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A new method is proposed to approximate the exchange-correlation potential in the Hartree-Fock equations
for a many-electron atom. The exchange-correlation potential is separated into a self-interaction term and a
characteristic exchange term. The self-interaction term is evaluated exactly, while the exchange term is
approximated in a manner similar to Slater’s statistical average method using a previously obtained theoretical
exchange parameter a. In the present method different potentials are used for different spin orbitals instead of
the average potential used in the Hartree-Fock-Slater (HFS) scheme. The separation of the exchange-
correlation potential into a self-interaction plus exchange terms removes all the major defects of the HFS
potential, such as the wrong asymptotic behavior at large r values and the underestimation of the self-
interaction. The accuracy of the present method is demonstrated by calculations on the first-row transition-
metal ions Cu* and Mn'2 The results for exchange potentials, one-electron eigenvalues, spin density
distribution, and contact hyperfine interaction agree excellently with Hartree-Fock values. The relative
importance of the self-interaction and exchange terms for various electron shells are discussed.
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Computationally, the method is as simple as the Hartree-Fock-Slater scheme.

I. INTRODUCTION

The practical need to simplify the exchange po-
tential in the Hartree-Fock equations has been
recognised for a long time. The major step in
this direction was taken by Slater® in 1951, by
introducing the statistical exchange approxima-
tion following the work of Dirac.? Since then,
this approximation has been extensively used in
atomic, molecular, and solid-state calculations.
In this section we briefly discuss Slater’s method
and point out its major defects. In Sec. II, we
introduce a new approximation for the exchange
potential which is free of all the major defects
of the Slater method but is equally simple to apply.
The method is demonstrated in Sec. III by calcula-
tions on the first-row transition metal ions, Cu*
and Mn*? and the results are compared with those
from the Hartree-Fock (HF) and Hartree-Fock-
Slater (HFS) methods.

The Hartree-Fock equations for a many-elec-
tron atom may be written (in Rydberg units) as®?,

i+ V o)+ V gm0 i (7) = €ui(7), (1)
where the u;’s are the spin orbitals with occupancy
ng; f,=-V%-2Z /7, and V (7) is the Coulomb po-
tential
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7
‘with g,,,=2/|7=7"|. Vgyg; is the exchange-cor-

relation potential®® for the electron in the ith spin
orbital and is given by .
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where Z\/’ is only over spin orbitals of the same
spin as u;.

It is advantageous to rewrite Eq. (3) with the
exchange-correlation potential separated into a
self-interaction and the true exchange potential

Vuri() = Vari () + Ve (1) , (4)
with ,
i) =, 107V, v (%)

Vit = - 2 (n, furoms o)

i#i
Xt ; (V) (V)G dy’) / wF(r)uy(v) .
| (6)
Here V §5;(7) is the self-interaction potential which
is incorrectly included in the Coulomb term in
Ed. (2); V%;(¥) is the actual exchange potential.
In the HFS method, Eq. (1) is greatly simplified
by replacing the various Vyyp; potentials by a
single average potential; for up-spin electrons
this is
Vyst(7)=- scapl’/f"(y) s (7)

with a similar expression for the down-spin elec-
trons.
In Eq. (7),

C=(3/4m)V/3,
(8)
py(M) = 2 nack () ,

and « is an exchange scaling parameter, usually

determined empirically for each atom or ion.
The author and colleagues®* have recently shown

that this empirical nature of the V 3¢ potential
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can be easily removed. Using the properties of
the Fermi hole, it was shown that this parameter
for an up-spin electron is

_ 8 (41’(2)1/3 1/n’+é (9)
=g \T) Wy b

where »,; is the number of up-spin electrons. A
similar expression holds for «,. If desired, an
average a may also be obtained as

a=myay+n,a,)/ (ny+n)). (10)

These average a values were computed for all
atoms in the periodic table and were shown to be
in close agreement with the available empirical
values.

The exchange-correlation potential of Eq. (7)
has more serious defects. The value of the po-
tential Vyyy; of Eq. (4) usually varies by a factor
of 2 for various spin orbitals ¢ at a fixed value of
7. Therefore, its replacement by an average as
in Eq. (7) is only a very approximate treatment of
the exchange effects in atoms. This has been
shown quantitatively for the Cu* ion by Hartree.®
For a given spin orbital, Eq. (7) gives an ex-
change-correlation potential which is too large at
some 7 values and too small at others.

Another major defect of the average potential
Vxs(7) is its incorrect behavior at large » values.
In the Hartree-Fock method, the exchange-cor-
relation potential has the property

YWaupi(¥)=~ -2 as r—-, (11)

because for the self-interaction term we have

YVip(7) =~ -2 (12)
and for the exchange,
vV () =0 as r—o, (13)

In contrast, in the HFS scheme,
rVgs(¥) =0 as r— (14)

That is, Vyg fails to correct for the electron self-
interaction at large 7 values.

To overcome this defect, an empirical correction
due to Latter® is usually made to the total potential
VH FS

rVyps(?)=-2(Z ~N+1) for r=v,, (15)
where 7, is determined by the condition
¥ Vurs(¥e)==2(Z-N+1). (16)

In Eqgs. (15) and (16), N is the total number of
electrons. Results using the Latter correction
are generally poorer than those obtained*without
this correction.”® This is to be expected for the
following reasons, pointed out by Coulson and
Sharma.® First, the Latter potential has a dis-
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continuous slope at 7, and consequently produces
a nonvanishing surface-charge density on the
sphere separating the two regions » =7, and v<7,.
This is distinctly unphysical. Secondly, the po-
tential is uncorrected for »<7,. Further, the Lat-
ter potential is not variationally derivable from
the expression for the total energy of the system,
as pointed out by Wilson et al.” Finally, there is
another flaw in introducing the Latter correction
to the HF'S potential. As will be shown in Sec. III,
Virs(7) underestimates self-interaction not only at
large 7 values, but also at intermediate values.
Consequently Vygs(7) is generally smaller than the
correct potential. Therefore, the Eqs. (15) and
(16) introduce an 7 * potential at too small an 7
value (7,). From the Poisson equation it follows
that the charge due to (N - 1) electrons outside 7,
is zero. Thus the use of the Latter potential in
the HFS scheme leads to an unphysical shrinkage
of the atom.

II. DERIVATION OF THE NEW ONE-ELECTRON
EQUATIONS

The present approximation to the HF potential
will be designated HFG.
The total energy of the atom or ion can be written

' exactly as

(EY= 2o ny wl)fyuy(r)dr
+3 f p(Mp(r')g,, . drdr’
-3 f py(NU§*(r) ar.

_1 fp‘(y)vfxc(y) ar, m)

where U :"C(af) is the exchange correlation potential
at point » for up-spin electrons and similarly for
U (). As in Eq. (4) U§* can be separated into
the self-interaction and exchange parts

UF(r)=U§(»)+ Ur) . (18)
The self-interaction term is given exactly by

Uf) == 2t )

3

X [n k" Yus(r")g dr')/p,(v) . (19)

In the present HFG scheme, this term is evaluated
without any approximation.
However, the HFS scheme corresponds to ap-
proximating U§*¢ as,
Uf(r)=-9Cap}3(r) . (20)

A similar approximation can be introduced in
the HFG scheme for the Uf*(») part of the ex-
change-correlation potential in Eq. (18). For this
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purpose we define

Py (1) = ;Hn,ur(v)u,-m (21)

as the density of electrons of up-spin at point 7,
excluding the density of the electron in spin or-
bital ;4. Now, as in Ref. 4, consider a Fermi
sphere centered at 7, its radius being determined
by the total density p,(7) and the condition that
the Fermi sphere contains a unit electron charge.
It follows that the exchange-correlation potential
(which includes the self-interaction) at the center

J

of the sphere is proportional to p}/3(r), whereas
the exchange potential (without self- interaction)
is proportional to p;, 4 (*)py3(#). Accordingly,
we set

U (r) = (—90012; Py (M) §¥3(7)
Xt ) [or ). 22)
Here « is given by Eq. (9). Use of Egs. (18), (19),

and (22) in Eq. (17) gives, for the total energy in
the HFG scheme ‘

(EHFG)= 2 n, [ub(rVyus) dr+ [or)o(rs,,. dr ar - +f ;niu;"(r)ui('r) Rl (Vs \g, e dr

- QC;’ f Ep,-,e(V)p;2’3(V)n;u;“(1’)ui(7) dr
it

—% ;nju;!‘ (P (X Yu(v')g,,. dv v’ ~ QCTaL _[ ;pj, LN PR (ruy(v) dr (23)

The variational procedure making the total energy
EHFG stationary with respect to arbitrary varia-
tions in each of the spin orbitals subject to the
orthonormality constraints on the «;’s, leads to
the following set of one-electron Schrodinger equa-
tions for the u;’s and corresponding eigenvalues
€;’s:
Ui+ V) + Vipair (1) + Virait @)y (1) = €uiy (),
(24)
with a similar equation for down-spin orbitals.
Here V(r) is the Coulomb potential of Eq. (2).

Viircit(7) is the self-interaction potential for the
ith-spin orbital given by

Vit () =ns [uly 07y ()0 A7 (25)
and V§%se;4(7) is the exchange potential given by
Virait(7)

-9Ca -
=— ’<2p.~:1(7’)m2/3(1’)

-507%°0) 2; naud(r)uy (r)ps. f("’)) :

(26)

The terms on the right-hand side of Eq. (26) arise
from the differentiation of the fourth term on the
right-hand side of Eq. (23) with respect to «;. Note
that in regions where p;, ~p;, where self-inter-
action is not dominant, the assumption that p; has
the same value for all spin orbitals of the same
spin, reduces Eq. (26) to the same form as Eq. (7)
of the HFS method. Such assumptions are un-
necessary, since the terms in Eq. (26) can be
easily evaluated.

r

Equation (25) represents the one-electron equa-
tions of the present HFG method. Note that the
electron in each spin orbital has a characteristic
exchange-correlation potential, as in the HF meth-
od and unlike the HFS method. All the disadvan-
tages of the Slater averaging procedure are thus
avoided,. while the simplicity of the HFS scheme
is retained. Further, since ¥V pg;(7) = -2 and
V% () =0 as -, the correct asymptotic
behavior of the potential at large » values is en-
sured and there is no need for Latter correction.
Computationally, Eq. (24) is as simple to solve as
the corresponding HFS equation, and we have no
new integrals to evaluate.

The correct asymptotic form for the exchange-
correlation potential at large values of 7 is also
obtained in a modification of the HFS scheme pro-
posed by Liberman.!® In this method, the atom is
arbitrarily divided into two regions of high and
low densities and the free-electron gas exchange-
correlation is treated differently in these regions.
Apart from the arbitrary nature of this division
and the lack of explicit consideration of self-
interaction in the high-density regions, this meth-
od has the additional defect that the potential is
discontinuous at the boundary between the two
regions. Cowan,'’ on the other hand, has pro-
posed a potential in which the self-interaction is
explicitly evaluated as in the present HFG scheme.
But the exchange part is approximated by an em-
pirical function of the density containing a few
arbitrary constants. A more serious defect of
Cowan’s potential is that it is not variationally
derived from the total energy expression. The
approximation suggested by Lindgren'2? also eval-
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uates the self-interaction exactly, but the ex-
change part is expressed by

V() = = 2(6/mY3{[p4 )20y () - s 4 (1) 13}
27)

in the units and notation we are using. This is an
approximate expression for the exchange potential
for afree-electron gas.!?* Note that Eq. (27) is
quite different from the corresponding expression
Vi%si> Ed. (26) of the present method. The latter
has been derived not from the free-electron model
but by considering the potential produced at the
center of the Fermi-hole by the charge distribu-
tion from which the electron under consideration
has been removed, together with the necessary
condition that the total exchange-correlation den-
sity is equal to unity. Another significant differ-
ence between the two exchange potentials is that
in Vs we have incorporated the theoretical ex-
change parameter a. This is desirable since the
free-electron gas exchange is not strictly applic-
able to atoms.®>® Thus Eq. (26) may be thought of
as combining the virtues of these various approxi-
mations to the exchange potential while avoiding
their shortcomings.

In the HFS method, if it is assumed that the
total energy is a continuous function of #;, then
the eigenvalues are related to the total energy by,%¢

9( EHFS)
o, Cumsi- (28)

13
In the HFG scheme also, under the same assump-
tions,

3( EHFG)

on, = €HFGi * (29)

This is easily shown by differentiating Eq. (23)
with respect to #; and comparing the result to
that of multiplying Eq. (24) by «} () on the left-
hand side and integrating. Such a relation does
not hold the Hartree-Fock energy and eigenvalues.
This is often stated®? to be the reason for the large
difference obtained between the eigenvalues in the
HF and HFS methods. This is not true. In the
HFG scheme, relation (29) holds and at the same
time eigenvalues obtained are in good agreement
with HF values (see Sec. III). The reason for the
disagreement between HF and HFS eigenvalues is
that eigenvalues of the Schrddinger equation are
determined mainly by the depth of the potential
.well. It can be shown (Sec. III) that in the HFS
method the exchange-correlation potential is too
positive due to underestimation of electron self-
interaction. This leads to too positive eigenvalues.
On the other hand, in the HFG method, the ex-
change-correlation potential is very close to the
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HF value and hence the good agreement between
€xre; and €;p; values. These facts are quantita-
tively discussed in Sec. III.

A word of caution about Egs. (28), (29), or their
equivalent in the hyper-Hartree-Fock method?®® is
in order. These equations are obviously derived
assuming that the total energy is a differentiable
function of #;. However, it can be shown'® that
the admittance of non-integral »; values leads to
serious errors in total energy, eigenvalues and
other properties due to an incorrect counting of
the number of pair-wise electron-electron inter-
actions in the expression for the total energy.
The correct expression to be used for nonintegral
n; values and the consequences of using the in-
correct one will be discussed in a forthcoming
communication.'®

III. APPLICATION TO FIRST-ROW TRANSITION
ELEMENTS
The computer program to solve Eq. (24) was
written by the author by extensively modifying
the original Herman-Skillman program.'* The

. program performs spin-polarized HFG calcula-

tions. The time required per run is of the same
order as the Herman-Skillman program.

The HFG results for the first-row transition
elements, Cu* and Mn*? for which extensive HFS
and HF results are available for comparison
are discussed below.

A. Eigenvalues and potentials for Cu* ion

For both HFG and HFS calculations reported
here, the theoretical o value obtained from Eq.
(9) was used.* The eigenvalues obtained are given
in Table I. The HFG values are in close agree-
ment with the HF values, while the HFS results
are much too positive; the largest deviation being
for the core levels. The reason for these differ-
ences is clear from Fig. 1 where the exchange
correlation potentials for the various orbitals
in the HF and HFG methods are compared with
the average potential used in the HFS method.
For the sake of clarity, only the 1s, 3s and 3d
potentials are shown in Fig. 1. The HFG poten-
tials are generally close to the HF potentials,
except for the 3d orbital for which the HFG po-
tential is somewhat more negative. The reason
for this will be discussed under the Mn*? ion. In
contrast, the HFS method grossly underestimates
the exchange-correlation potential for all states
except 3d. Further, the HFS potential has the
wrong behavior for large 7 values (not shown in
the figure), whereas the HFG and HF potential
become identical in this region. These features
of the potentials are quite general and will be dis-
cussed below.
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TABLE I. Comparison of eigenvalues for Cut, by HF,
HFG, and HFS methods. Energies are in Ry. Theoret-
ical value of o [Eq. (9)] used is 0.7305. HF values are
taken from J. C. Slater, Intern. J. Quantum Chem, IIIS,
727 (1970).

Orbital ¢ —€xF;  —€HFG} Diff. —€HFS Diff.
1s 658.22 656,18 2,04 643.61 14.61
2s 82.26 81.66 0.60 77.15 5.11
2p 71.86 73.08 -1.22 67.86 4.00
3s 10.65 10.07 0.58 8.75 1.90
3p 7.28 7.11  0.17 5.85 143
3d 1.62 2.06 -0.44 1.01 0.61

B. Eigenvalues, potentials and contact hyperfine interaction for h

Mn*2 ion

The ground-state configuration of Mn*? is taken
to be (Ar)34°. Spin-polarized calculations were
made in the HF'S and HFG methods using theoret-
ical a values. The spin-polarized HF results are
taken from Ref. 7.

The eigenvalues are given in Table II. As in
the case of Cu*, the HFG results are generally
very close to the HF results and the HFS values

50

40

-V(r) (Rydbergs)
8

20

10

r(a.u)

FIG. 1. Comparison of HF, HFS, and HFG exchange-
correlation potentials for 1s, 3s, and 3d orbitals in Cu®.
HF results are taken from Ref. 5. For HFS and HFG
calculations, theoretical a value of 0.7305 from Eq. (9)
was used.

TABLE II. Eigenvalues for Mn*2 by spin-polarized HF,
HFG, and HFS methods. Energies are in Ry. Theoret-
ical spin-dependent @ values used. aj =0.7305, a,
=0.7340 [Eq. (9)]. HF values are from Ref. 7.

Orbital ¢ —€Hr;  —€ypg; Diff.  —€yps; Diff.
Ist 482.369 480.774 1.595 469.594 12.775
1st 482.374 480.797 1.577 469.595 12.779
2st 59.663 59.359 0.304 55.203 4.460
2st 59.633 59.094 0.539 54.997  4.636
2pt 51.044 52.303 —1.259  47.600 3.444
2p+ 50.781 52.144 -1.363  47.444 3.337
3st 9.323 8.991 0.332 7.600 1.723
3s ¥ 8.4%4 8.320 0.174 7.127 1.367
3pt 6.753 6.749 0.004 5.423 1.330
3pt 5.745 6.099 —0.354 4.958 0.787
3adt 2.576 3.093 -0.517 1.929  0.647

are too positive, indicating that the HFS method
underestimates the exchange correlation potential.
Consider the self-interaction part, Eq. (25), and
the exchange part, Eq. (26), of the HFG potential
for the 1s (Fig. 2) and the 3d (Fig. 3) orbitals,
which represent, respectively, the lowest (most
negative) and highest potentials in Mn*2. Figure 2

-rV(r) (Rydbergs)

e 1 1 1 1
A 5 9 1.3 18
r(a.u)

FIG. 2. Self-interaction potential Vs, exchange
potential Vijc and the total exchange-correlation poten-
tial Vifg for 1st orbital in Mn*? ion, calculated by the
present method. VX is the average exchange-correla-
tion potential by the HFS method. Note that *V(7) is
plotted in the figure.
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-rV(r) (Rydbergs)
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FIG. 3. Self-interaction potential Vjfrg , exchange
potential Vijk; and the total exchange-correlation poten-
tial V fjrg for 3dt orbital in Mn*? ion, calculated by the
present method. V§¥s is the average exchange-correla-
tion potential by the HFS method. Notice that ¥V (7) is
plotted in the figure.

shows that for the 1s orbital, the dominant contri-
bution comes from the self-interaction term rather
than from the exchange term for » values<0.1 a.u.
Since the 1s electron has little density outside this
region, the eigenvalue is mainly determined by the
potential for »<0.1. In this region, the HFS ex-
change-correlation potential is ever smaller than
the self-interaction term, except very close to

the nucleus, showing that the HFS scheme fails to
account for self-interaction at intermediate 7
values in addition to its complete failure to do so
at large 7 values. This is the reason why the HFS
eigenvalues are too positive,

Moving from the nucleus towards orbitals of
higher nl values, the self-interaction becomes
progressively less important in determining the
deep regions of the potential well. Comparison
of the 3d potential terms (Fig. 3) with the 1s po-
tentials (Fig. 2) shows this clearly. Thus the er-
ror in the HFS eigenvalues progressively diminish
for higher =zl values, as may be seen from Table
I (for Cu*) and II (for Mn*?). In the HFG scheme,
even though the eigenvalues are generally close
to the HF values, the maximum relative error
occurs for the 3d orbital, again due to the im-
portance of the exchange term for this orbital

0.09+
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0.05

Core Spin Density

0.03

0.01
-0.00

001F |

003} \

-0.05 L n " L N
0.00 0.80 1.60 2.40 3.20 4.00
r(a.u)

FIG. 4. Comparison of the argon core spin-density
distribution in Mn*? ion by the spin-polarized HF, HFS,
and the present HFG methods. The HF curve is taken
from Ref. 7. Average theoretical « value used is 0.7319
[Eq. (10)]. Spin-dependent « values Eq. (9) lead to
essentially the same curves as in this figure for HFG
and HFS methods, respectively.

which is treated only approximately by Eq. (26) in
contrast to the self-interaction term of Eq. (25)
which is exactly evaluated.

We now turn to a discussion of the spin-density
distribution and the contact hyperfine interaction
in Mn*2. The spins of the electrons in the argon
core of Mn*2 are polarized by the five unpaired
(taken to be up-spin) 3delectrons. Thisgivesa
nonvanishing spin density at the nucleus as well
as at other » values. The distribution of this core-
spin density as a function of 7 is a very stringent
test of the approximations to the exchange-cor-
relation potential. This has been studied for Mn*
by the HF method,'® as well as by various forms
of the HFS method.” The general result is that
the HFS method fails to describe spin polarization
adequately. Figure 4 is a comparison of the HF,
HFS and HFG results for the core-spin density
distribution. The HFS results are poor for »>0.4
a.u., due to the underestimation of self-interaction
at large 7 values. Latter correction to the HFS
potential not only does not improve the spin-den-
sity distribution at large 7, but gives results ap-
preciably worse for all # values.'® This is due to
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the defects of the Latter correction procedure dis-
cussed in Sec. I. On the other hand, the HFG
method describes the spin-density distribution
remarkably well (Fig. 4) proving that the HFG
exchange-correlation potential is a very good ap-
proximation to the corresponding HF potential.
The magnitudes of the spin density at the nucleus
of Mn*? given by the three methods could be com-
pared. Only the s orbitals have a nonvanishing
density at the nucleus, and the individual contri-
butions of the s-orbitals are given in Table III,
in terms of the quantity x defined by'®

S L (-0, (0= Y X, (30)

ny —n,
The HF result is in agreement with the experi-
mental measurement of the contact hyperfine
interaction. The major contribution to X comes
from 2s and 3s potentials and we see that the HFS
method underestimates this. This failure of the
HFS method to describe spin-polarization has been
discussed by Slater.*’ In contrast, the HFG meth-
od gives results in much closer agreement with
the HF values. In Table III, we have given HFG
‘ results for the spin-dependent o values of Eq. (9)
as well as for the average a value of Eq. (10).
While the core spin-density distribution is not
very sensitive to this difference in o values, the
1s contribution to x is sensitive to it.

One form of the HFS method, in which the free-
electron exchange-correlation potential is used
according to a suggestion by Liberman,'” gives
eigenvalues for Mn* in very good agreement
with HF values. This method does not use the
Slater averaging procedure for the potential.

But this approach totally breaks down for the spin-
polarization effects, as shown by Wilson et al.”
These authors have also pointed out the sensitive-
ness of the x values to the choice of basis set in
the HF method, Of course, the HFS and HFG
schemes are numerical methods and therefore

do not have this problem.

TABLE IIl. Fermi contact term 2 x in Mn*?, by HF,
HFG, and HFS methods.

HFP HFS® HFGY HFG®
X1is —0.191 —0.158 -0.081 +0.300
Xas —7.154 —5.376 —17.683 —8.046
X3s +3.218 +2.004 +3.364 +3.209
X —4.127 -3.530 —4.400 —4.537

2See Eq. (30).

bReference 15.

¢ Reference 7.

d Using average theoretical a¢=0.7319, see Eq. (10).

€ Using spin-dependent theoretical a values. a}
=0.7305, a4 =0.7340. See Eq. (9).

IV. CONCLUSIONS

The present method of treating the exchange-
correlation potential in atoms is based on the
separation of the potential into an electron self-
interaction term and the characteristic exchange
terms. The self-interaction term is evaluated
exactly while the exchange term is approximated
by a protedure similar to the p'/3 approximation
due to Dirac and Slater. Electrons in different
spin-orbitals have different exchange potentials
in our scheme. We thus avoid the major defects
of the HFS method, namely, the use of a single
average potential for all the electrons, as well as
the underestimation of the self-interaction. The
HFG eigenvalues are shown to be in close agree-
ment with the HF eigenvalues, in contrast to the
inaccurate eigenvalues from the HF'S scheme.
Spin polarization in the first-row transition ions,
which depends critically on the exchange-correla-
tion potentials and its variation with 7 for the
various shells, is described very well by the pre-
sent method, whereas the HFS scheme and its
many modifications have all failed in this respect.

Since the method proposed here is computation-
ally as simple as the HFS method, and much
superior to it in performance, it should prove
useful in molecular and solid state calculations.
However, Slater and Wood'® have pointed out
certain difficulties in extending to polyatomic
systems schemes in which the self-interaction
is separated from the total exchange correlation.
Their argument is that the single-determinantal
wave function, the Coulomb energy and the total
exchange-correlation energy are invariant under
a unitary transformation of the spin orbitals; the
self-interaction term is not invariant under such
a transformation and hence this term is not
uniquely defined. For example, for well-localized
spin orbitals the self-interaction is large, where-
as if these spin orbitals are transformed into
delocalized orbitals it becomes negligibly small.
In this connection, we note that when the self-
interaction is small we have p;,; ® p; and hence
the exchange potential of the present HFG scheme
V% of Eq. (26) reduces to the exchange potential
Vxs» Eq. (7) of the HFS method, so that the two
methods become identical. This fact aside, the
author believes that the lack of invariance of the
self-interaction can be profitably taken advantage
of in extending the HFG scheme to polyatomic sys-
tems. Several methods have now been developed'®
to transform (in a unitary fashion) the delocalized
spin orbitals in such systems to well-localized
orbitals. Instead of transforming the delocalized
orbitals into localized ones in this way, one may
equivalently introduce® a localizing potential to
obtain modified HF operators with localized eigen-
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functions. As remarked by Gilbert,?° these modi-
fied equations may be easier to solve and interpret
than the standard HF equations, especially for
large molecules and crystals. One of the most ef-
ficient and practical methods of determining the
localization potential (or equivalently the trans-
formation matrix discussed above) is that of
maximizing the self-repulsion energy as proposed
originally by Lennard-Jones?' and developed by
Edmiston and Ruedenberg.?? Maximization of the
self-repulsion energy means also the simultaneous
minimization of the pure-exchange energy because
of the invariance of the total exchange-correlation
energy. Orbitals obtained by this procedure are
called energy-localized orbitals. Obviously, the
present HFG scheme is best suited to obtain ac-
curate energy-localized orbitals for large poly-
atomic systems. For these orbitals, the self-
repulsion part which is a maximum would be
evaluated exactly in the HFG procedure, and only
the pure exchange part, which is a minimum,
would be approximated. Consequently the HFG
scheme can be expected to reduce the errors to a
minimum and to yield much more accurate orbit-
als than schemes like the HFS in which the total
exchange-correlatidn energy is approximated.
Another theoretically attractive feature of the
energy-localized orbitals is worth mentioning.

An assumption fundamental to both the HFS and
HFG schemes is that the spin-orbitals u; are
close approximations to the natural spin orbitals
of the system. As discussed by Edmiston and
Ruedenberg,? there are reasons to believe that
this would be nearly so for the energy-localized
orbitals.

Admittedly this is only an optimistic account of
the possible application of the HFG scheme to ob-
tain accurate wave functions for polyatomic sys-
tems. Certain limitations should be borne in mind.
Firstly, the localization scheme is applicable only
to localizable electrons such as core electrons,
electrons in rare gas and ionic crystals and not,
for example, to electrons in the conduction band
of metals, which are not very localizable. Second-
ly, the computational problems involved in solving
the HFG equation with the localizing potential re-
main to be worked out. Work along these lines is
now in progress.
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