-

state problems, we first consider the E &0 case
and choose W to be a chan~el permuting array
(l =k). Then (24) becomes

(E —H, )I (,.) = Q w. „.»P, V»P»I (»). (26)

Although we are now working in a truncated Hilbert
space, (25) must still lead to approximate scatter-
ing amplitudes determined from equations like
(ll) or (14). By construction [Eqs. (22)], these
approximate amplitudes are obtained directly
from IF,(y,)). To get IF,.(y, )), we must project

I g,.) onto ((t);(y,) I, not onto ((t),(y„)I, l 0j. That
is, I)I),.) and the theory on which it is based' un-

iquely give the scattering amplitude only when
projected onto a bound state in channel j. One
could of course, project I)t),.) onto ((t),(y,, ) I, but
from the nature of the

I g,.), as discussed in Ref.
7, this does not lead to the relevant scattering
amplitude. In order to find it from such a pro-
jection, we would have to form

g l (,(r) ) (e,(r l I (,)

to get the exact amplitude; just how to get the
corresponding approximate amplitude from I)1),.)
with an inappropriate projection is not clear,
although we expect that Ql(t), (y,))((t),(y,) I)l);) will
always be inadequate because even though g&)
will be an approximation to I)l)&), an exact represen-
tation of the approximate state requires an expan-
sion in the continuum as well as the bound states
from another channel.

approximation is that the
I q),.(y,)) themselves will

be represented by model states, e.g. , shell model,
Hartree-Fock, molecular orbital, etc. Note that
the j in (22) could refer to m-body channels, in
which case the

I
q) .(y,)) would be a product of m

rather than two bound states. The IF .(y,)) in all
cases will obey Eq. (20), although for an m-body
channel, r,. is to be taken as the relative coordi-
nate of any one of the pairs of the m bound clus-
ters.

Because P', =P, (alth. ough [P, , P»]c0), we may
rewrite (7) in this approximation as

Hlc) =E ly&, (24)

where

(H)„=(H,),,+(v),„,
with

(H()), » =P, H, 5,»=H, P)5.,»
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Given this discussion, the correct procedure to
follow for determining the F,(y~)& is to project
(25) onto (Q,(y,) I, giving

[«J(y,) If,.~ IF,.(y„)

on r, , just as one adds and subtracts one-body
optical potentials in the case of reactions. " Thus,
we shall consider the modified problem

H =HO+V,

w, ,&y, (y, ) I v, I y,(y~, )& IF.(»» (26)
k b

with

H, =H, +U (28)

The approximate k- j scattering amplitude is un-
iquely obtained from this set of equations plus the
boundary condition (11) as expressed in the form
(14).

The fact that we are using the E &0 continuation
of arrangement channel quantum mechanics to
solve bound-state problems, means that (26) is
the correct E &0 version of the theory to use in
the approximate projection operator form. We
stress this, since if one merely uses a projection
approximation to (7) for 8 &0 without noting
the E & 0 and E & 0 connection, projected equa-
tions other than (26) could be obtained as implied
above. These, however, are tobe rejected on the
ground that they are not the correct E &0 continu-
ation of the many-body scattering theory.

We also note that this approximation, i.e., (26),
can be a diagonalization procedure, quite similar
to that used in shell-model calculations. It appears
in a natural manner for molecular physics calcula-
tions in the Born-Oppenheimer approximation
(K,. —= 0); this is illustrated for the H; system in
the Sec. III, where the IF,.(y, )& are seen to be just
normalization constants.

b. Perturbation theory. Since the equation obeyed
by I g& is identical in structure to the Schrodinger
equation, the usual formulas of time-independent
perturbation theory can in PxinciPle be carried
over to the present ease with no change other
than the use of matrix notation. However, in ad-
dition to the usual cautions in applying perturba-
tion theory indiscriminately, "there is an import-
ant difference between its use in (4) and in (7).
One always assumes that in (4), H may be de-
composed into an unperturbed part Ho and a per-
turbation written as XV(X=1 ultimately) such
that Ho supports bound states. In the form of per-
turbation theory we shall consider for (7), we
first write H = H, + XV, treating XV as the pertur-
bation with its small" expansion parameter X

whose final value is unity. " For most cases, the
structure of (Ho), ~=H,.5,„ implies that along the
"direction" r, , we have a plane wave rather than
a bound state. (For the Born-Oppenheimer type
of approximation, as we shall see, this comment
is not true, and the following construction need
not be applied. ) To ensure complete bound-dtate
behavior for the solutions of H„we shall add and
subtract attractive one-body potentials depending

VN V U

where

(U),.„=U, 5»

(29)

and

ynE(n)

the results

Iy"'&= Ix.&, E"'=Iv.
and

(31)

, &"'=&x Iv"Ix )
&x Iv" Ix.)

(32)

Higher-order terms follow from the standard
single channel formulas. "

c. Vacational pmriciples. As in the preceding,
we distinguish the various (exact) solutions to (7)

and U& is the attractive potential producing at least
one complete bound state in each channel. Ex-
amples of U,- could be an oscillator potential, a
Woods-Saxon potential or a Morse potential. We
shall assume that a U& can be chosen to give. ac-
curate results, although this may well be a non-
trivial. problem.

The unperturbed states Ix ) obey

1-1. x.) =II.Ix.&,

with a typical element of
I x ) being

( Ix.»~ =lv '"Ixl"(»» (30)

where Ix',."'(y,)) vanishes asymptotically and is
assumed to be normalized: &x& '(y~)

I x& '(y,'))
Also, N is the dimension of the column~P b

vector Ix,&. We now write V"-xV" and seek the
usual perturbative solutions of H =H,"+&7". The
usual formulas" now apply, where we note that:
matrix elements such as &X IV" IXB) carry an
implied transpose of the column vector x )
to the row vector &~xI.

If we assume that Ix„& is the solution when X =0,
then straightforward calculations give for the low-
order terms in
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by the collective label c.(I+&- I@ )):
(33)

(xr ~ )
j q ((r.)

I

)))) m. . (4o)

where, e.g. ,

(I t.&)g
=

I tg'(»}&
and we again consider only totally bound states.
In addition, we choose the g& '(y, )& to be normal-
ized:

(34)

or equivalently

and as such can be used in a variational principle
in the standard manner. " We have here introduced
the row and column vectors &XI and IX& with ele-
ments &X„I and IX„). The proof that jX) obeys
(37b) follows from the integral equation for the
Xg discussed in I, which is of the form

Ix) =
I y&+G, (+)v'Ix&;

the presence of Vr implies (37b).
The starting point of our variational approach

will thus be

&X jHjg, )
(38)

rather than Eq. (36). However, since
I
X) obeys

(37b) while
I g& obeys (7), the relationship between

them must be established, in particular, the mean-
ing of the collective index, o, on IX ). The key
point here is the fact that for exact solutions to
(37b), we know' that

Ix&„-'& =- I~.&, »I ~,
and equivalently, (X&"I=&4 I. Therefore it fol-
lows from (5) and (39) that

(39)

&0"'(y ) 0"'(yl)) =6... (35)

Then, if there are N channels forming H, (33) is
clearly equivalent to

E.=N'&4. IHIP. ) (36)

Goldf 1am and Kouri" have noted that because
Ht 4 H, (36) does not provide a starting point for
obtaining a variational bound to E . Their solution
of the problem was to define a normalization ma-
trix N such that &P, IN I

(t(„& = 1, and use N to obtain
the standard Rayleigh-Ritz bound. We proceed
differently, as follows.

The problem with using (36) as a starting point
is that &P„ I

is not known to be an eigenstate of H
when it acts to the left. However, the channel
scattering states IX„)discussed in detail in I,
do satisfy

(3Va)

(41)

where

((F l).= g &f, l, R)) m .

When If)= Iy, &, we have I[I(,)]=E . When If)
=

I $~)+ 6
I tJ)~), we find using &X I (E~ —H) =0 that

6I[ $,)]=0, and hence I[ f)] is stationary about
the exact solution IP ). Finally, if we expand
If) in the complete set of states Ig ),

(42)

(43)

we obtain

(44)

where a =0 denotes the ground state. That is,
I[If )] provides an upper bound to the ground-state
energy of the n-particle system. In particular, if
If) is replaced by a vector of trial functions I(t,)
containing M && N variational parameters a,'.", then
an upper bound to E, is obtained by solving for the
parameters a,'." through

»[j4 )]
(i) =0 1&i&M 1&j&N (45)

and then using those parameters to determine
I[

I g,)]&E,. Not only is the complete analogy with
the one-channel case" obvious, but it is also
straightforward to show that use, e.g. , of (43)
in truncated form, leads precisely to the sante
variational result for the energy as in the Gold-
flam-Kouri procedure, "i.e., to the standard
Rayleigh-Ritz bound. Hence, this establishes
that the variational method will always yield real
energies. The results of this section are thus
twofold: first, Eq. (7) has been derived varia-
tionally, and second, the bound obtained on the
energy is seen to be not only real, but identical
to that from a standard Rayleigh-Ritz calculation
using a trial function formed by P,. I g,.&. Calcula-
tions based on these equations are discussed in
Sec. III.

Furthermore, these latter results imply that
I
X ) has the same property under time reversal

as do the Ig ) and I4' ). Thus the proof used in
I to establish reality of E is valid for Eq. (38) also.

Statement of the. variational principle i.s now
straightforward. We define the functional I[(f)]
by
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5. Choicesof V

So far we have presented a general form of the
theory, not specifying choices of &. There are
two aspects of such a choice we shall consider
here. First is the role of connectedness; second
i:s the kind of approximation that the choice suggests.

Since we are advocating the use of the present
method as the E &0 extension of CKE procedures
for E &0, it is clear that the structure of the equa-
tions on which the negative-energy calculations are
based must be the same as for the positive-energy
case. Thus, even though no disconnected graph
singularities can ultimately be present in bound-
state calculations, the requirement that for E&0,
W be chosen to s ecure a kernel G,(+)V in Eq. (11)
having a (finite) connected iterate means that a
similar W must be chosen for E &0. This remark
is strongly supported by the only calculations to
date which have examined the effect of choosing
values of W, , not yielding a connected iterated
kernel. This was done for e +H scattering, where
the approximation of retaining only the ground
state of hydrogen in a calculation using the approx-
imation of Sec. II B4a above ensured an initially
connected structure. " Even though any choice of
W necessarily gives a connected kernel, the best
pair of scattering lengths obtained from the cal-
culation was obtained for the (unique) values of
Wyy and Wgy 1 Wyy that in the general case yield
a connected kernel.

As for those choices of % that lead to CKE's, we
have so far found only two kinds, the CPA's and
theFaddeev-Lovelace (FL) choice, the latter lead-
ing' to the Faddeev equations (n= 3) or the Bencze-
Redish equations (a.rbitrary n). The structure of
the equations which follow from these two types of
choice is very different. In the former case, the
role of channel Green's functions G,.(+) and channel
interactions V& is emphasized. In the latter case,
the n-body free Green's function G,(+) and the var-
ious (off-shell) (n —1)-, (n —2)-, . . . , 3-, 2-body
T matrices are emphasized. Bound-state approxi-
mations to G,.(+) and ~g,), as in Sec. IIB4a, seem
best suited to the former case, while pole approxi-
mations seem best suited to the latter case cohen
the various (off-shell) T matrices are known or
can be approximated with reasonable accuracy for
the particular problem. " Very often, the relevant
T matrices are not known, in contrast to the chan-
nel interactions V, , especially i.n the case of atom-
ic or molecular systems. No general prescriptions
for choosing W' can be given in advance, although
we do note that if the relevant T matrices are
known, the FLchoice may be easier to work with
if either three-body channels or three-body break
up states in two-body channels are. to be included
in the calculations.

6. Comparison with the shell model

We shall consider the shell model as applied in
typical nuclear physics calculations. " The first
point to note is that this model is an example of
the present procedure in which j is limited to only
one channel: j= 0, the n-particle breakup channel,
for which H =H and no non-Hermiticity problems
occur. It is obvious that in the simplest case, the
states of Hg Hp are the n-particle plane wave
states, and so provide a complete expansion set for
any system. As is well known, the normal prac-
tice is to follow the procedure of Sec. IIB4b and
add to H, (and subtract from V,) a sum of one-body
attractive potentials that produce the shell model
bound states. The set of bound and continuum
states of the one-body potential is still assumed to
be complete. Because of this, the model provides
an in-principle complete description of all bound
states. Hence, it is never necessary to go beyond
the shell model. Furthermore, we note that the
use of a complete set of states means that the
shell model can be used to describe the various
channel clusterings discussed in the preceding. In-
deed, the near equality of cluster model and shell-
model wave functions for light nuclei bear this out.

Given these remarks, the proposal to use the
non-Hermitian, many-body methods we are advo-
cating herein may seem no more than an academic
exercise, at least for application to nuclear prob-
lems. However, the shell model is exact only in
principle. For nonlight nuclei, it may be imprac-
tical to include the possibly large number of shell-
model states needed to describe clustering effects.
on the other hand, they enter naturally in the
present description. Hence the many-body method
we are considering is a complement rather than a
rival to the shell model, and ideally would be used
to describe few-body clustering (deuterons, al-
phas, etc ), altho. ugh its possible application to
fission is evident. Shell-model states could be
used to describe the bound clusters occurring in
the various arrangement channels; the occurrence
and coupling of such channels in the bound-state
problem is the new aspect of the method we advo-
cate here.

III. APPLICATION TG THE H 2 MOLECULAR IGN

Equations (6) or (7) would seem to have a natural
application to molecular structure, since, in the
language of the present approach, the arrange-
ment channel structure of molecules is obvious.
In this section, we apply the theory to the simplest
molecular system, viz. H,', using the Born-Oppen-
heimer approximation for the Schrodinger Hamil-
tonian H and the simplest possible approximations
for the three calculational procedures of Sec. IIB4.
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FIG. 2. Coordinates for the H2 system. The protons
are labeled 1 and 2.

We shall compare the results with the exact calcu-
lations 'of W'ind" and also with the results of per-
turbation theory. '4 As we shall see, our simple
(crude) approximations lead to unexpectedly ac-
curate results, particularly in comparison with
the well-known results of perturbation theory.
These latter results are insufficiently accurate to
use the zeroth-order approximate wave function as
a model for the structure of H,', another well-
known point, ~ and one we return to later. The
success of the e + 8 scattering results"'" implies
that the accuracy of the present H,

' calculation is
no accident, and this is borne out by further cal-
culations for H,

' using larger bases. " The exten-
sion of the e + H scattering results to negative en-
ergies (i.e. , the affinity of E ), discussed by
Levin, "is a further indication of the power of the
method.

where the C,. are R-dependent constants to be de-
termined and lq„(i)) is the hydrogenic ground state
(centered on proton i).

Both the C,.(R) and E(R) are determined by solv-
ing a secular equation, the details of whiph are
given for example by Pilar. ' Two solutions are ob-
tained, corresponding to bonding and antibonding
orbitals. We are only interested in the former
solution here, the dissociation energy curve D,(R)
for which is given by4

D,(R) =(n+ P)i(1+ ~) .
In this equation, n and P are'

e -2R (49)

and

The H, system has also been used as a testing
ground for various approximations. Qne of the
simplest is degenerate perturbation theory. (This
gives the same result as a corresponding varia-
tional treatment. ") The idea is to regard H; as
made up of hydrogen and a proton in two different
ways (just the channels we shall consider in the
next subsection, although the dynamics is not the
same). To first order, the wave function is a lin-
ear combination of the degenerate hydrogenic
states centered on each proton:

(48)

A. Comparison calculations

The H,
' system, with the various interparticle

coordinates labeled, is shown in Fig. 2. In the
Born-Qppenheimer approximation, '4 the Hamil-
tonian H for the system is where &„=-e'/2a„while b, is given by

(50)

H=HO —e'/r, —e'/r, + e'/R, (46)

where H, is the electron kinetic energy operator.
The Schrodinger eigenvalue equation is

= (I+R+ —.'R')e-~ (5I)

and all distances are measured in units of a, . We

H
I e(R)) = E(R)

I e(R)), (47)

so that one determines an energy "surface" E(R).
Assuming E(R) to display a minimum at R =R„,
the total electronic binding energy is given by
E(R„), where we have (SE/SR)~ =0.

It is well known that II is separable in confocal
elliptic coordinates"" so that a numex'ically exact
solution for E(R) and

I 4(R)) can be obtained and
R„and E(R„) then determined. The values of R„,
E(R„), and the spectroscopic dissociation energy
D, = E(R„)—e'/2a, as calculated by Wind" are
given in Table I.

EQ„)
(ev)

D~
(eV)

Exact calculation
Perturbation calculation

(Schrodinger equation)
Channel-coupling array

calculation

2.02ap
2.50ap

2.07ap

-16.39
-15.39

-16.67

—2.79
—1.78

-3.07

TABLE I. Comparison of H2 ground-state energies
and equilibrium separations.
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'UIU nere that the nonorthogonality overlap h(R)
occurs in the denominator of D,(R) essentially be-
cause ~+) is being expanded in a basis of nonortho-
gonal functions. [As we shall see, this denomin-
ator does not even enter the calculation of D,(R)
using the projection technique method, i.e. , just
as in E& 0 calculations, ' the nonorthogonality of
different channel functions is finessed. ]

The results4 of this calculation are also given in
Table I. It is seen that E(R„) and R„are accurate
to within 7 and 25%, respectively, while D, is
accurate only to within 36%. The fact that E(R„)
is better than a factor of three more accurate than

Rpq is an indic ation of the usual result that ener
gies can be more accurately determined than wave
functions perturbatively, and R„must reflect this,
being dependent on the electron density. A rather
different result occurs for the channel component
calculation, as shown below.

In addition to the results discussed here, i.e. ,
the bonding orbital for which C, = C, = [2(1+n, ) ] '~',
both the exact and approximate calculations yield
a second state, for which there is no bonding. This
has C, = C, = [2(l —b, ] '~', detailed potential energy
surfaces for which are given in Ref. 4.

The perturbation/variation result is the simplest
approximation to the exact result, and many others
have been used. The next simplest, which employs
only a 1s function but includes a scale parameter,
leads to an improvement in D, of 0.5 eP, and other
calculations achieve much better accuracy. 4 We
only consider the simplest of approximations here
because it is the one, despite its poor values of D,
and R„, that is used as a basis for introducing the
molecular orbital method used for more complex
molecules. As we shall see, the arrangement
channel procedure leads to much better results
for D, and R„, with what is apparently an identical
wave function. The question of an identical wave
function is one of interpretation, which we discuss
in Sec. D below.

B. Channel component calculations

We consider here only the simplest approximate
calculations; these use just the hydrogenic ground
state ~7i„) as in the preceding, but with vastly dif-
ferent results. We also remark that molecular
systems are almost ideally suited for the method
we are discussing here, since by its very struc-
ture of bound atoms, the channel nature of the
system is obvious. Thus H,', being the simplest
molecule, is a likely system to be well described
by the many-body arrangement channel methods.
Indeed, it is a test case in the sense that we must
do at least as well as the more standard methods in
describing the molecule, when comparable approx-
imations are used. The results described below

clearly indicate that the method is successful.

1. Projection technique

For H,
' there are two channels, denoted (1) and

(2), and defined by which proton binds the electron:

(1,e ) + 2, channel (1);

(2, e ) + 1, channel (2);

where (, ) means a, bound pair. These two chan-
nels are represented schematically in Fig. 3 along
with the relevant interactions. From this diagram
plus the definitions of the two channels, we see
that

and

e2
H1 =H0 ——

e2
H =H ——,2 0

2

82 82
V =-—+-

R2

e2 82
V =-—+—.

(52)

(53)

The partitionings (52) and (53) are to be used in
Eq. (7). In order to apply this system, we must
specify W. Since this is a two-channel problem,
W is a 2 x 2 matrix, and we choose it to be the
CPA obtained by first setting 1=0 in 8;., V~ and then
selecting 8', , =0 and W,.~=1, jck:

This value of W is the same as used in the e + H
calculations, "'2' and clearly obeys'Q, .W» =Z, W» = 1.
Equation (7) thus becomes

1 2 1 E 1 54

According to the discussion in Sec. II, ~(,.) de-
scribes the system exactly when r, (in this case'R).
is asymptotic. From (52) or (53), this means that
whenR-~, ~P&) =a,(j) ~q (j)), herwad etee nohsy-a
drogenic state and a (j) is a constant to be deter-
mined. Since the lowest state has n =1s, we use
this one-state approximation, although we expect

(b)

FIG. 3. The two 2-body partitions of. the H2 system:
(a) corresponds to channel 1 and (b) to channel 2. Bind-
ing interactions are indicated by solid lines and channel
interactions by wavy lines, while the bound clusters are
enclosed by the large ovals.



2158 F. S. LEVIN AND H. KRUGER

= ~,.(j) In,.(j)& -=a& In„(j)&. (55)

With this approximation,
I
4& now becomes

l~& = ~, In, .(1)&+~. In,.(2)& -=l~"'&, (56)

where I4"'& is given by Eq. (48). [Normalization
alone will imply that the a, of Eq. (56) and C,. of
Eq. (48) are equal. ] So the first point we see is
that the projection approximation leads to the same
approximation to

I
4& as in the usual approxima, —

tion to the Schrodinger equation. The dynamics,
as we have stressed above, is not the same how-
ever.

Since P, =I n„(j)).&n„(j) I, the approximate form
of (54), viz. Eq. (24), becomes for this case

! ~,.—E(R) &n„(1)l&.ln„(2)&~

(&n„(2) I p; ln„(l)& c„—E(R) ) ia, j
(57)

where e„=-e'/2a, = -18.6 eV is the ground-state
energy of the H atom. Note that no nonorthogon-
ality overlaps occur in this equation, nor will they
occur if more elaborate expansions for lg,.

& are
used. - The two matrix elements in (57) occurring
as off-diagonal elements are equal and are given
by

M(R) =-
&n,.(» I v. In,.(2)&

2R 1=2&„——e s—=p, (58)

with R measured in units of a, and P given by Eq.
(50). The energies are given by

Z'(R) = ~„+M(R), (59)

so that the spectroscopic dissociation energy D,
for the bonding state is

D, =M(R„) . (60)

Differentiating (58) leads to bonding for E'(R),
with a minimum at R„=2.07 a„ implying E(R„)
= -16.67 eV and D, = -3.07 eel. This is an accuracy
of 2% for R„daEn(R„) and of lOVo for D, as com-
pared to the corresponding exact results. The
comparison of all three calculations is given in
Table I. (We also obtain a, = +a, = [2(1+2,)] '~' for
the bonding (+) and nonbonding (-) cases. ) We thus
find that the channel-component method leads to
results three times more accurate than the per-
turbation/variation approximate results for the
Schrodinger equation using the same approximation

that for R near to R„, Ig,&=K a (j) In (j)&. Hence,
our projection approximation [i.e. , Eq. (24) ] in-
volves

lc,&
-=P,

I e,&
= In, .(j)& &n„(j) I g ~.(j)n.(j)&

M(R) = &n,.(1) I
-—ln, .(2))+ &n,.(1)

I

—ln,.(2))

—= 2&i (1+R)e —2Ei (61)

In contrast to the binding energy term
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FIG. 4. Variation of the dissociation energy D~(R)
(R) —E'$g with internuclear separation x =R/ao. Solid

line, exact result; dashed line, the channel-coupling ar-
ray approximate result.

for IC&, but, of course, different dynamics. Note
that because of the simplicity of the approximation
(55), (54) has reduced to the Hermitian matrix
equation (57). Also,

I g,.& of (55) has a well-defined
phase under T. This latter feature must be re-
tained in a more elaborate calculation, but hermi-
ticity of H need not be.

Let us now consider this calculation in more de-
tail. Not only are the equilibrium values in very
good agreement with the exact ones, so are the
values of D,(R) for all R, as shown in Fig. 4. A
similar comparison of the perturbation/variation
results for D,(R) with that of the channel-compo-
nent calculations is given in Fig. 5. This latter
figure is of greater interest to us than Fig. 4,
since the results shown in Fig. 5 correspond to the
same wave function but different dynamics. Each
curve in Fig. 5 is composed of two contributions,
the perturbation/variation result being given by
the sum of o./(1+ L) and P/(1+L) as above, while

D,(R) [=M(R) of Eq. (60) ] for the channel-component
case is given by
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FIG. 5. Comparison of the dissociation energy curves
from the channel-coupling array calculation (solid line)
and the perturbation/variation result (dashed line).

2q„(q„(i) I z,.' I q„(i)& occurring in the H-atom ener-
gy, the factor 2e„(q„(1)Ix,' Iq„(2)& has the appear-
ance of an exchange term. This interpretation is
not the one we prefer. Instead we regard

&~..(» I ~.' I ~..(2)& "e.I~.' I &.&

as the attractive (binding) part of the channel 1-
channel 2 interaction. Indeed, it can be regarded
as the "channel averaged" attraction of the elec-
tron on one site to the proton on the other. Sim-
ilarly, the term

&n,.(1) IR ' I~..(2»" &(, IR '
I (.&

is the repulsive part of the channel 1-channel 2

interaction corresponding to the channel averaged
proton-proton repulsion. The interplay (i.e. , dif-
ference& of these two terms is responsible for
binding (or nonbinding) in the present approxima-
tion.

This latter remark is extremely important. By
construction, the correction to the energy of the
"free" channel state, which is just the ground-
state energy of hydrogen, is given by M(R) = D,(R).

or in operator form,

EIP,&=If, lt,&+I'. (E ff,) 'I, IP,&-, (63)

with a similar result for
I g,&.

Equation (63) is perhaps more suggestive than
Eq. (62). First, we see that when Ig, & is approxi-
mated by

I g,), the correction to the result E
—= (P, IH, Ig, & is of se:-, ond order in the channel inter-
actions, with a bound-state propagator. This is
analogous to the result involving Lippmann's iden-
tity" for the E& 0 ease, except of course that when
E&0, I.ippmann's identity cannotbe directlyused,

In terms more appropriate to the perturbation/var-
iation calculation of the preceding subsections, the
zeroth-order approximation to the energy is de-
termined from a pair of noninteracting H+ H' sys-
tems. Hence, to obtain the correct dissociation
energy, we must produce an accurate evaluation
of (g, Ir, ' —R 'Ig, &, i.e. , the approximation Ig,.&

= IP,.& of (55) must give a relatively accurate es-
timate of the preceding matrix element. As shown
in Fig. 6, the two terms of (61) contributing to
D,(R) in the present calculation are each of large
magnitude for R in the region 1~R~ 7, exactly as
in the case of the perturbation/variation approach.
We find for example that the two terms of Eq. (61)
have the values -10.5 and 7.44 eV for R = R„.

Hence, to obtain D,(R) shown in Figs. 4 or 5,
where the magnitudes are small for 1—R —7, it is
necessary to take the difference of two relatively
large numbers. In order for D,(R) to be accurate
in this range of R, each of the two large magni-
tudes must therefore be accurately determined.
It is evident that the arrangement channel method
produces this result, and more accurately than in
the perturbation/variation approach. As a, conse-
quence, we believe that Eq. (56) represents an ac-
curate approximation to I4'&, although only if it is
regarded as a channel-component approximation
and not as either the usual variational or degen-
erate-perturbation-zeroth-order wave function.
We shall enlarge on this comment iri Sec. D below.

Apart from noting the relatively high accuracy of
the results, we remark on two other points. First,
we see that the accuracy of R„ is a dynamical con-
sideration and is not dependent on the accuracy of
the approximation to I4&. Second, since relatively
crude input [Eq. (55) ] has led to relatively quite
accurate output, we may ask why this has oc-
curred. Qne way of understanding of this point is
as follows. Returning to Eq. (57) we may solve
for a, in terms of a„yielding

(n„(1) I ~, I vi„(2)& (ng.(2)
I &g Ing. (1)&

Z(R) —e~,
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(' TO 22.4 eV
AT R =ac

& l&i& =If' l&&&+,.„I'A@-ff~) 'I'| I&|&

one should not expect that a single state approxi-
mation in each channel will produce a result of Nth
order stability, because it is highly unlikely that
a single state can be a good approximation in a
many-channel situation.

Z. Pertscrbation theory

We first write the H of Eq. (54) in the form

0 R/0
8

—IO—

AT R=aa

(64)=—HO+V .
From (52) and (53), it is clear that H, will bind,
so that introduction of the auxiliary potentials U

of Eqs. (28) and (29) is unnecessary. In fact, the
unperturbed solutions I)(& of H, contain just the
eigenstates of hydrogen. Since we seek the ground
state of H; we choose Ig"'& of (31) to be

, /(n, .(1)&
I( ) Ix,.& ~I( (,)&

(65)

so that E"'=e„. From Eq. (32), the first-order
correction to Z"' is given by

E"'= &x,.I
l" lx,.&

FIG. 6. R dependence of the various contributions to
De(R) shown in Fig. 5. Curve (a) is the channel averaged
electron-proton attraction 2e» (q&, (i)~ r&'~ q&, (2)&, while
curve (b) is the channel-averaged proton-proton repul-
sion -2e„(q,~(i)iR '~ 7)is(2)).

since no approximation Ig, & can be expected to
correspond to the eigenvalue of interest. Never-
theless, since the "interaction" acts twice, the
result could be more accurate than obtained from
ordinary perturbation theory. The assumption
here is that a sufficiently accurate single state
approximation to

I g, & leads to a value of E rela-
tively stable against departures from this approx-
imation, so that (63) behaves like a second-order
accurate result. Furthermore, we note that both
(62) and (63) involve the eigenvalue E nonlinearly,
in a form analogous to the second-order Brillouin-
Wigern perturbation result. As noted for example
by Baym, "solution of such @ nonlinear equation
may provide a much more aug,;urate result than
using ordinary Rayleigh-Ritz perturbation theory,
and is clearly doing so here. We also note that
while Eq. (63) is generalizeable in the case of N
channels to

-=M(R), (66)

3. Variational method

We shall apply the procedure described in sub-
section 3c of Sec. II8 to the H, system using as a
trial vector the quantity

I P,& given by

(,(R„(1)&)

( a, lt)„(2)&)
' (67)

Then the trial state vector I4,& is

(14,&)
(68)

where M(R) is given by Eq. (55). Hence, to first
order,

S(R) = ~„+i(f(R),

which is just the form found in the preceding sub-
section that led to bonding. Clearly, the same
values of R„, E(R„) and D, result, thus establish-
ing that first-order perturbation theory and the
crudest form of the projection method lead to iden-
tical bonding results.
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with

Ie,&=a, Iq„(l))+a, I)7„(2)), (69)

where

N(a„a„R)= (a,'+ a,')(e„+(q„(1)I V, I q„(l}))

+ 2a,a, [e„b,+M(R) ]

the same as in the preceding sets of calculations.
The quantities a, and a, are the variational param-
eters to be determined from Eqs. (41}, (42), and
(44) ~sing If) = I(i& and IF) = le~& This must yield
(Sec. IIB4c) the results of Sec. IIIA.

Using the preceding identifications, and substi-
tuting into I [ I g,&] of Eq. (41), we find

I[I' )] ( 1t 2) )

presented by (54). The method used is similar to
that described elsewhere for the identical particle
problem. "

Written out in detail, (54) becomes

H, IC,&+ V. IC.&=El&,& (71)

H. I&2&+ ~, 14.& = E
I &2& .

P»H.P»=H, and P„V&P„=V„, j4k.
Applying +P» from the left to both sides of (72),
and using the above results, we find

+ H, P„g,& +P» V, I g,&
= ~EP„

I (,&, (73)

Let P» denote the two-particle transposition oper-
ator, which changes label 1 into 2 and vice versa.
From (52) and (53) it follows that

and

D(a„a„R)= a,'+ a,'+ 2a,a,h,
while (71) can be reexpressed as

I 4 )+(P V)(+P 21)1)&&)=EI4 &

with M(R) given by Eq. (58), while H and its parti-
tions are given in subsection 1 above. The over-
lap (7i„(1)Iq„(2)&= a(R) is given by Eq. (51), while

(q„(I) V, )7„(1)&= (q„(2) I V, Iq„(2)&, is just the
quantity o( of Eq. (49).

From Eq. (45} it is straightforward to derive the
result that a,'= a', or

Q~ = +02

as expected. This then leads to two solutions for
I [Iy,&]=-E'(R):

c +M(R)
1

(7o)

C. Symmetry effects

Thus far we have not taken account of the iden-
tity of the two protons in the H,' molecule. We now
consider this symmetry property, showing that it
can be used to decouple the pair of equations re-

If we now recall the identity of P of Eq. (50) and

M(R), we see that Eq. (68) is identical to the re-
sult obtained for the energy using either degenerate
perturbation theory' or the variational method" as
applied to the Schrodinger equation and discussed
in subsection A of this section. That is, Eq. (70)
leads to R„=2.50a, a.nd E'(R„)= -15.98 ey, which
is of course an upper bound to the energy. This
exemplifies the general result (II B4 c) that the
many-body variational procedure of Eqs. (41}-(44)
leads to precisely the same results as the usual
Rayleigh-Ritz procedure. Since

I P,& was chosen
to have such simple form, it is perhaps not too
surprising that the diagonalization procedure of
Sec. 8 1 produces a more accurate result.

~here we have repeatedly used P»P» =1 .
On adding (V3) to (74) we find

(H, +P„V,) It'&=Elf'&

where

(75)

(76)

Equation (V5) is equivalent to the pair (54}, except
that the effect of proton identity has been made ex-
plicit. This is obvious from the presence of the
exchange term P»V, . Had we initially introduced
the spin of the protons, then the + (-) factor could
easily be shown to correspond to singlet (triplet)
spins, exactly as in e +II scattering. "'" In fact,
this reduction of (51}to (73) is identical to the
analogous procedure in the positive energy case,
except that when E&0, one cannot make use of
Lippmann's identity" G&(+)(V~ —V&) = 1 —5@ to
show that a perturbative solution to (V3) contains
matrix elements of V„since Lippmann's identity
is not valid in this ease, as noted above.

The presence of H, in (75) implies that
I
g'& is to

be expanded in eigenstates of the k, operator [see
Eqs. (2) and (3)]. In the present case this means
that we have (h, =H, )

Noting that

P„V, lq((1»=V. I& (2»

IP'&=pa: In.(i)& . (77)

Substitution of (77) into (75) eventually leads to the
infinite set of coupled equations

(e.—z(~)]a'. +Q (n.( )l )«,Jln.(()~l
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we finally find

[~.—&(&)]".~Z «.(I) lv. l~o(2)&a =0 .

(79)

where M(B) is given by (58). It is clear that (79)
is precisely the same solution for E' as obtained
by solving the projected pair or Eqs. (57).

Not only do we find values for E'(8), we can also
recover the original components lg, & and Ig,). We
have

Solving these equations for lg, &, j =1, 2, we get

and

Ip, &=(a'+a ) Iq„(j)&==a, Iq„(j))

P„
I P,) = (a' —a )

I
q„(j)& . (80)

But since P»P» =1, (80) becomes

I P,) = (a' —a ) I q. (2)) -=a,
I q„(2)),

thus recovering the equations for the
I P,& used in

the original projection approximation of subsection
B1. Furthermore, the requirement that P» IC'&

=+ IC) leads to a, =+a„ thus completely determin-
ing the solution for IC ).

In addition to the projection calculation just
noted, one could also carry out perturbation and
variational calculations, or could even attempt to
solve (75) directly using confocal elliptic coordin-
ates, although in the present case this would sim-
ply duplicate the extensive and detailed numerical
work already in existence. '4 Our point, however,
has not been to consider a further set of calcula-
tions that would duplicate existing results, but to
indicate how the effects of symmetry reduce the
pair of equations (54) to a single equation with an
exchange term. It is clear that similar techniques
are available for general identical particle prob-
lems.

Solution of this pair (+) of equations will yield the
eigenstates and eigenvalues of the H, system in
Born-oppenheimer approximation when V, is given
by Eq. (53).

To make contact with the work of subsection B1,
we truncate the expansion (77), limiting n to js
only [i.e., we use the projection technique of Sec.
11B4 a, with P, =

I q„(j)&{q„(j)I]. Then (78) be-
comes

& ~
—&(I~)+ « .(1)

I &. I ~..(2)& =0

D. Conclusions

l. Interpretation of the wave function

In Sec. IIIB1 we concluded that the wave func-
tion (56), identical to the perturbation/variation
wave function (48), was a good approximation to
the actual Schrodinger wave function for the H,
system. This conclusion is based on the relatively
high accuracy of the arrangement channel calcula-
tions, as indicated in Table I and Fig. 4. Since
this accuracy is in sharp contrast to that based on
results of a standard quantum-mechanical calcu-
lation using an identical wave function, an explana-
tion of this apparant paradox is obviously required.

We indicated above that the explanation for these
two disparate sets of results is to be found in in-
terpretation of the wave function. Let us consider
the usual approach first. In either the perturba-
tion or the variation method for the Schrodinger
equation, one can write I4'& as a linear combina, —

tion of states centered on each of the protons,
lq (i)). The nonorthogonality of Iq (1)) and Iqz(2)),
o o P, is a well-known feature of such an expan-
sion, and is a reflection of the fact that an expan-
sion of the form I+&=Z [C Iq (1))+D Iq (2))] is
overcomplete. If only a. =1s is retained in the
sum, one obtains a simple model of the system,
but which predicts observables only poorly when a
perturbation or variation calculation, based on the
Schr'odinger equation, is performed. The standard
conclusion is that the simple model is poor. Im-
proved wave functions lead to much more accurate
values for B„and D, , but imply models whose
representation in physical terms is less straight-
forward. Nowhere in any of these calculations
does a description in terms of the different ar-
rangements occur, although one can impose such
an interpretation in light of the results of this
paper.

Now consider the arrangement-channel approach.
In this approach, IC ) is no longer obtained by
solving the Schrodinger equation approximately.
Instead, IC') is approximated by a sum of terms
that approximately solve the 8'-array equations.
That is, one first expresses I4') as a sum of con-
tributions from the various channels, i.e., as a
sum of components along the axes of a nonortho-
gonal vector space, the arrangment- channel vec-
tor space. If approximations enter at all at this
stage, it is through neglect of some channels in
the sum on j in Eq. (5). The procedures for de-
termining the components

I P&) are as discussed
in Sec. IIB, and of course represent a different
dynamics for the system. It is in the calculation
of the

I (&& that approximations are introduced;
these are then reflected back in the final form of
the wave function, since I4'& is given by the sum
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of the (approximate)
~ $,.)'s.

The key to the "interpret:ation" resolution of the
above "paradox" is given in the preceding para-
graph. In the standard quantum- mechanical ap-
proach, the wave function is expanded in some way
and a Schrodinger-like calculation is carried out.
In the arrangement-channel approach, the nonor-
thogonal, channel-vector-space character of ~4)
is introduced first and a well-defined, non-Schro-
dinger-like dynamical procedure is then followed
to determine the observables. Any approximations
are basically introduced for the various channel
components directly. The state ~4) is finally given
by the sum of the various components

~ P&), and at
this stage, the channel nature of ~4) is submerged,
although this nature is evident in possibly different
values of observables. But, w'ithin the context of
the dynamical calculations, the channel components
axe distinguished. Finally, and most importantly, .

we see that while the approximate solution ~4)
does not solve the Schrodinger equation, neither
does the approximate solution ~4''0'). The state
~4) is obtained by one dynamical procedure, and

the state ~4"') by another. Both are approxima-
tions to ~4), and it is clear that the procedure
leading to ~k) is superior to that giving ~4"') be-
cause it leads to more accurate values of the ob-
servables. It therefore follows that ~4) is well
approximated by ~4') in an arrangement- channel
quantum sense, but is not well approximated by
~4''o') in a standard quantum-mechanical sense.
Clearly, it is essential to couple the dynamics
with the ultimate wave function in asking if it is- a
good approximation.

We cannot emphasize the preceding comment
too strongly: in any approximate calculation, one
should not remark on the accuracy of a wave func-
tion alone. One should also note the calculational
procedure and even the observables which have
been used to assess the validity of the approximate
wave function. While one observable may be ac-
curate, another could be poor. The present cal-
culation is a case in point, since it fails to yield
an antibonding energy curve: the nonbinding re-
sult E (R) has a grossly incorrect behavior as
B-0. However, addition of the 2s or 2P, state
does lead to an antibonding solution while main-
taining the bonding one,"as we sgall show in de-
tail in subsequent work.

Since the validity of the channel interpretation
of the wave function is so closely linked with the
accuracy of the observables calculated, a few addi-
tional comments on accuracy are appropriate here.
First, there are theoretical grounds, in contrast
to the technical details of a particular calculation
as per Sec. IIIB2, for anticipating accuracy from
the channel- coupling method. We argue in analogy

to the positive-energy case, as follows. The ex-
act, one- channel scattering amplitude (E &0) can
be calculated either from plane wave matrix ele-
ments of the t operator or from a matrix element
involving the interaction and the exact wave func-
tion." The E &0 ealculational procedure of this
article is analogous to the former procedure. In
particular, low-order on-shell approximations to
the exact two-body channel-coupling transition
operator will lie in between the Born approxima-
tion and the full amplitude, and will contain at
least second-order (rearrangement} Born terms. '
Clearly, plane wave matrix elements of such ap-
proximations could be more accurate than those
of the Born approximation alone. The methods we
advocate here are E &0 continuations of the pre-
ceding and have the same possibilities inherent in
them for producing accuracy as do the E &0 ap-
proximation just noted.

Second, we note that the projection/diagonaliza-
tion technique of Sec. II B4 a is not a variational
procedure. Therefore, adding an extra state into
the projection operators P& of (22) need not give
an improved result. In particular, since the com-
plexity of the calculation rapidly increases with
the number of channels, we should not be sur-
prised if we find anomalies compared to more
standard methods of procedure. For example, we
might find that using the ground states in channels
1 through N, gives good results, adding the ground
states from channels N, + 1 to N, actually worsens
the agreement with experiment, while retaining
only channels 1 through N, but including excited
states in these channels brings improved agree-
ment. Or, we may find that keeping ground states
leads to real eigenvalues only, while the addition
of excited states leads to both real and complex
eigenvalues. The latter must be rejected on the
grounds given in Sec. II B4, below Eg. (21).

2. Future applications

The preceding calculations are sufficiently ac-
curate for us to believe that the general theoreti-
cal methods advocated in this paper can have wide
applicability in nonrelativistic quantum mechanics.
Two broad areas of interest are immediately evi-
dent: molecular physics and nuclear physics, al-
though the implication of the preceding section is
that the reduction of a many-channel labeled-parti-
cle problem to a single- (or few-) channel problem
when identical particles are involved may make
the method useful in atomic physics also.

It is of particular importance to note that the
strength of the general method lies in its ability
to predict obsenrables such as R„and E'(R„) for
the H;(E &0) case, or phase shifts and scattering
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lengths for e +H scattering, "'"and not necessari-
ly to give better wave functions than would be (or
are} obtained from more traditional calculations
involving the Schrodinger equation. Indeed, in the
H', case, the same approximation to ~C ) is ob-
tained from all the calculations discussed in the
preceding subsections. The basic point is that by
writing ~4) as a sum over channel components,
with their concomitant non-Hermitian matrix
(channel) equations, rather than simply expressing
~C') as a sum of nonorthogonal basis functions (the
two-center functions for the H; case), one then
has a new dynamical procedure for calculating
which emphasizes throughout the channel struc-
ture inherent in many-body systems.

Naturally, for those cases where extremely ac-
curate numerical calculations have been or can be
done, we do not claim that the present method will

lead to even better results. Rather, the channel-
component method seems best suited for those
systems where, because of the complex structure,
highly accurate numerical calculations cannot be
performed. These include many nonrelativistic
quantum systems. It will be interesting to dis-
cover if the channel-component method will con-
tinue to yield reasonably accurate results. So
far, the results are extremely encouraging, - par-
ticularly as indicated by recent calculations on the
H, molecule. "
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