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Atomic level shifts and transition amplitudes in incoming radiation fields*
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Expressions for energy-level shifts and transition amplitudes of atoms interacting with an incoming radiation
field are developed in a completely quantum theoretic way and the results are compared with others. The
continued-fraction expressions reproduce both those of Swain and of Gontier et aL., and the numerical results
for the particular case of Bloch-Siegert shifts in mercury vapor agree with Stenholm's but go further in giving
the shape of the resonances. These results are also obtained by a method of direct diagonalization of the
Hamiltonian of the coupled system.

I. INTRODUCTION

The effect of a strong incident radiation field on
atomic energy levels and on atomic transitions has
been much studied. Semiclassical methods were
applied first and continue to be used. More recent-
ly, purely quantum-mechanical methods have been
developed which have, to a large extent, confirmed
the predictions of the semiclassical work. Among
the semiclassical theories, those of Autler and
Townes, ' of Mollow, ' and of Stenholm' may be men-
tioned. Quantum theoretic calculations have been
done by Cohen- Tannoudji and his co-workers, "'
by Chang and Stehle, ' by Swain, ' by Gontier and
co-workers, ' and by Bialynicki-Birula; and
Bialynicka-Birula, ' among others. While it is ob-
vious in principle that semiclassical and fully quantum
theories are distinct, it is by no means so clear
under what conditions they will give different re-
sults. The results we achieve in this paper do not
demonstrate any such difference. What we do ac-
complish is to derive easily used expressions for
Green's functions (resolvents) and transition am-
plitudes for multilevel atoms interacting with in-
tense incoming radiation described in a completely
quantum theoretic way. We are able to give a uni-
fied and direct derivation of continued-fraction ex-
pressions appearing in the work of Gontier, Rah-
man, and Trahin, ' and of Swain. ' In addition a
straightforward method based on the diagonaliza-
tion of a truncated Hamiltonian describing an atom
coupled to a single field mode is given. The theory
is applied to experiments of Arimondo and Mor-
uzzi, ' who measured Bloch-Siegert shifts in mer-
cury vapor.

The advantage of continued-f raction expressions
is the automatic inclusion of all proper diagrams
up to the order in perturbation theory desired in an
extremely simple way. The advantage of the deriva-
tion given here is its relative simplicity and its inde-
pendence of a model such as a two-level atom or a sin-
gle mode field. 'The derivation is based on the "level

shift" operator used by Goldber ger and Watson, "and
is a straightforward exercise in quantum mechanics.
It is equivalent to the forward scattering method
of Chang and Stehle, ' yielding expressions of the
same form as theirs, but developing them further.

A convenient way of describing atom-field inter-
actions by means of walk diagrams is introduced.
The use of such diagrams, closely related to Feyn-
man diagrams, makes the counting of processes
easy and serves to clarify the various continued
fractions and other interaction schemes that are
available.

II. HAMILTONIAN

The system of concern is an atom interacting with
a field. For the general discussion in Sec. III we
need not specify the system more closely than to
say there is a Hamiltonian H, describing the atom
and field in the absence of coupling, and a coupling
V= V++ V, which acts to cause the absorption or
emission of field quanta one at a time. In Sec. IV
more specific assumptions will be made. Only one
field mode will be considered, and only two atomic
levels. It will also be assumed that V changes the
atomic state, as required by electric dipole se-
lection rules for example, but the rotating-wave
approximation will not be made. For intense field
problems it is also permissible to neglect deple-
tion effects, which means only that the coupling
constant measuring the atom-field interaction can
be considered a constant independent of the number
of quanta which have been emitted or absorbed.
This approximation is not essential, and depletion
can be taken into account if desired. The coupling
is characterized by

g =(e'x~/2v)'~' (~~d~t),

where N/V is the photon density, u is the field
frequency, and (a~d(b) is the relevant dipole matrix
element, taken to be real. Mode indices may be
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added to N, co, and the matrix element, if more
than one is considered.

III. GREEN'S FUNCTION FORMULATION

because

Now rewrite (3.8) as

(3.10)

The time development of the system atom-plus-
field is described by the Green's function G(t„ t,).
When the Hamiltonian is time independent, this is
a function of t, —t„while if the field is a specified
classical field, as in the semiclassical theory, the
time arguments appear separately and an average
must be found over the phase of the field at the
earlier time, as this is not experimentally con-
trolled. We consider here the time-independent
Hamiltonian including the field degrees of freedom.
Then we may write

G(f, —f,) = . dZ G(Z) exp[- fz(f, —t,)], (3.1)
1

and study the Green's function G(E). The poles of
G(z) define the energy eigenvalues of the coupled
system in the standard way.

If H is the complete Hamiltonian and H, is the
Hamiltonian of the uncoupled atom and field, then

(E —Ho —6)FG» =P»+ ( V —6)FG», (3.11)

FP = P [Z H, P-„VF-P,]
1

0

1
+ (v- e)Fp„.

0

On choosing

8 =PNVFPN,

this simplifies to

1

o N N

(3.12)

(3.13)

1

0 N N

where 6 is to be determined later. This can be
written as

G(E)=, G,(E) =-1 1

0
(3.2) =PN+ VI'PN

0
(3.14)

G(E) satisfies the integral equation

G(E) = Go(E) + Go(E) VG (E). (3.3)

[P,H, ] = 0. (3.4)

We introduce projection operators PN, which pro-
ject onto the space of states containing N photons,
independent of the atomic state:

The second step is a consequence of (3.10), and the
third step of a geometric series expansion in which
each term after the first contains the factor P„(1
-P„)=0. Equation (3.14) can be iterated to give
another geometric series which can be summed

1 -PN 1 -PN 1 -PN
0

" Z-H Z-H0 0

We shall call

G»(E) =P»G(E)P» (3.5)

1
N E H V N&

N
(3.15)

a diagonal Green's function. It is an operator in
the space of N-photon states and the atomic states.
The Green's function

G(E)P» =F(E)G»(E) (3.6)

has matrix elements connecting N-photon states
with all other states. Following a method of Gold-
berger and Watson, "we find an expression for
F(E)P».

G(E) satisfies the equation

(E Ho)G= 1+ VG, —

so that

with

V„=(1 -P„)V(1-P„). (3.16)

VN has no nonzero matrix elements connecting N-
photon states with others. From (3.15) we obtain

PNVI"PN-=6 =PNVg
1

o N

and consequently

(3.1 t)

G„(z)=
E H, P„v[1/(E H-, —V—„)]VP„'-

(3.18)

where we have used the property of V that
(Z H, )FG„=P„+VF G-„.

From this,

" &-Ho-PNV+PN '

(3.8)

(3 9)

PNVP„to implies M =N+1

to omit the term P„VP». We insert g„P„=1 be-
tween V and (E -H, —V„) ' in the denominator of
(3.18), and+»iP„i=1 between (E H, —V„) ' and-
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V. In each case only M =N+ 1 or,V'= N+ 1 con-
tributes. Terms containing

1
+N+& E ~ V NT&

N

do not contribute, because V„has no matrix ele-
ment connectingwith an N-photon state, and so no
product of V~'s can connect an N+1 photon state
with an N-1 photon state. The diagonal Green's
function now take the form

G„(E)=

E -Ho PNVGN+1(E VN) VPN PNVG-P 1(E VN-) VPE
(3.19)

where G», (E, V„) is a diagonal Green' s function
between N+ 1 photon states formed with V„as the
interaction instead of V.

Equation (3.19) is not itself solvable by iteration
because the left side is not of the proper form to
substitute into the denominator of the right side.
Now, however, we may write the analog of (3.19)
for the diagonal Green's function G„„(E,V„) sim-
ply by replacing N by N+1 and V by V» in (3.19).
On doing this to the last term in the denominator,
we get

P g+ i VzG~(E, Vz+, ) V„P„+i= 0

until the last step. In Fig. 1(a) one walk starts to
the right and one to the left. There is also a walk
with no steps. These appear in the denominator
of the Green's function, and in a geometric series
expansion they then appear in all possible se-
quences, including repetitions. Gz+, (E, V„) is
represented by walks remaining to the right of N,
as they cannot ever reach N by action of V„. Sim-
ilarly, the walks representing G„,(E, V„) remain
to the left of N.

The form of G~(E) given by Gontier et a/. is ob-
tained from (3.18) by iterating the Green's function
in the denominator twice, using the appropriate

because

V~G„= (1 -P~) V(1 -P„)P„GP„=0;

so the equation for G„„(E,V„) is simply

+N+1G„„(E,V„)=E Ho —Pn, +x V~-Gz+2(E, V~+i) V~P~+i
N-l~ ' N)

V V~

—
I

Go

&~+i
Ho PN +1 VGA+2(Ei Viv + x) ~N+ z

(3.20)

I I I

N-4 N —2
I I I I

N N+2 N+4

{a)
This can be developed into a continued fraction by
iteration, and the same can be done for G„,(E, V„).
Finally, G„(E) is given by an expression involving
two continued fractions in the denominator, sim-
ilar in structure but simpler than the expression
of Gontier et al. , which we derive below.

The structure of G„(E) and of G«, (E, V„) is
easily visualized in terms of walks. " G„(E) is
represented by a walk whose steps to the right to-
ward larger N are caused by V, and whose steps
to the left, toward smaller N, by V, . In a given
order of perturbation theory, a specific number
of steps is involved; in general there may be any
number from none to infinity, but there must be
equal numbers to right and to left for diagonal
Green's function. Figure 1 illustrates (3.19) and
(3.20). What appear in these figures are proper
walks which start from N and do not return there

+
Fp7zy i i &y~
/Range of walks /,
g for Q&+p(E,V~+~)

V

E

I I I I

N N+2 N+4

(b)

FIG. 1. (a) Proper walks from N to N consist of a di-
rect passage with no sidestep, and of arbitrary walks
staying on or to the right of N+1, and on or to the left of
N-1. (b) %alks representing Gz„(E,Vz) must stay to
the right of N+1, because V& connects N with nothing.
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order of factors

H V-E H'E H NE H'E H V NE H -0+0NO+0NE H V No ~

(3.21)

Using this, (3.18) becomes

E -II, -P,VG, VP„-P,VG, V„(z-a, —V„)-'V„G,VP„ (3.22)

Arguments like those used in deriving (3.19) from (3.18) enable us to write this as

=p„[z a, p-„w, p-„p„w, -G„,(z, v„)w p„p„w -G„,(z, v )w,p„]-', (3.23)

where

Wo = V+GoV + V GoV+

8'+ = V+GoV, , W = V GoV,
(3.24)

and V, are the positive frequency (absorption) and

negative frequency (emission) parts of V.

The diagonal Green's function G„„(E,V„) can be
expanded in powers of VN, and because V changes

1"E H —VG —VN 0 N

(3.25)

Again, we may write the analog of (3.23) for
G~ „(E,V~Go V„), and obtain a form suitable for
iteration into a continued fraction:

the photon number by unity, all odd powers of VN

drop out. The resulting series can then be re-
summed to give

Gg+, (E) Vrf Go Vlr) =
E Ho Prf+sW—oPrr-+o Prr ~s + rr—+s(, nrGovrr)W P (3.26)

A similar continued-fraction expansion of

G„,(E, V„G,V„) also exists.
The connection with the expressions of Gontier

et al. is established by introducing the notations

T= Go~o X= GoR'+,

w. G, = G„(z), (3.27)

g&'G, =G„,(z, v), r"G, =G „,(z, v„).
The walk representation of (3.23) is shown in Fig.

W W~

Range of walks for ' . Ol Range of walks
~W

w
I I

/
I ( f I l I t I I

N 4 N2 N N+2 N+4

FIG. 2. In the denominator of GN(E) there appear Go
represented by the vertical line; W'0 represented by the
simplest possible walks, and the general walks in the
indicated ranges. The vertical scale, measuring the
number of steps, is defined only in each order of per-
turbation theory.

=P,G(z, V„)P„„VG,.

(3.28)

The degree of being off diagonal is reduced by one,
and the process can be repeated as often as needed.
If N'= N+1, (3.28) is sufficient as

P„„GP„=P„,G(z, V„)J„„VG„(Z), (3.29)

2. All sequences of the walks represented occur
in the full Green's function.

The relation of walks to Feynman diagrams is
simple; a photon emission is a step to the right,
a photon absorption a step to the left. The advan-
tage of walks over Feynman diagrams is simply
the direct representation of the total number of
photons in the field at each stage. Using walks it
is easy to count the total number of forward scat-
tering diagrams, and of proper forward scattering
diagrams in any order of perturbation theory.

Off-diagonal elements of G(E) can also be obtained.
If N'&N, from(3. 6) and (3.15) we obtain

1 —p
PN) GPN =PN)F GN =PN) VGN

o

1
N)E H V N+I — N

o N
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and only diagonal elements are involved. This
equation can be read as follows: The system pro-
pagates from the initial N-photon state to N-photon
states which it then leaves never to return, and
propagates via G(E, V~) to the N+ 1 photon states.
This description can easily be extended to N'& N+1.
Equation (3.28) is illustrated in Fig. 3.

If the interaction V contains coupling to only a
single field mode, the diagonal Green's function
describes the forward scattering of photons in this
mode, and the operator 8 =P„V[E H, —-V~] VP~
is the atomic self-energy arising from forward
scattering. This approach to the problem of level
shifts in incident fields was introduced by Chang
and Stehle. ' In applying the method to two-level
atoms, all diagrams automatically included in the
continued-fraction expressions were not included
by them, so that certain significant diagrams were
omitted in their evaluation of Bloch-Siegert shifts.
These omissions are corrected in the calculations
described in Sec. IV.

Recently Bialynicki-Birula and Bialynicka-Bir-
ula" have described an "improved iteration pro-
cedure" for the evaluation of both diagonal and
off-diagonal Green's functions for two-level atoms
interacting with a single field mode. Each itera-
tion increases the range of walks included almost
in geometrical progression rather than in arithme-
tic progression, as with the continued fractions
developed here, but as a consequence each step is
more complicated. It is not clear that there is
great advantage of either over the other for com-
putational purpose. The grouping of walks in their
procedure is illustrated in Fig. 4.

IV. APPLICATION TO THE SINGLE-MODE TWO-LEVEL

PROBLEM

While the projection-operator formalism de-
scribed in Sec. III applies to the general case of
many levels and many modes, it is of interest to
demonstrate the application to two-level single-
mode problems. In this case, as we will see, the
matrix elements, both diagonal and off-diagonal,
of the Green's-function operator G(E) have par-

G~+a(F- V~+t~

GN+t(E, V~ )

~ E

f I I

N N+I N+2 N+3

FIG. 3. Walks representing Q G (E)P~ for N' =N+ 2.
They are confined to successively more restricted areas.
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~ Rp
~ R(
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I

~Rp
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Rp ~Rp

R), ~-,
R~Rp

Rp
~4

I I I I

0 5 I 5 20
I

IO 25 50

Deviotion of photon number from N

iR3

ticularly simple forms.
From Eq. (3.1), the transition amplitude for the

system to go from an initial state Ii) at time t = 0
to a final state

I f& at time t is

1c,(t) = . dE(y I G(E)Ii&e (4.1)

and the probability

,(t) =
I
c ,(t)I'.

The matrix element

(4.2)

(f I G(E)Ii& = &f IPyG(E)P; Ii&, (4 3)

if we take Pz =
I f&(f I, P, = Ii)(iI being the projec-

tion operators onto the subspace (Ii&) and (If&f, re-
spectively. We will use Eqs. (3.19), (3.20), and
(3.28) to calculate this matrix element.

Let Ia) and Ib) be the two states of the atom with
energies E, and E~ in the absence of the field, E~
—E, =to, . Let In, N) be the state of the system of
atom plus field when the atom is in state In) and
the field is in a number state IN), n = a, b

In the Hamiltonian, we have assumed the inter-
action between the atom and the field is such that
every emission and absorption of a photon is ac-
companied by a change of atomic state. This
means, in the case of two-level atom, if we start
the system in the state Ia, N), it never ends in
state Ia, N+m) with odd m or I b, N+ m& with even m,
i.e. , the possible final states a,re

Ia, N+m), m even,

and

FIG. 4. The improved iteration procedure of the
Bialynicki-Birula and Bialynicka-Birula groups walks

, into the simplest walk Ro, and sequences of walks as
shown. The boxes represent complete sets of walks
within the limits of the box, not just proper walks rela-
tive to the center of the box. Only the steps to the right
in each iteration "re shown; an identical set of steps to
the left returning to the y axis is indicated by the arrows.
The reflection of this entire diagram in the y axis must
also be included. All walks represented are proper rela-
tive to the y axis.
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lb, N+m), m odd,

where m can be positive or negative. Hence we
consider the matrix elements

(a, N+m lG(E)la, N), m even,

&b, N 1-m
l
G(E) la, N&, m odd.

Also, the projection operators P„, is a pro-

jection operator onto a one-state subspace, i.e. ,

a, N+m a, N+m, meven,
N+m

lb, N+m)(b, N+ml, m odd.

Under these circumstances the diagonal Green's
function is not an operator in a multidimensional
state space, but is just a matrix element, and
(3.19) becomes

&a, NIG(E)la, N& =

E —E —Nz—a 2 Q2
E —E~ —(N 1)&--, E —E~ —(N+ 1)&u—E-E,—(N-2)(u —$2 E —E, —(N+ 2)(u —g2

where

g = (e'N~l2V)' '&aldlb& (4.5)

and co is the photon energy.
In getting Eq. (4.4), we have neglected the de-

pletion of the photons, but it is not essential since
we can vary the number of photons N in $ at every
stage. Apart from this, (4.4) is dxactly the same
as that obtained by Swain, "but the use of projection
operators here has greatly simplified the deriva-

(4 4)
I

tion. In the language of forward scattering of
Chang and Stehle, ' the two continued fractions in the
denominator of (4.4) are just the matrix elements
of the forward scattering mass operator. The first
one corresponds to the forward scattering process
in which the first vertex is an absorption and the
second corresponds to those with the first vertex
an emission.

For the off-diagonal matrix element, we use
P„„„for P„, in (3.28) and follow the same pro-
cedure as in the diagonal case. We have

(N, a
l G(E) l N, a) ( ~,p, . . .g), positive m

&N+m, nlG(E)lN, a& =
(N, alG(E)lN, a&$ "~,~, . . .@,negative m

(4.6)

where n = a, when m is even, a = b when m is odd,
and

positive m, (N+m, nlG(E)lN, a) =1/f (E), (4.8)

E —b„—
E —b

Z-b—
E —b

negative m,

(4 7)

the energy eigenvalues E~ are the zeros of f„(E),
and

~-iEyt
dE(N+m, nlG(E)lN, a)e '

27TZ , f'E~
(4.9)

with

l'E, +(N+m)&u, m odd,
b E, + N+m co, m even.

Equations (4.6) can also be obtained by taking the
matrix elements of Eq. (3.3) between states with

photon numbers differing by one, and solving the
set of infinite simultaneous algebraic equations as
pointed out by Bialynicka-Birula. "

Now that we have the digaonal and off-diagonal
matrix elements of G(E), it is not difficult to eval-
uate the integral in (4.1) using the calculus of res-
idues.

This can be easily evaluated numerically.
In the diagonal matrix element, if the continued

fractions are truncated at some stage, the result-
ing finite ones can be expressed as ratios of two
polynomials, It is known that the zeros of the de-
nominator are all real and the residues are all
positive and have unit sum. ""Poles of the matrix
elements correspond to the stationary states of the
total Hamiltonian, including both atom and field;
so the number of poles included is the number of
states of the system that are considered to be
superposed in any given truncation. If only two
poles are included, one gets the usual Rabi for-
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mula. This can be described as the next-to-lowest
order Weisskopf-Wigner approximation in the
sense of Grimm and Ernst, "the lowest order being
the rotating-wave approximation with no Bloch-
Siegert shifts. When more poles are included,
states of the system involving photon numbers dif-
fering more from the initial one are included, cor-
responding to the higher-order Weisskopf-Wigner
approximation. This interpretation is closely re-
lated to the level-crossing and anticrossing dia-
grams of Cohen-Tannoudji et gl."

In the off-diagonal matrix elements (4.6), the
additional continued fractions S 's do not introduce
extra poles. If the S 's are written as the ratio of
the two polynomials, the denominator of S is ex-
actly the numerator of S, for positive m, so
that the zeros of the denominator of X) 's do not
lead to poles. The same thing can be said for neg-
ative m.

In the experiment of Arimondo and Moruzzi, "
the measurement of the Bloch-Siegert shift in op-
tically oriented '"Hg vapor was done for single-
photon and three-photon transitions. For this ex-
periment, it is enough to calculate the time-aver-
aged transition probability, but we also have to
sum over all possible final photon number states
because the final photon number is not observed.
So, what we really want to calculate is

2

P.-, = Q ( ~
.

(

z(N dm, blclE)lnr, a&e ' '

PTER

t
m Odd

(4.10)

where ( ~ ~ ), means the time average and the sum-
mation runs over odd m only.
P, ~ is a function of three parameters m„cu,

and $. In the experiment of interest, the RF pho-
ton energy co is kept constant, the atomic level
separation &, is varied by changing the Zeeman
static magnetic field. For different RF field in-
tensities, i.e. , different g, the resonant &u, is de-
termined as that maximizing P, ~. We follow the
same procedure here to determine the resonant
positions. Typical resonant curves for two RF in-
tensities are plotted in Fig. 5 to show the shifted
resonant positions and power-broadened peaks for
one- and three-photon resonances. The resulting
Bloch-Siegert shifts as a function of RF intensity
are plotted in Fig. 6. Notice that the locations at
which the resonant &u, = 0 are $ = 1.2024 for one-
photon case and $ =2.7600 for three-photon case,
in agreement with the exact solution, these $ 's
being proportional to the first two zeros of the
Bessel's function of order 0.

During the course of numerical evaluation, the
number of poles to be taken, i.e. , the stage of
truncation of the continued fractions, is determined

0.4

t
O

0.2

0
0

I

I.0
I

2.0 3.0

FIG. 5. Time- averaged transition probability. Both
one-photon and three-photon resonances are shifted and
broadened as $ increases. For g/m=0. 7, the one-photon
resonant uo has passed coo

——0.

by increasing the number of poles until the transi-
tion probability is stabilized.

In (4.4), if we truncate the first continued frac-
tion at the first stage and neglect the second one
altogether, we have the rotating-wave approxima-
tion and on1y the proper walk (a) in Fig. 7 and its
iterations are included in the forward scattering
mass operator or level shift. The first stage of
the second continued fraction contributes the prop-
er walk (b) of Fig. 7 and corresponds to the lowest-
order counter-rotating wave. Including both first
stages thus includes all walks between N+ & in the
Green's function. Going to the second state in both
continued fractions includes the proper walks (c)
of Fig. 5, and the Green's function then includes
all walks between N+ 2. The general case is now
clear. The further one goes before truncation, the
wider the range of included walks. The range of
included walks is a more convenient characteriza-
tion of the degree of approximation than the num-

0
I.2—

OP
C.

U
E

I, 8

0.4—
O
C,
O
OJ

0
0 I 0 l. 2024 2.0 2.7600

r f am plitude

FIG. 6. Bloch-Siegert shifts. The scale is the same as
that in Ref. 10.
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t — photon resononce

I I

N-2 N 8+2 N-2 N N+2

(o) (b)

0.2

N-2 N N-2 N N-2 N N-2 N

etc.

0.2 0.4 0.6 O. 8
rf amplitude

etc. 3- photon resonance

N N+2 N N+2 N N+2

(c)
N N+2

FIG. 7. Walk (a) and its iterations yield the rotating-
wave approximation for a two-level atom interacting
with a single-mode field. Adding walk (b) includes the
counter-rotating wave, and yields the lowest-order
Bloch-Siegert shift. The proper walks (c) are those in-
cluded, together with all their combinations, in the
truncation of (4.4) at the second stage.

ber of steps, which is the same as the order in
pe rturbation theory.

Using the present approach, the widths of the one-
photon and three-photon resonances can also be
predicted. Iooking at Fig. 5, we see that due to
power broadening, the two resonance peaks are
overlapping for higher RF intensities. It is not
possible to determine the full width at half height.
Instead, we plot the full width at 80/p peak height,
to see how the resonance is powerbroadened. The
results are shown in Fig. 8. For lower intensities
the width of the one-photon resonance is linear in

g, and of the three-photon resonance is proportion-
al to $'.

While the projection-operator technique is used in
the resolvent formalism of Cohen-Tannoudji, "' it
is essentially a perturbation expansion in the mass
operator, which in a sense is different from the
conventional perturbation expansion. But we have
shown here that the repeated uses of the same
operator technique lead to the continued-fraction
expression for the mass operator, and it converges
much faster in the sense that if we truncate at one
stage further, infinitely many more diagrams are
included as discussed above. Also, they evaluated
the resonance position using a two-pole approxi-
mation together with the condition BE/Be, =0. The
accuracy of the two-pole approximation is difficult
to estimate when the intensity is high.

We end this section by noting that the Bloch-
Siegert shifts obtained above are in exact numeri-
cal agreement with those of Stenholm. ' However,

0.2—

04 0.8 l.2

rf amplitude

l.6

FIG. 8. Widths at 80% peak height. The scale is the
same as in Fig. 6. (a) One-photon resonance, the plot is
limited to ( ~ 0.8 due to the overlap with three-photon
resonance. (b) Three-photon resonance for ( ~ 1.6 due to
the same reason as Fig. 8(a).

V. DIAGONALIZATION OF THE TOTAL HAMILTONIAN

The transition probability considered in Sec. IV
can also be calculated by diagonalizing the total
Hamiltonian. The state of the system at time t is

I t) e
—j Ht

I

.
) (5.1)

by applying the time evolution operator to the state
Ii& at time t= 0. The transition amplitude to a
state If& at the general time t is then

c, ,(t) = P (f IE )&E I'&e-' (5 2)

where IE&& is the eigenvector of H with eigenvalue

For the two-level single-mode problem, the time-
averaged transition probability is

u odd
X.

(5.3)

in the context of Stenholm's semiclassical theory,
the Hamiltonian is time-dependent, and conse-
quently there are no energy eigenstates. The phys-
ical interpretation of the poles, especially when
more than two occur, is obscure. We have also
obtained the shape of the resonances with noadjust-
able parameters, such as Stenholm's phenomeno-
logical pumping and damping parameters.
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The Hamiltonian being considered couples state la, N) with states lb, Na 1) only. Therefore there is no
direct or indirect coupling of la, N) with la, N+m) when m is odd, or with lb, N+m) when m is even, and
then two sets of states can be treated separately. Within one of these sets the Hamiltonian matrix has a
tridiagonal form

lf, N-1) la, N) lf, N+1) la, N+2). . .

la, N 2) -E, + (N 2)&v-

lf, N-1)

(e)=la N&

lt, N+ 1&

la, N+2&

E~+ (N 1)&u-

E~+ (N+ 1)(u

E, + (N+2)(o

To study the time development of a state containing
N photons, initially one selects a finite segment of
this infinite matrix containing the initial state and
those within a certain range of photon numbers
around it. diagonalizes it, and applies (5.3) with
the summation restricted to the selected range.
The selection of the range of states to be included
is equivalent to choosing the stage of truncation of
the continued fractions of Sec. IV, and it deter-
mines the maximum excursion of the included
walks from the initial photon number. The actual
calculation is done numerically, the range of
states being increased until the results are stable
within the desired accuracy.

This method can be extended to more than two
atomic levels in a straightforward way; the re-
sulting Hamiltonian matrix has a band of nonzero
elements along the diagonal. Here also, the states
separate into two independent sets if the atomic
states are like Zeeman states with coupling only
between adjacent ones. In this way the experi-
ments of Arimondo and Corbalan" on "Rb, and of
Kusch" on "K can be analyzed. As applied to the
two-level system of Arimondo and Moruzzi, the
diagonalization method yields exactly the same
results as obtained in Sec. IV.

VI. CONCLUSIONS

The theoretical analysis of the interaction of an
atom with an incoming radiation field given here
provides a clear physical picture of the fundamen-
tal processes involved and of the meaning of the
iteration procedure used in numerical evaluation
of the physical quantities desired, the transition
probabilities and the shapes of resonances. In the
case of a single field mode, the effects of the in-

coming field are most naturally described in terms
of forward scattering, as has been appreciated in
treatments of scattering by free electrons for a
long time. This interpretation provides the clear-
est connection with the standard quantum electro-
dynamic treatments of level shifts arising from
vacuum fields. The derivation of the diagonal and
off-diagonal Green's function does not, however,
involve any of the complications associated with
the treatment of virtual photons.

We have provided a unified derivation of results
already given by Swain' and by Gontier et aE.' and
in the direct diagonalization method we have given
an equivalent way of preceeding which is simpler
to apply to the problem of many level atoms. The
Green's-function approach in this case involves
the complication that the effective interaction V„
occurring in the continued fraction is an operator
in the space of atomic states, a fact which intro-
duces formidable technical complications in nu-
merical calculations.

The walk diagrams we have introduced furnish a
means of specifying the order of approximation
used in numerical calculation, and provide a clear
picture of the structure of both the diagonal and
off-diagonal Green's functions. The advantage
over the usual Feynman diagrams is that the order
of approximation, which is distinct from an order
of perturbation theory, is made manifest.

We do not fully understand the relation of this
work to that of Stenholm. ' The results for the
Bloch-Siegert shifts are identical with his, but
Stenholm's theory includes in an essential way a
pumping and a damping parameter whose values
do not affect the position of the resonance but seem
to affect its shape. No such parameters occur
here.
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