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This note supplements a recent analysis of the bistable ballast resistor, by Ross and Litster. Their discussion of
static phase boundaries is extended to the case of motion with uniform velocity. The existence of,an effective

potential, entirely analogous to equilibrium, and dependent on detailed balance, is questioned.

Ross and Litster' have presented a theory of
the ballast resistor along the lines of other re-
cent treatments of systems far from equilibri-
um' and have thus presented a particularly sim-
ple example for such discussions. This note sup-
plements the discussion by Ross and Litster in
two directions. Ross and Litster, following the
earlier work of Busch, ' show that there is a par-
ticular value of current at which the resistor
has a low-temperature phase (T, ) and a high-
temperature phase (T, ) which can coexist sta-
tically. The current at this point of phase
equilibrium satisfies a form of Maxwell construc-
tion. We show that this nonstochastic discussion
can easily be extended to yield the velocity of the
boundary between high- and low-temperature
phases as a function of the degree of departure
from the current required for static coexistence.
This is then equivalent to a rate of melting, or
a rate of magnetic switching, which depends on the
deviation from equilibrium. We then go on to a
discussion of the stochastic part of the Ross and
Litster paper and explain our doubts about the
existence of a potential function in this system.
Bedeaux, Mazur, and Pasmanter' have provided
another recent analysis of the ballast resistor,
limited to deterministic (i.e., nonstochastic) con-
siderations. We shall not comment explicitly
on their work, though the contents of this note,
as well as an earlier one, ' are relevant to their
work.

The basic equation of motion in this system
[Eqs. (5) and (6) of Ref. 1, rewritten slightly so as
to emphasize that we are concerned with the tem-

perature T, and not just small deviations &T
from a spatially uniform steady state] is

BT 8c„=-A(T) + i'R + X
Bx

For the sake of simplicity we have written the
equation in a form which assumes a constant
thermal conductivity A., independent of T. Ref-
erence 1 shows that a static phase boundary be-
tween a low-temperature phase T, and a high-
temperature phase T, can exist at a current i,
at which

TO

(A —i', R) dT =0.
~a

The treatment of Ref. 1 can be readily extended
to the case of a uniformly moving phase boundary,
if the external circuit is such as to maintain a
constant flow in the ballast resistor, while the
phase boundary moves along the wire. ' We do
this by following the spirit of other treatments
of solitary waves' " and assume a temperature
profile

(2)

and substitute this in Eg. (1). This yields

6/ T ' AT, +c„u
d

-A(T)+i'R(T)=0. (4)

This equation is entirely analogous to an equation
of motion, in a damped potential

mg+ pj+ =0.BP
BQ
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Equation (4) deals with temperature as a function
of position, whereas Eq. (5) deals with position
as a function of time. Thus in the analogy T is
replaced by q, z is replaced by t, A, by m, c„u
by the damping constant P, and

V= -A+i'g dT. (6)

The force -& V/Sq vanishes at the initial and
final steady states, a and b. The values of the
potential V at a and b will, however, be unequal
unless Eq. (2) is satisfied. If Eq. (2) is satisfied,
then we have a potential V(T) = V(q) as shown by
the solid line in Fig. 1. We then have a solution
to the equations of motion, i.e., Eqs. (4) and (5),
which departs from a and comes to rest at b, if
and only if the damping vanishes, i.e., u =0. De-
note the corresponding current by io as ln Fig.
1 of Ref. 1. Now consider what happens as i is
changed away from i,. For lower values of cur-
rent, e.g. , i, in Fig. 1 of Ref. 1, we have an ef-
fective potential as shown by the dashed line in
Fig. 1. A system now makes the transition away
from a, coming to rest at b, only if Eqs. (4) and
(5) provide just enough damping, via c„u = p, to
account for the required energy loss. Thus u
must be positive. If u is positive, the temper-
ature profile moves to the right. Thus if the pro-
file displays a transition from a to b, as x in-
creases, then the resistor makes a transition
from 5 to a in time. Thus for i& i„a is favored
and the phase-boundary velocity increases with
the difference ( i —i,(. Similarly, for i& i„b
is favored. For small departures from io, and
thus for small damping, the energy losses arising
from Eq. (5) can be calculated from the unper-
turbed solution for q, resulting from P = 0, and
from the solid curve in Fig. 1. We shall not, how-
ever, take the space to display these equations
explicitly.

We have, at this point, completed our discussion
of the nonstochastic part of Ref. 1, and now move
on to aspects where the fluctuations play an es-
sential role. In equilibrium thermodynamics the
equality of free energy of two phases assures their
equilibrium along all paths which can convert one

v is the drift velocity of the distribution function
p along the temperature axis. This is just T, as
given by Eq. (1), with O'T/Bx' =0. D, in Eq. (7),
represents the effects of noise, not shown in Eq.
(1), and gives the diffusive behavior along the
T axis. This term permits ensemble members,
which are initially at the same value of T, to sep-
arate with time. In the steady state setting
sp/st=0, yields

v
p =A. exp —dT.

D

If D were a constant in Eq. (8), then p(a) = p(b)
would correspond to

(8)

phase into another. In nonequilibrium situations
we can have circulation, i.e., a departure from
detailed balance, accompanying the steady-state
distribution function. Such circulatory effects
prevent the existence of a simple potential func-
tion' of the form put forth as a conjecture in the
discussion following Eq. (13) of Ref. 1. Ross and
Litster' have cited this remark, as made by this
author; here we point out why the ballast resistor
can exhibit circulatory effects. We shall do this
by showing that Eq. (2), which corresponds to
static phase boundaries, does not correspond to
zero flux between phases a and b, along a different
conversion path.

The actual ballast resistor, as considered by
Busch, ' is complicated by boundary conditions
at the ends of the heated wire. These do not,
however, appear in the discussion of Ref. 1. For
simplicity, we will also discuss the analytically
simpler system of Ref. 1 which, presumably,
corresponds to periodic boundary conditions.
(Our discussion is, however, readily extendable,
in a qualitative way, to the complexities of the
more realistic case. } Consider a spatially uniform
transition from a to b, i.e., one in which T changes
simultaneously all along the ballast resistor. If
we are constrained to changes along such a one-
dimensional set of intermediate states then:the
resulting distribution function p(T) obeys a Fok-
ker-Planck equation"

Bp 8 8 Bp
8( BT Bg BT

VJI

FIG. 1. Effective potential in Eq. (5). Solid curve
corresponds to io of Fig. 1 of Ref. 1. Dashed curve
corresponds to the lower current i 2.

v dT =0.
a

This, however, is identical to Eq. (2), which was
derived from a deterministic, rather than a sto-
chastic theory. Q, however, is unlikely to be
independent of T, as demonstrated by the equa-
tions in the appendix of Ref. 1. Thus we cannot
expect J,'(v/D)dT =0 to be satisfied at the same
time as J' v d T = 0. Hence the spatially uniform
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temperature transition does not vanish when the

phase boundaries are stationary. We have, of
course, in this discussion, considered only a
very small subset of the totality of paths between
the two terminal states, but that is all that is
needed to demonstrate the existence of circulation.

We have oversimplified the situation slightly.
Our Eq. (2) represents the condition for stationary
phase boundaries. The total transition, however,
from an initially uniform A state to a final uni-
form B state, via a moving boundary, also in-
cludes an initial nucleation of a phase boundary.
This total process, including nucleation, cannot
be completely independent of fluctuations, and
cannot be described with complete accuracy by
Eq. (2). Nevertheless, it is clear that noise
sources are much more critical in the case of the

spatially uniform transition. Hence we do. not

expect the qualitative distinction between the two

alternative transition paths to disappear. It
is true, of course, that in a long enough sample
the rate of spatially uniform transitions will be-
come ver y small compared to the rate of spatially
inhomogeneous transitions. Thus in the long sam-
ple Eq. (2) (or its refinement which does justice
to the nucleation event) may be a reasonable ap-
proximation.

As a subsidiary point we will also, here, dis-
cuss two of the points in the appendix of Ref. 1.
The equations in the appendix of Ref. 1 imply that

the voltage fluctuations generated in each section
of the ballast wire affect only the heat generation
in that section. Furthermore it is assumed that
the noise generated in the remaining part of the
circuit has no influence on the dissipation in the
ballast resistor. If the ballast resistor current
i is not allowed to fluctuate, these assumptions
are valid, but in that case the heat fluctuations
are given by ei, where e is the fluctuating voltage
and i the fixed current. This is not the form of
the equation for Q, (k, ~) given in Ref. l. A second
and separate point: The appendix of Ref. 1. deals
only with noise at a uniform steady state. But,
as str ssed elsewhere by the author, " the macro-
scopic kinetics, e.g. , Eq. (1), and the noise
sources at the steady states (a and b) do not neces-
sarily determine the noise sources in between
these steady states. This has already been il-
lustrated in our discussion by the appearance,
in our Eq. (8), of the diffusion constant D, for
the intermediate states. An accurate deter mina-
tion of relative stability requires an explicit de-
scription of noise along all the transition Paths
bet&veen takeo steady states.

The author is indebted to B. Ross for stimulating
correspondence on these questions. This ex-
change has narrowed the gap between our re-
spective viewpoints, without necessarily leading
to complete agreement.
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