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wave functions for the ground state of the lithium atom~
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Radially correlated wave functions for the ground state of the lithium atom are constructed using a variant of
the integral-transform or generator-coordinate method. The best of these is estimated to be close to the radial
limit.

I. INTRODUCTION

We have recently demonstrated" that a suitable
variant of the integral-transform or generator-
coordinate method can be used to construct com-
pact and accurate wave functions for few-electron
atoms. A set of such wave functions has been pre-
sented for the ground' and four lowest excited'
states of the. heliumlike ions.

In this paper we apply these methods to a three-
electron system —the ground state of the lithium
atom. For the sake of simplicity we restrict our-
selves to a superposition of configurations ansatz
in which the configurations are built up from
spherically symmetric orbitals. We refer to such
wave functions as purely radially correlated (PRC)
wave functions. The best such wave function is the
radial limit wave function. The radial limit has
been attained for the helium atom by Schwartz'
and Bunge. ' The best available PRC wave function
for the ground state of the lithium atom is that of
Hameed et a/. ' Better ones are given in this pa-
per. It is argued that our best wave function is
close to the radial limit.

II. THEORETICAL DETAILS

We employ the integral-transform method as de-
sc'ribed in an earlier paper' (hereafter referred to
as I). Our variational ansatz for the 'S,&, ground
state of the lithium atom is

g, =6 '~'[e —(12) —(13) —(23) + (123) +(132)],

and 4k is a generator function given by

4,(r„r„r,) = exp( —o,~r, p„r, -y~r, ) -.

(2)

(3)

Sy and S, are spin functions which together span
the spin space in which 8 =2 and S, =2 . They can
be chosen to be given by'

((x„x„x,) =(4w) '~'A, g C„(c~S,+dqS,),
k= 1

where x; = (r;, g, ) is a. combined space-spin coor-
dinate for electron i. In the above 3, is the three-
particle antisymmetrizer,

S,= ~(r,)P (g,)o.(g,) P(g—,)~(g,)~(g,)

S, =2otnP —Pno. —@PE, (5)

where n and p are the usual one-electron spin
functions. The linear coefficients fc~] and (d~) are
to be found by solving the secular equations.

If both the (cg and the Id~) are thus determined,
then we have included both spin functions and we
call the resultant wave function a W'-type wave
function. If we set all the d„'s equal to zero and
determine the (c„]variationally, then we have in-
cluded only one spin function and we call the re-
sultant wave function a W'-type wave function.
The nonlinear parameters are chosen to be the
lattice points of a pseudorandom number quadra-
ture formula (scheme P in the notation of I).
Specifically the nonlinear parameters are gen-
erated by the following equations:

~, =rl [(A, —A. ,) (k(k+ 1)&2/2 ) +A. ,],
Pq =@[(B,—B,)(k(k+1)W3/2) + B,],
yq =ri [(G2 —G,) (k(k+1)v 5/2 ) +G,],

(6a)

(6b)

(6c)

for k =1, 2, . . . , N. In the above (x) is defined to
be the fractional part of x. The parameters Q],
A 2 8 1 Bg GI and 6, define a parallelotope in
o. -P-y space and are chosen variationally to min-
imize the energy. Since we are dealing with bound
states, we impose the restrictions that

(Va)

(Vb)

min ~z &0,

min pk &0,
k

mingy&0 . (Vc)

In principle g =1 but in practice it is chosen to en-
sure that our wave functions satisfy the virial
theorem (see I for a fuller discussion).

The ansatz of Eq. (1) has, to our knowledge,
never been used previously. The ansatz of Em-
pedocles' is the most similar to Eq. (1) of all those
that we have found in the literature. Note that
Empedocles used the integral-transform method
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with a number-theoretic quadrature formula; The
numerical methods we use for optimizing the gar-
allelotope parameters and solving the secular
equations are those described in I. 10 25

TABLE I. Parallelotope parameters, energies and
Fermi contact parameters for Li. All quantities are in
atomic units.

III. RESULTS AND DISCUSSION

W'-type wave functions with N = 5, 10, and 25
terms were constructed for the ground state of the
lithium atom. The parallelotope parameters and
the energies are given in Table I. Next we built
W'-type wave functions with N=5, 10, and 25
terms. Here we used the parallelotope parameters
from the corresponding W'- type wave function with
the same ¹ However, we reoptimized the linear
coefficients fc~) and(d~) as well as g for the W'-

type functions. g values and energies are listed in
Table I. For each of these wave functions we also
computed the Fermi contact parameter' defined by

3

f =4m (Q 5(r)(r, ,),
where o, is a Pauli spin operator and the angular

Z$

brackets denote an expectation value. f is clearly
proportional to the spin density at the nucleus and
governs the hyperfine structure of atomic 8
states '"

T. he f values are also listed in Table I.
All quantities cited in this paper are in atomic
units.

A-listing of PRC wave functions for Li available
in the literature has been given by Empedocles. '
These and a few others are listed in Table II. A

glance at this table shows that four of our func-
tions, the N = 10 lV', the Q = 10 5"', the N = 25 W',

and the N=25TV' functions, give lower energies
than the best of the previously available functions.
The best energy obtained by us is the N =25 8"
function energy of -7.448312 5. To our knowledge,
this is the best energy ever obtained for the
ground state of the lithium atom from a PRC wave
function. From a study of the convergence pat-
terns in Table I we estimate that the radial limit
energy is no lower than -7.4486. The above esti-
mate is supported by the facts that an e, extra-
polation" of the three W'energies yields
-7.448 583, and a similar extrapolation of the
three TV' energies yields -7.448460. We therefore
feel that the %=258"function is close to the rad-
ial limit wave function.

Recall that the total correlation energy is de-
fined" to be the absolute difference between the
exact and the restricted Hartree-Fock energy.
Similarly the radial correlation energy is defined
to be the absolute difference between the radial
limit and restricted Hartree-Fock energy. The
exact" nonrelativistic energy of the lithium atom
is -7.478069 and the restricted Hartree-Fock en-

A(
A2

B)
B2
G)
G2

q(W~)
—E(W~)
f(W~)
n(W')
-z(w&)
f(W~)

1.5714
3.0758
3.1468
3.3255
0.6504
0.7311
1.000 664 88
7.446 337 8
1.618
0.999 817 38
7.446 557 7
2.796

2.3051
4.2294
2.4344
3.7179
0.6451
0.7049
0.999 994 44
7.447 734 0
2.222
1.000 170 23
7.447 930 2~
2.700

1.2276
4.0671
2.9534
5.9102
0.3296
0.8887
0.999 986 04
7.448 262 0
2.825
1.000 003 50
7.448 312 5
2.791

TABLE II. Comparison of energies of various PRC
wave functions for the ground state of the lithium atom.

Source Reference —E (a.u. )

Froese-Fischer
N=5 (W~)

N=5 (W2)

Weiss
Brown-Fontana
Heikes-Gallup
Hardcastle-Keown
Lunell
Empedocles
Goddard
Kaldor-Harris
Qoddard"
Kaldor-Harris "
Musher et al.
N=10 (W~)

N =10 (W2)

N=25 (W~)

N=25 (W2)

11

12
13
14
15
16
7

17
18

5
5

7.432 727
7.446 337 8
7.446 557 7
7.447 20
7.447 22
7.447 33
7.447 485
7.447 536
7.447 54
7.447 56
7.447 565
7.447 703 4
7.447 707
7.447 707 6
7.447 734 0
7.447 930 2~
7.448 262 0
7.448 312 5

This work.
"Recomputed by Hameed et al. (Bef. 5).

ergy" is -7.432727. Thus the total correlation
energy is 0.045342. The correlation energy re-
covered by our best PRC function is 0.0155855
or 34.4/q of the total correlation energy. From our
estimate of the radial limit energy we estimate the
radial correlation energy to be no more than
0.015873 or 35.0%%uq of the total correlation energy.

Clementi et a/. "proposed a partitioning of the
radial correlation energy into the radial promo-
tional correlation energy and the radial nonpro-
motional correlation energy. Their definition is
inseparably linked to the configuration interaction
(CI) method. They define the radial nonpromotion-
al correlation energy to be that part of the radial
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correlation energy that can be obtained by a CI ex-
pansion that includes only the restricted Hartree-
Fock (RHF) determinant and determinants ob-
tained from it by substitution of one or more RHF
orbitals by spherically symmetric orbitals with
the same nodal structure as the orbitals being re-
placed. The remainder of the radial correlation
energy is called the radial promotional correla-
tion energy. As Clementi et a/. point out in a
footnote, "this partitioning is meaningless because
the configurations yielding the nonpromotional
part of the radial correlation energy can always
be expanded in an orthogonal set. We wish to
yoint out that the reverse is also possible. All our
orbitals have the same nodal structure and hence
all the radial correlation energy that we have ob-
tained is nonPxomotional. Clearly the radial limit
is attainable with our basis. This shows that it is
also possible for the radial correlation energy to
be considered totally noePvomotiana/. Although
the above discussion shows that this sort of par-
titioning is ill-defined from the-point of view of
analysis of the correlation energy, it could, of
course, be useful in an operational sense; that is
useful in building wave functions by conventional
CI techniques.

An enormous body of literature has grown up
around the calculation of the Fermi contact pa-
rameter. References to this literature may be
found in certain articles. ' ' '~ A detailed ana-
lysis of our f values is beyond the scope of this
work. We restrict ourselves to two brief coin-
ments.

Our first comment concerns the quality of our f
values. The RHF value" of f is 2.093 and the ex-
perimental value" is 2.9062. Our N =25 functions
yield&' values of 2.835 and 2.791 for W' and W'

types, respectively. An examination of the com-
parative studies of Lunell, "Larsson and Smith, "
and some more recent f values""""'" shows that
our values are reasonably good in the sense that
many other wave functions give poorer values.
The Hylleraas-type function of Larsson" and the
associated best-overlap and first natural determ-
inants'4 and perhaps the open-shell three-deter-
minant function of Lunell" are the only functions
that give markedly better values of f than our Ã

=25 functions. This supports Ishida's claim" that
a wave function with adequate radial correlation
should yield a decent f value.

Our second comment concerns the basis set de-
pendence of our f values. Table 1 shows that when
N is small (5 or 10) the inclusion of both spin func-
tions is essential in obtaining a decent f value.
Larsson" found similar phenomena for Hylleraas-
type functions. For %=25 the f value is virtually
the same for both W'- and W'-type functions. A
good discussion of the use of one as opposed to two
spin functions has been given by Slater. ' Shanks

e, extrapolation" of the f values given by the W'-

type functions yields 2.747. This fact and an ex-
amination of the convergence patterns in Table I
lead us to estimate the radial limit f value to be
2.80 y 0.05.

IV. SUMMARY

Our 25 term W'-type function gives an energy of
-7.448 312 5 which is the best energy ever ob-
tained from a PRC wave function for the ground
state of the lithium atom. It also gives a decent
value (2.791) of the Fermi contact parameter. We
estimate that the radial limit energy is no lower
than -7.4486 and that the radial limit f is 2.80
+ 0.05.

These results are rather encouraging. We feel
it would be worthwhile to construct a Hylleraas-
type function from a basis set obtained as the ten-
sor product of our basis set and some explicit
powers of interelectronic coordinates. Hopefully
the parallelot;ope parameters need not be reoyti-
mized.

For other many-electron systems explicitly cor-
related integral-transform wave functions are not
feasible because of the tremendous amounts of
computer time that would be required. A retreat
to superposition of configurations and even Har-
tree-Pock functions mill be necessary. In this
connection the ideas of Somorjai and Grimaldi"
and Kukulin" may prove useful. The "even-tem-
pered" scheme of Raffenetti and Ruedenberg"
should also be studied for possible adaptation in an
integral-transform context. We feel that such
studies would be worthwhile.
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