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A new method is proposed to approximate the exchange-correlation potential in the Hartree-Fock equations

for a many-electron atom. The exchange-correlation potential is separated into a self-interaction term and a
characteristic exchange term. The self-interaction term is evaluated exactly, while the exchange term is

. approximated in a manner similar to Slater's statistical average method using a previously obtained theoretical

exchange parameter a. In the present method different potentials are used for different spin orbitals instead of
the average potential used in the Hartree-Fock-Slater (HFS) scheme. The separation of the exchange-

correlation potential into a self-interaction plus exchange terms removes all the major defects of the HFS
potential, such as the wrong asymptotic behavior at large r values and the underestimation of the self-

interaction. The accuracy of the present method is demonstrated by calculations on the first-row transition-

metal ions Cu and Mn+'. The results for exchange potentials, one-electron eigenvalues, spin density

distribution, and contact hyperfine interaction agree excellently with Hartree-Fock values. The relative

importance of the self-interaction and exchange terms for various electron shells are discussed.

Computationally, the method is as simple as the Hartree-Fock-Slater scheme.

I. INTRODUCTION

The practical need to simplify the exchange po-
tential in the Hartree-Fock equations has been
recognised for a long time. The major step in
this direction was taken by Plater' in 1951, by
introducing the statistical exchange approxima-
tion following the work of Dirac. ' Since then,
this approximation has been extensively used in
atomic, molecular, and solid-state calculations.
In this section we briefly discuss Slater's method
and point out its major defects. In Sec. II, we
introduce a new approximation for the exchange
potential which is free of all the major defects
of the Slater method but is equally simple to apply.
The method is demonstrated in Sec. III by calcula-
tions on the first-row transition metal ions, Cu'
and Mn" and the results are compared with those
from the Hartree-Fock (HF) and Hartree-Fock-
Slater (HFS) methods.

The Hartree-Fock equations for a many-elec-
tron atom may be written (in Hydberg units) as",

[f,+ V,(r) + V „„F, (r)]u, (r) = ~,u;(r), (1)
where the u s are the spin orbitals with occupancy
n„ f, =-V' —2Z/r, and V, (r) is the Coulomb po-
tential

g (r) =gu fu,"(r')u, (r')g, „,dr' (2)

withg„„, =2/~r —r' ~. V„„F,. is the exchange-cor-
relation potential' for the electron in the ith spin
orbital and is given by

~~/
where Zr is only over spin orbitals of the same
spin as u, .

It is advantageous to rewrite E(I. (8) with the
exchange-correlation potential separated into a
self-interaction and the true exchange potential

VxHF'(r) VHF&( )r+ VHF'(r)

with

g', ,(r)= -u fu,". (r')u, .(r')g, „.dr'

F

VH"F, (r) = — n
jgi

f(r)u,*(r').
xu,.(r)u;(r')g„, .dr') ur(r)u, .(r}.

(6)

pt(r) = Q n,.u+(r)u,.(r),
(8)

Here V„F;(r) is the self-interaction potential which
is incorrectly included in the Coulomb term in
E(I. (2); V„'"F,(r) is the actual exchange potential.

In the HFS method, E(I. (1) is greatly simplified
by replacing the various Vx„F, potentials by a
single average potential; for up-spin electrons
this is

Vx, )(r) = 6Cc(p'i~-'(r),

with a similar expression for the down-spin elec-
trons.

In E(I. (I),

C = (8/4F)" 3,

1

V„„„.(r) = — n f (r)u~~(r')u, (r)

xu;(r')g„, dr') u,."(r)u;(r),
(8)

and ot. is an exchange scaling parameter, usually
determined empirically for each atom or ion.

The author and colleagues4 have recently shown
that this empirical nature of the V» potential
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o. = (ntni+n)n ))/(ni+n, ) . (10)

These average n values were computed for all
atoms in the periodic table and were shown to be
in close agreement with the available empirical
values.

The exchange-correlation potential of Eq. (7)
has more serious defects. The value of the po-
tential Vx„r,. of Eq. (4) usually varies by a factor
of 2 for various spin orbitals i at a fixed value of

Therefore, its replacement by an average as
in Eq. (7) is only a very approximate treatment of
the exchange effects in atoms. This has been
shown quantitatively for the Cu' ion by Hartree. '
For a given spin orbital, Eq. (7) gives an ex-
change-correlation potential which is too large at
some x values and too small at others.

Another major defect of the average potential
V»(r) is its incorrect behavior at large r values.
In the Hartree-Fock method, the exchange-cor-
relation potential has the property

rV» v;(r) - -2 as

can be easily removed. Using the properties of
the Fermi hole, it was shown that this parameter
for an up-spin electron is

8 4m2 x/s 1/n
2m 3 (1/n&+ —,')'t' '

where n~ is the number of up-spin electrons. A
similar expression holds for n &. If desired, an
average n may also be obtained as

continuous slope at r, and consequently produces
a nonvanishing surface-charge density on the
sphere separating the two regions x ~ x, and x&x,.
This is distinctly unphysical. Secondly, the po-
tential is uncorrected for x&x,. Further, the Lat-
ter potential is not variationally derivable from
the expression for the total energy of the system,
as pointed out by Wilson et al. ' Finally, there is
another flaw in introducing the Latter correction
to the HFS potential. As will be shown in Sec. III,
VH»(r) underestimates self-interaction not only at
large x values, but also at intermediate values.
Consequently V„»(r) is generally smaller than the
correct potential. Therefore, the Eqs. (15) and
(16) introduce an r ' potential at too small an r
value (r,). From the Poisson equation it follows
that the charge due to (N —1) electrons outside r,
is zero. Thus the use of the Latter potential in
the HFS scheme leads to an unphysical shrinkage
of the atom.

II. DERIVATION OF THE NEW ONE-ELECTRON
EQUATIONS

The present approximation to the HF potential
will be designated HFG.

. The total energy of the atom or ion can be written
exactly as

(Z)= Q n,. u*, (r)f,u, (r) dr

+2 pxpx g„„,dxCh

because for the self-interaction term we have

rV„';(r) - -2
and for the exchange,

rVs"r,.(r) -0 as r- ~.
In contrast, in the HFS scheme,

rV„H (r) 0 as

(12)

(14)

p & (r) U P'(r) dr.

) (r) U f"'(r) dr, (17)

where U&"'(r) is the exchange correlation potential
at point x for up-spin electrons and similarly for
U&'"' (r). As in Eq. (4) U t"' can be separated into
the self-interaction and exchange parts

rV„»(r) = —2(Z —X+1) for r~r, ,

where x, is determined by the condition

r&Vs»(r&) = 2(Z At+ 1)

(15)

(16)

In Eqs. (15) and (16), At is the total number of
electrons. Results using the Latter correction
are generally poorer than those obtained'without
this correction. "This is to be expected for the
following reasons, pointed out by Coulson and

Sharma. ' First, the Latter potential has a dis-

That is, t/'» fails to correct for the electron self-
interaction at large x values.

To overcome this defect, an empirical correction
due to Latter' is usually made to the total potential
~H FS

UP'(r) = Ui (r) + Ui'"(r) . (18)

The self-interaction term is given exactly by

U)'(r) = —Q n, u,"(r)u,.(r)

n;u,*- r' u,. x'g„„,dh' p~ x . 19

In the present HFG scheme, this term is evaluated
without any approximation.

However, the HFS scheme corresponds to ap-
proximating U~'"' as,

U~'"'(r) = —9Co.pi'~'(r) . (20)

A similar approximation can be introduced in
the HFG scheme for the Ui'*(r) pa.rt of the ex-
change-correlation potential in Eq. (18). For this
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purpose we define

p, , i(~)= Q n,u,*(r)u, (r)
qadi t

(21)

of the sphere is proportional to pic~'(x), whereas
the exchange potential (without self- interaction)
is proportional to p, , ~(x)pi '~'(r). Accordingly,
we set

as the density of electrons of up-spin at point x,
excluding the density of the electron in spin or-
bital uif. Now, as in Ref. 4, consider a Fermi
sphere centered at ~, its r adius being determined
by the total density pt (x) and the condition that
the Fermi sphere contains a unit electron charge.
It follows that the exchange-correlation potential
(which includes the self-interaction) at the center

~P(~) =1-9«,Z p; i(i')pi '(i')

un;u,"(r}u;(r)) p((r), (22)

Here (). is given by Eq. (9). Use of Eqs. (18), (19),
and (22) in Eq. (17) gives, for the total energy in
the HFG scheme

(EHFG) = Q n, ui(r)f u (r) drr Jp(r) p(r—)g,„drd'r —. JQ' nu—((r)u, (r) nu,"(r')u(r')g„, drdr'
i it

Pp, , i (x)p Pi'(r)n, u,*(r)u, (r) dr

n;uz x uz x n,.u&
x' u,. x' g„„,dhdP — ~ p, &

x p&' ' r n&u& r u& x dh.
j)

(23)

[f, + V.(i")+VHFQ'~(i)+ VHFQ''f(F H~ $(~) e'iii t() )

(24)

with a similar equation for down-spin orbitals.
Here V,(x) is the Coulomb potential of Eq. (2).

VHFQ, t(x) is the self-interaction potential for the
ith-spin orbital given by

P' n;i(r)=nrf";i(r')uri(r')g„dr'
and VH"FQ, ~(F) is the exchange potential given by

(25)

VHFQi t(+)

2p ~ p-2/3 ~

-lp("(r) F nu,"(r)u,.(r)p, . i(r)) .
if

(26)

The terms on the right-hand side of Eq. (26) arise
from the differentiation of the fourth term on the
right-hand side of Eq. (23) with respect to u, Note
that in regions where pi, = pt, where self-inter-
action is not dominant, the assumption that p, has
the same value for all spin orbitals of the same
spin, reduces Eq. (26) to the same form as Eq. (7)
of the HFS method. Such assumptions are un-
necessary, since the terms in Eq. (26) can be
easily evaluated.

The variational procedure making the total energy
EHFG stationary with respect to arbit;rary varia-
tions in each of the spin orbitals subject to the
orthonormality constraints on the u s, leads to
the following set of one-electron Schrodinger equa-
tions for the u s and corresponding eigenvalues
Ei s,

Equation (25) represents the one-electron equa-
tions of the present HFG method. Note that the
electron in each spin orbital has a characteristic
exchange-correlation potential, as in the HF meth-
od and unlike the HFS method. All the disadvan-
tages of the Slater averaging procedure are thus
avoided, . while the simplicity of the HFS scheme
is retained. Further, since rVH'FQ, .(x) - —2 and

xVH*FQ,.(x)-0 as r-~, the correct asymptotic
behavior of the potential at large x values is en-
sured and there is no need for Latter correction.
Computationally, Eq. (24) is as simple to solve as
the corresponding HFS equation, 2nd we have no
new integrals to evaluate.

The correct asymptotic form for the exchange-
correlation potential at large values of r is also
obtained in a modification of the HFS scheme pro-
posed by Liberman. " In this method, the atom is
arbitrarily divided into two regions of high and

low densities and the free-electron gas exchange-
correlatipnr is treated differently in these regions.
Apart from the arbitrary nature of this division
and the lack of explicit consideration of self-
interaction in the high-density regions, this meth-
od has the additional defect that the potential is
discontinuous at the boundary between the two
regions. Cowan, " on the other hand, has pro-
posed a potential in which the self-interaction is
explicitly evaluated as in the present HFG scheme.
But the exchange part is approximated by an em-
piricaI function of the density containing a few
arbitrary constants. A more serious defect of
Cowan's potential is that it is not variationally
derived from the total energy expression. The
approximation suggested by Lindgren" also eval-
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uates the self-interaction exactly, but the ex-
change part is expressed by

In the HFG scheme also, under the same assump-
tions,

s( EHFG)
HFGs '

n
(29)

This is easily shown by differentiating Ecl. (23)
with respect to n; and comparing the result to
that of multiplying Eg. (24) by u,*~ (r) on the left-
hand side and integrating. Such a relation does
not hold the Hartree-Fock energy and eigenvalues.
This is often stated' to be the reason for the large
difference obtained between the eigenvalues in the
HF and HFS methods. This is not true. In the
HFG scheme, relation (29) holds and at the same
time eigenvalues obtained are in good agreement
with HF values (see Sec. III). The reason for the
disagreement between HF and HFS eigenvalues is
that eigenvalues of the Schrodinger equation are
determined mainly by the depth of the potential

.well. It can be shown (Sec. III) that in the HFS
method the exchange-correlation potential is too
positive due to underestimation of electron self-
interaction. This leads to too positive eigenvalues.
On the other harid, in the HFG method, the ex-
change-correlation potential is very close to the

(27)

in the units and notation we are using. This is an
approximate expression for the exchange potential
for a. free-electron gas. '" Note that Eq. (27) is
quite different from the corresponding expression
Va"», , Eq. (26) of the present method. The latter
has been derived not from the free-electron model
but by considering the potential produced at the
center of the Fermi-hole by the charge distribu-
tion from which the electron under consideration
has been removed, together with the necessary
condition that the total exchange-correlation den-
sity is equal to unity. Another significant differ-
ence between the two exchange potentials is that
in VH'FG we have incorporated the theoretical ex-
change parameter n. This is desirable since the
free-electron gas exchange is not strictly applic-
able to atoms. " Thus Eq. (26) may be thought of
as combining the virtues of these various approxi-
mations to the exchange potential while avoiding
their shortcomings.

In the HFS method, if it is assumed that the
total energy is a continuous function of n;, then
the eigenvalues are related to the total energy by, '

&(EHFS)
&HFS& '

n f

HF value and hence the good agreement between

CHFG ~ and EHF. values. These facts are quantita-
tively discussed in Sec. III.

A word of caution about E|ls. (28), (29), or their
equivalent in the hyper-Hartree-Fock method" is
in order. These equations are obviously derived
assuming that the total energy is a differentiable
function of n, . However, it can be shown" that
the admittance of non-integral n; values leads to
serious errors in total energy, eigenvalues and

other properties due to an incorrect counting of
the number of pair-wise electron-electron inter-
actions in the expression for the total energy.
The correct expression to be used for nonintegral
n; values and the consequences of using the in-
correct one will be discussed in a forthcoming
communication. '

III. APPLICATION TO FIRST-ROW TRANSITION
ELEMENTS

The computer program to solve Eq. (24) was
written by the author by extensively modifying
the original Herman-Skillman program. " The
program performs spin-polarized HFG calcula-
tions. The time required per run is of the same
order as the Herman-Skillman program.

The HFG results for the first-row transition
elemerits, Cu' and Mn" for which extensive HFS
and HF results are available for comparison
are discussed below.

A. Eigenvalues and potentials for Cu+ ion

For both HFG and HFS calculations reported
here, the theoretical n value obtained from Eq.
(9) was used. ~ The eigenvalues obtained are given
in Table I. The HFQ values are in close agree-
ment with the HF values, while the HFS results
are much too positive; the largest deviation being
for the core levels. The reason for these differ-
ences is clear from Fig. 1 where the exchange
correlation potentials for the various orbitals
in the HF and HFG methods are compared with
the average potential used in the HFS method.
For the sake of clarity, only the 1s, 3s and 3d
potentials are shown in Fig. 1. The HFG poten-
tials are generally close to the HF potentials,
except for the 3d orbital for which the HFG po-
tential is somewhat more Degative. The reason
for this will be discussed under the Mn" ion. In
contrast, the HFS method grossly underestimates
the exchange-correlation potential for all states
except 3d. Further, the HFS potential has the
wrong behavior for large r values (not shown in
the figure), whereas the HFG and HF potential
become identical in this region. These features
of the potentials are quite general and will be dis-
cussed below.
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TABLE ID. Fermi contact term~ X in Mn+2, by HF,
HFG, and HFS methods.

HFS HFG'

Xts
X2g

Xss
X

—0,191
—7.154
+3.218
—4.127

-0,158
—5.376
+2.004
-3.580

-0.081
-7.683
+3.864
-4.400

+0.300
—8.046
+3.209
-4.537

'See Eq. P0).
b Reference 15.

Reference 7.
Using average theoretical &=0.7319, see Eq. (10).
Using spin-dependent theoretical a values.

=0.7305, 0.'~ =0.7340. See Eq. (9).

the defects of the Latter correction procedure dis-
cussed in Sec. I. On the other hand, the HFG
method describes the spin-density distribution
remarkably well (Fig. 4) proving that the HFG
exchange-correlation potential is a very good ap-
proximation to the corresponding HF potential.

The magnitudes of the spin density at the nucleus
of Mn" given by the three methods could be com-
pared. Only the s orbit@is have a nonvanishing
density at the nucleus, and the individual contri-
butions of the s-orbitals are given in Table III,
in terms of the quantity X defined by"

X= g [p„', (0) — p„', ( 0)]= P X„. (30)

The HF result is in agreement with the experi-
mental measurement of the contact hyperfine
interaction. The major contribution to X comes
from 2s and 3s potentials and we see that the HFS
method underestimates this. This failure of the
HFS method to describe spin-polarization has been
discussed by Slater." In contrast, the HFG meth-
od gives results in much closer agreement with
the HF values. In Table III, we have given HFG

' results for the spin-dependent o. values of Eg. (9)
as well as for the average n value of Eq. (10).
While the core spin-density distribution is not
very sensitive to this difference in z values, the
1s contribution to g is sensitive to it.

One form of the HFS method, in which the free-
electron exchange-correlation potential is used
according to a suggestion by Liberman, "gives
eigenvalues for Mn" in very good agreement
with HF values. This method does not use the
Slater averaging procedure for the poteritial.
But this approach totally breaks down for the spin-
polarization effects, as shown by Wilson et al.'
These authors have also pointed out the sensitive-
ness of the X values to the choice of basis set in
the HF method. Of course, the HFS and HFG
schemes are numerical methods and therefore
do not have this problem.

IV. CONCLUSIONS

The present method of treating the exchange-
correlation potential in atoms is based on the
separation of the potential into an electron self
interaction term and the characteristic exchange
terms. The self-interaction term is evaluated
exactly while the exchange term is approximated
by a procedure similar to the p'~' approximation
due to Dirac and Slater. Electrons in different
spin-orbitals have different exchange potentials
in our scheme. We thus avoid the major defects
of the HFS method, namely, the use of a single
average potential for all the electrons, as well as
the underestimation of the self -inter action. The
HFG eigenvalues are shown to be in close agree-
ment with the HF eigenvalues, in contrast to the
inaccurate eigenvalues from the HFS scheme.
Spin polarization in the first-row transition ions,
which depends critically on the exchange-correla-
tion potentials and its variation with r for the
various shells, is described very well by the pre-
sent method, whereas the HFS scheme and its
many modifications have all failed in this respect.

Since the method proposed here is computation-
ally as simple as the HFS method, and much
superior to it in performance, it should prove
useful in molecular and solid state calculations.
However, Slater and Wood" have pointed out
certain difficulties in extending to polyatomic
systems schemes in which the self-interaction
is separated from the total exchange correlation.
Their argument is that the single-determinantal
wave function, the Coulomb energy and the total
exchange-correlation energy are invariant under
a unitary transformation of the spin orbitals; the
self-interaction term is not invariant under such
a transformation and hence this term is not
uniquely defined. For example, for well-localized
spin orbitals the self-interaction is large, where-
as if these spin orbitals are transformed into
delocalized orbitals it becomes negligibly small.
In this connection, we note that when the self-
interaction is small we have p, , ~

= p~ and hence
the exchange potential of the present HFG scheme
VH*Fo of Eq. (26) reduces to the exchange potential
V»~ Eg. (I) of the HFS method, so that the two
methods become identical. This fact aside, the
author believes that the lack of invariance of the
self-interaction can be profitably taken advantage
of in extending the HFG scheme to polyatomie sys-
tems. Several methods have now been developed'
to transform (in a, unitary fashion) the delocalized
spin orbitals in such systems to well-localized
orbitals. Instead of transforming the delocalized
orbitals into localized ones in this way, one may
equivalently introduce' a localizing potential to
obtain modified HF operators with localized eigen-
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functions. As remarked by Gilbert, "these modi-
fied equations may be easier to solve and interpret
than the standard HF equations, especially for
large molecules and crystals. One of the most ef-
ficient and practical methods of determining the
localization potential (or equivalently the trans-
formation matrix discussed above} is that of
maximizing the self-repulsion energy as Proposed
originally by Lennard-Jones" and developed by
Edmiston and Ruedenberg. " Maximization of the
self-repulsion energy means also the simultaneous
minimization of the pure-exchange energy because
of the invariance of the total exchange-correlation
energy. Orbitals obtained by this procedure are
called energy-localized orbitals. Obviously, the
present HFG scheme is best suited to obtain ac-
curate energy-localized orbitals for large poly-
atomic systems. For these orbitals, the self-
repulsion part which is a maximum would be
evaluated exactly in the HFG procedure, and only
the pure exchange part, which is a minimum,
would be approximated. Consequently the HFG
scheme can be expected to reduce the errors to a.

minimum and to yield much more accurate orbit-
als than schemes like the HFS in whi~h the total
exchange-correlation energy is appr oximated.
Another theoreticaHy attractive feature of the
energy-localized orbitals is. worth mentioning.

An assumption fundamental to both the HFS and
HFG schemes is that the spin-orbitals u; are
close approximations to the natural spin orbitals
of the system. As discussed by Edmiston and
Ruedenberg, "there are reasons to believe that
this would be nearly so for the energy-localized
orbitals.

Admittedly this is only an optimistic account of
the possible application of the HFG scheme to ob-
tain accurate wave functions for polyatomic sys-
tems. Certain limitations should be borne in mind.
Firstly, the localization scheme is applicable only
to localizable electrons such as core electrons,
electrons in rare gas and ionic crystals and not,
for example, to electrons in the conduction band
of metals, which are not very localizable. Second-
ly, the computational problems involved in solving
the HFG equation with the localizing potential re-
main to be worked out. Work along these lines is
now in progress.
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