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We solve in closed form the boundary-value problem for the partial differential equations which describe the

(azimuthal) rotation velocity and induced magnetic fields in a cylindrical plasma centrifuge with ring

electrodes of different radii and an external, axial magnetic field. The electric field, current density, and

velocity distributions are discussed in terms of the Hartmann number H and the magnetic Reynolds number

R. For small Hall coefficients, cov &1, the induced magnetic field does not affect the plasma rotation. As a
result of the Lorentz forces, the plasma rotates with speeds as high as 10' cm/sec around its axis of symmetry

at typical conditions, so that the lighter (heavier) ion and atom components are enriched at (off) the center of
the discharge cylinder.

I. INTRODUCTION

In principle, electromagnetic forces allow
plasmas to be rotated up to relativistic speeds.
Theta pinch experj. ments show that the plasma
rotates during the discharge pulse at such high
speeds that the energy distribution of the emitted
neutrons is shifted. ' From the theoretical point
of view, the basic mechanism for plasma rotation
by means of crossed electric and magnetic fields
and I orentz forces in rarefied' "and dense" "
plasmas is understood qualitatively. Experimental
evidence on isotope separation in rotating plasmas
has been reported, e.g. , by Bonnevier, ""Quil-
loud, "Heller and Simon, "James and Simpson, "
and Ban and Sekiguchi. 23'4 Exact solutions for
the boundary-value problems describing plasma
centrifuge systems are not known, either for col-
lisjon-domjnated ' or for collisjonless 4 ples-
mas.

A simple model for an electrical discharge cen-
trifuge with an axial, external magnetic field B,
is shown in Fig. 1. This plasma centrifuge em-
ploys electrodes of different radii R, and R
(R.» R ) in the end plates z = + c of an electrically
isolating discharge chamber of radius R, so that
the field lines of the current density j and of the
external axial magnetic field B, cross under a
nonvanishing angle (except at the chamber axis).
The resultant Lorentz force j x B, rotates the dis-
charge around its axis of symmetry. In steady
state, the magnetic body forces in the azimuthal
direction are balanced by the viscous forces
(boundary layers at the chamber walls). As op-
posed to a centrifuge with radial electric cur-
rent flow between inner and outer cylinder
electrodes, the centrifuge schenfe in ~Fig. I avoids
the boundary layer and losses at the inner cyj.ind-
er surface. In the following, the boundary-value
problem for this centrifuge is solved in closed

form based on the magnetogasdynamic equations
for dense isotope plasmas with negligible Hall
effect, i.e. , &s~« I (~= eB/m and ~ are the gyra-
tion frequency and collision time of the electrons).

II. BOUNDARY-VALUE PROBLEM

The plasma centrifuge model under considera-
tion is depicted schematically in Fig. 1. The
plasma is sustained by a discharge current I,
which enters the centrifuge chamber of radius
Rp through'a ring anode of radius R, in the anode
plane z =+ c and leaves it through a ring cathode
of radius R in the cathode plane z= —c. Accord-
ingly,

&Rp

q.(r, z) ~ dr =I
&p

"Rp
5(r ft, ) d~=f,

4p

R,

R R/R Ro

-Z

FIG. i. Scheme of plasma centrifuge of radius Ro and
height 2c with cathode (R„), anode (R,), and axial magnet-
ic field i, (Z, »a ).

[5(~—R,) is the Dirac function] for the axial cur-
rent density j, in any plane —c —z —+ c. The ex-
ternal magnetic field is axial and homogeneous:
B,=(0, 0, B,). In view of the symmetry of the sys-
tem with respect to the axis r=O, the plasma flow
field is azimuthal, V=(0, V,(x, z), 0), so that V V
= 0, i.e. , the plasma flow is incompressible. For neg-
ligible Hall effect (~v« 1), je=0 and v x B

+Z
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= p,(j„,0,j,) in accordance with Maxwell's equation
for the magnetic induction B. Hence, B„=O and
B,= 0 because of the homogeneous boundary con-
ditions for B„and B, H. owever, Be(r, z) w0, since

Be(r, z)„~ = p, ol/2vRO, —c ~ z ~+ c,
——[rB(r z)~ = ' ' 0
1 8 p, ,I 5(r-R,)9, =ac 2& & 0

V(p, f)~,~
= 0, 0~ p~ 1,

B(p, ~)„=R, —1~/~+1,

with

1 8
, —[p—B(p,K)],=„=

R6 p —p, (10)

and

p=r/R„O~ p~ 1,
f=z/c, —l~ f —~1+,

(1)

(2)

V(p, g) = V~(r, z)/V, B(p, t) =Bg(r, z)/B, (3)

where the reference value V, is defined as

Vo
=I/2mRO Booc . - (4)

In the dimensionless formulation, the boundary-
value problem for the azimuthal velocity V(p, g)
and azimuthal induction B(p, g) fields assumes the
form

Since the induced magnetic field (B,) is azimuthal,
the induced electric field (E„) is due to the rota-
tion (V,) of the plasma across the external mag-
netic field (B,) Th.e pressure distribution p(r, z)
in the rotating plasma is determined by the ~ and
z components of the magnetogasdynamic equation
of motion" (p~=plasma density),

BP . BP—PJ j,Bg, 0= ——+ j„B~,8'v . Bz

where

1 8 . BBe——(rB,)=V j — '= p j .
Bz o r.

The current density j(r, z) and pressure p(r, z)
fields are readily determined from the magnetic
field B= (0, B„B,) and the velocity field V
= (0, V„O), whereas the electric field is given by
Ohm's law, E= —V&& B+j/o; The fields Ve(r, z)
and B~(r, z) are described by the 8 components of
the magnetogasdynamic equation of motion and the
magnetic induction equation, respectively. "

For physical and mathematical reasons, it is
suitable to formulate the boundary-value problem
for the coupled plasma fields V~(r, z) and B~(r, z)
in dimensionless form by introducing the dimen-
sionless independent and dependent variables

H = (o/p—.)'~'B,R„N= c/R-, ,

R = p, I/-2mRQ, = p, ,o V,c ~ 0.
The Hartma, nn number II(p. is the plasma vis-
cosity), N, and the magnetic Reynolds number R
characterize the ratio of Lorentz to viscous
forces, the geometry of the centrifuge, and the
intensity ratio of the induced and external mag-
netic fields, respectively. Equations (7}, (8) and

(9), (10) are the homogeneous and inhomogeneous
boundary conditions for the fields V(p, g) and

B(p, g), respectively. The linear statement,

B(p, r) = Rp+ +(p, K), (12)

reduces the Eqs. (6), (9), and (10) for B(p, g) to
equations with a homogeneous boundary condition
(14) for 4(p, g)

1 8 BC C, B'C R BV
p ——2+N

p Bp Bp p' 8$' N' 8$'

where

e(p, g), , =0, 1 g +1,

(13)

(14)

V„(p, &) = ~,(~.p)f„((),

~„(p,t) = ~,(&.p)g„(t), (17)

where the eigenvalues k„&0 are determined by the
homogeneous boundary conditions (7) and (14) as
the real roots of the transcendental equation,

J',(k„)=0, n=1, 2, 3, . . . . (18)

Thus, the general solution of the coupled Eqs. (5)
and (13) obtains by linear superposition as the
Fourier-Bessel series"

——[p@(p, g)j~ ~=R ' 2, 0~ p~l. (15)
5(p- p,)

pBp p

: Introducing Bessel's function J,(k„p) of first order,
partial solutions of the coupled inhomogeneous
Eqs. (5) and (13}are sought in the form,

1 8 BV V 8 V II BB
p -~+N

p Bp Bp p 8$' R 8$'

1 8 BB B 282B 8 BV——p -m+N '
p Bp Bp p

where

V(p, t), , =0, —1 —t. —+1,

(5)

(7)

(19')

(20)

V(p, &)= + ~,(I„p}f„(k),
n=1

00

~(p, 0) = g~, (&.p)g„(&)

Substitution of Eqs. (16) and (17) into Eqs. (5) and
(13) yields ordinary coupled differential equations
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of second order for f„(g) and g„(K):

f„"—k'„Ã'f„= H2N-2R 'g„',

g„"—@V'g„=-Rf„'.

(21)

(22)

(30) and (31) into Eq. (21) and Eq. (22) yields

4'„[((o'„)2 —@V2]/(a'„= H'-N'R ' tanhu) '„D„', (32)

B„'[(~'„) —@V ]/~„'= HN-R cothu)„' C'„, (33)

By elimination, Eqs. (21) and (22) are reduced to
decoupled differential equations of fourth order,

f"' (2k 4. H )N f '4. k N4f =Q

g
ssss (2k2+ H2)N2gss + k4 N4g Q

with

f(~), „=o,
g„(g)q „—- 2Rk„'Jo(k„p,)/J', (k„),

(24)

(25)

(26)

as boundary conditions, by Eqs. (8) and (15), re-
spectively. In deriving Eq. (26), the Dirac func-
tion in Eq. (15) has been. expanded in the Fourier-
Dini series, "

(27)J2(k )
o nP.

In addition to Eqs. (25) and (26), f„(g) and g„(f)
have to satisfy also the coupled Eqs. (21) and (22).
With the four real roots of Eqs. (23) and (24) [f„,g„
O- et4)f

and

C'„[(&u„')' —@V']/e'„= Rta-nh~„'B'„,

D'„[(v'„)' —kQ']/e„'= Rco-thou'„/1'„,

(34)

(35)

respectively. The coefficient determinant of Eqs.
(32) and (35) or Eqs. (33) and (34) vanishes (condi-
tion for existence of nontrivial solution),

g4 —[(~4)2 k2P 2] 2 H2N2( 4)2 0 (36)

in agreement with Eq. (29). From the latter or Eq.
(36) one deduces the relations,

[((g'„)2 —k~P" ]/(~„'= +NHs

which simplify the left sides of Eqs. (32) and (35).
Application of the boundary conditions (35) to Eq.

(30) shows that

A.„=+A. '„=—A„, -B„=+B'„—= &„. (38)

Substitution of Eq. (38) into Eqs. (30) and (31) gives

sinh&u'„g sinh&u„g

sinhur'„sinh~„

where
cosh&'„f cosh+„f
cosh~+„coshco„ (39)

Sill„g cosh(d„g
" sinhM„" coshco„

, sinh&u'„f, cosh&a'„t
" sinh~'„" cosh+'„

(30)

&4 —2 4/2N((2k2+H2) y[(2k2+H2)2 4k4]l/2)l/2

(29)

the general solutions for f„(g) and g„(g) of Eqs. (23)
and (24) can be written as

( )
slnh(d+„g cosh(d „f

" sinh~'„" cosh~'„

A oosoz'„g cosh',
g)"NH sinhur'„sinh~„

sill~„'g sinh~„$
"NH cosh~'„cosh~„ (40)

the latter under consideration of Eqs. (34), (35)
and (37). Application of the boundary conditions
(26) to Eq. (40) yields, upon elimination,

NH J,(k„p )+J,(k„p,)
k„(cothe'„+ cothv„) J',(k„) '

sinhco„g cosh~„g
" sinh~„" cosh&„

NH J,(k„p ) —J,(k„p,)
k„(tanh~'„+ tanh~„) J ,'(k„) (42)

Only four of the eight integration constants
A.„',. . .D'„are independent. Substitution of Eqs.

By combining Eqs. (39)-(42), we obtain the solu-
tions for f„(g) and g„(g) in final form:

f„(g) J,(k„p ) + J,(k„p,) sinh~'„g sinh~„( J,(k„p ) —J',(k„p,) cosh&'„g cosh~„g
NH ( coth~'„+ coth&u„)k„J2(k„) sinh&u'„sinh~„( tanhe'„+ tanh&o„)k„J', (k„) cosh~'„cosh&a„

(43)

g„(g) J,(k„,p )+ J',(k„p,) cosh')'„g cosh(u„Z J,(k„p ) —J,(k„p,)
R ( cothe'„+ cothe„)k„JO(k„) ien'&'„s lnh~„( t anh+ +t a'„nh+„) „kJ(2k) cosh+'„coshuj„

(44)
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Below, also the g derivative of g„(g) is required, which is given by

g„'(r) J,(k„p ) + J,(k„p,),sinh&u'„g sinh+„&
R (cothur'„+coth&u„)k„J', (k„)' " sinhuP„" sinhur„

J,(K„P ) —J,(k„p,) .cosh&ad'„g cosh~+
( tanhw'„+ tanh~„) k„J',(k„) "cosh~'„" cosh&u„

(45)

B(p, C) =Rp+ g J,(k„p)~„(~),
n=l

J,(p, ~) = R'~-'Z J,(k.p)d(~), (48)

J(p, g) =2~R 'g k„J(k„p)g„(g),
n= X

(49)

E,(p, K) = —V(p, k)+ &J,(p,'l), E,(p, k) =&J,(p, d).

(50)

The reference values V, and B, for V(p, g) and
B(p, f) are defined in Eq. (4). The dimensioriless
fields J, &(p, g) and E, ~(p, g) are normalized with
respect to

j,=I/2vRO, Eo = VOBO =I/2mR—ocrc. (51)

If the cathode is in the plane z = —c (g = -1) and
the anode is in the plane z =+ c (g =+ 1), then the
reference fields V,, j„and E, [Eqs. (4), (51)] are
negative, since I & 0. The results are also appli-
cable to the ease where the anode is in the plane
z = -c (g = -1) and the cathode is in the plane z =+ c
(g =+ 1). In the latter situation, the reference fields
V„j„and Eo [Eqs. (4), (51)] are positive, since
I & 0. These explanations hold for magnetic fields
pointing in the positive z direction, B,&0; U,
changes its sign with the sign of B, [Eq. (4)]. Note
that the magnetic Reynolds number R in Eq. (11)
is defined to change its sign with the sign of U,.

III. APPLICATIONS

As an illustration, the radial (p) dependence of
the dimensionless discharge fields V(p, 0), B(p, K),
E,(p, g), J,(p, &), and J~(p, g) has been computed
for I &0 in the cross-sectional planes & = -0.99
(cathode region), & = 0 (central region), and g
: + 0.99 (anode region) based on Eqs. (46)-(50). The
remaining field E&(p, g) is proportional to J&(p, f)

In terms of f.„(g), g„(f), and g„'(g), the solutions
for the dimensionless fields V=(0, V, O), B=(O,B,1),
J= (J&, 0, J& ), and E = (E&, 0, E& ) of the plasma cen-
trifuge are by Eqs. (12), (19), and (20)

V(p, ~) = Z J,(k.p)f.(~), (46)
n=l

[Eq. (50)]. The characteristic (dimensionless)
magnetic interaction number II is treated as a pa-
rameter: H=1, 10, 100. The geometry parameter
N= c/R, is taken to be K=1 corresponding to R,
=c [Eq. (11)]. The radial positions of the cathode
and anode are assumed to be

p =0.01 (R = 0.01RO), p, =0.9 (R, =0.9RO).

With the exception of B,= B+, the dimensional
fields are negative everywhere where the dimen-
sionless fields are positive, and vice versa since
V, &0, j,&0, and Eo&0 forI &0 [Eqs. (4), (51)].

The Eqs. (46) (50) indicate that the velocity field
V(p, g), the current density field J, ,(p, g}, and the
electric field E, &(p, g) are independent of the mag-
netic Reynolds number 8, whereas the induced
magnetic field B(p, g) is proportional to R. This is
due to the azimuthal direction of the induced mag-
netic field B(p, g), which is parallel to the velocity
field V(p, f) of rotation. Accordingly, the plasma
fields V(p, f), B(p, f)/R, J, ,(p, g), and E, ,(p, g)
depend only on the Hartmann number H, presuming
that the Hall effect is negligible (~r«1).

Central xegion, /=0. In Figs. 2-6, V(p, 0),
[B(p, 0) —Rp]/R, E,(p, 0), J,(p, 0), and J&(P, O)

~E~(P, O) are shown versus 0& p & 1 with H=1, 10,
100 as a parameter. It is seen that U increases
considerably at any point 0&p&1 as H is increased.
Similarly, (B -Rp)/R andthe sources J, , of the mag-
netic induction increase in intensity within the main
central region 0& p&1 —hp as H is increased. For
large values H ~ 10, B and J, ~ decrease in the wall
region b, p= np(H}, so that the electrical discharge
becomes more concentrated in the center 0& p&1
—hp of the centrifuge. The intensity of E, in-
creases uniformly in the region 0 & p &1 as H is in-
creased, while E,~J,.

Cathode ~egion, g = -0.99. The Figs. 7-11 show
V(p, -0.99), [B(p, —0.99)-Rp]/R, E,(p, -0.99),
J',(p, -0.99), and J~(p, -0.99) o-E~(p, -0.99) versus
0~ p~1 for II=1, 10, 100. The fields U, E, ~,
and J, ~ increase in intensity at any point 0 & p & 1
with increasing H, whereas B/R decreases in 0& p
&1 with increasing H. Since the ring cathode is at
p = 0.01 (g = —1), the field distributions are more
closely concentrated at the axis p-=0 than those
in the plane g = 0 (Figs. 2-6). Note that the plasma
rotates only in the region p -= 0.1 with a significant
velocity, since the Lorentz force -jQ, decreases



2112 H. E. WILHELM AND S. H. HONG

00 0.2 0.4 0.6 0.8 1.0 P Ep"

-0.0 I
150

-0.02

V i

0,

H=l

100

0

H =10

50

-50

-100

-150-

= 0, and H = 1, 10, 100.FIG. 2. V(p, g) versus p for g=

e ion g =+0.99. The Figs. — p

rapidly with increasing p-

+0.99), [B(p, +0.99 — p

, 100 The velocity field
0.99), Z (p, + 0.99 ~ E& p, +

p =1 10,
d nearly throug e
n 0& ~0 9, since e orfuge cross section p . ,

' or
—' B is strongest in the vicini p=

1) As a result, a thin=0.9 f=+
and steep boundary layer exists c ose

8-Rpi
R

0.4 0.6 0,8 1.0 80 0.2
=0, and H=1, 10, 100.Ep(p, &) versus p for &=

tation atl = 1 with plasma counter-rota(p= p
sufficiently smmall II values. T e r

J clearly indica et that in the
l d' charge has shift-0.99 the electrica xscy

ed to the region p-= 0.9 due o e i
node at p=0.9 (&=+1).

l i ', thode radiusl illustrations, the ca og p
en to be small compared oR was chosen o e

an le between the cur-
h external magnetic fie

R to ensure a large angle e
ldrent field lines j(r) and the ex em

0.2
1.0

0.4 0.8

0.6 0.6

0.8

1.0

0.4

l, 2
0.2

1.4-

=0, and H=1,FIG. 3. [8 p,(,f) —Rptj/R versus p for g =
10, 100.

0 0.2 0.4 0.6 0.8 1.0 p

= 0, and H = 1, 10, 100.FIG. G. Jp(p 'f) versus p for f=, a



J(-2, i

Bo UND AR+ IEM FOR PI ASMA CENTRIFUGE

B-Rp„
R

20

0 02 04 06 ps lp p

10-

lo l5

2p

I I I

0.2 0.4 0.6 O.S

FIG. 6 g(
l.p p

P) 0) 2 PegSgS

po

-0.05

o.4 OS IO P

-o. IO

p & and ~ —f fp happ

Bo, le' ' a significant
son of th

~orentz force
the ~ g.. 2,„„. ' A comI,„,.

is choice of elect
Flg. 12 indicates th t

ary»yer of 1ar e .
ts ln a radia1

the 1ower h 1f
g. width and ]ow 1

a g ~~(0
ve ocjty ln

(op p ~ .
e ceQt;pjf g

e of maximum eff
es choice for a cen

y Figure 12 d

r~(pg) „j~+ ~"e»us 01" g= p gg , Bn

s rates that a ]
radius g'

~ 1e rlsia ve1ocit

1a er
decreas' .

orm1y witI-

w width g
& boundarlng rapid1

cathode a„d
' & ls obtained b

which ls near1»d s g .-g

radius
y s 1arge as th

&0 although g &
.

centrifuge

rent fie1d 1lne
+ ln this case

es 3(&) intepse
y ar

c wj.th B

me
ge angle due to th e repu1slon

0 at a suffjcjien

nts.
of the current f, 1l a
orque re su1ts f

2500

200p

I 50p.

0

I 000-

- IOOO

V 1

FIG. 7. y( ~ ~~ &e&suS p fo",&=—p gg a, and~ f „„,

500

00 o.4 o.s IO p

g. E {
fpp

' ' S p fo =-p gg, and e f fp



H. K. WILHELM AND S. H. HONG

Jp n

2000 -~H =
I

'~H= lo
H= l00

l500

0

—0.002

-0.004-

0

0.2 0.4 0.6 0.8 l.O P

l 000.
-0.2-

-0.4—

500r
0

—20

-40

00 0.2 0.4 0.6 0.8 I.O p

-60

V

FIG. i0. J~(p, f) versus p for (=- —0.99, 3.nd II== i, i0,
i00.

FIG. i2. V(p, g) versus p for g =+0.99, and Il= i, i0,
i 00.

centrifuge with R =8, which is still of the same or-
der of magnitude as for a centrifuge with 8 «9,
(presuming thatI, and J3o, c, and Ro are the same).

'7he Figs. 2—16 are based on the Fourier series
soj.utions, which were summed numerically up to
m=100, and the eigenvalues 0„, m=1, 2, 3, . . .100,
were computed up to the tenth decimal point. The
resulting accuracy is adequate as a test run with
n =- 110 indicated.

The centrifuge analysis presented indicates that
extremely high speeds of plasma rotation are ob-
tainable at moderate discharge currents I and mag-

netic inductions B„presuming the Hartmann num-
ber II is not small, II&1. As an example, consider
an isotope centrifuge discharge with:

II I
= zo' amp, I&o I

= zo' T,
0'= 10 mhom ~ Ap= c= 10, m.

Hence, Dy Eq. (14)

B-Rpi'
R

J( -2n
H=l
H=lo

~H = l00

-0.6

—Q4

3000
—0.2

2000-
0

lOOQ- +0.2

00 0.2 0.4 0.6 0.8 l.O p
0.2 0.4 0.6 0.8

I

l0 p

FIG. ii. J'&(p, f) —2 versus p for f=—0.99, and II =i,
iO, i00.

FIG. i3. [$(p, g) —Rp]/A versus p for &=+0.99, a,nd
H= i, iO, i00.
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'V~=I/2m&, &,cc =(5/m) x 10' msec ',
and, by Fig. 2,

Ve = V, V 10' msec ', for II=100.

Since the working gas of the centrifuge discharge
consists of two isotope gases, the centrifugal
forces would concentrate the lighter isotope ions
and atoms in the central region and enrich the
heavier isotope atoms and ions in the peripheral
region of the discharge. According to the equations
of motion for two isotopes of masses m, and m~,
the isotope density ratio at distances 0&~&R, —hx,

40

30

20

where hr is the viscous boundary layer thickness,
is approximately (T, is the temperature of the iso-
tope ions)

n, (~) n,.(0) —.
" ~m, ,V,(~)'

where the bar designates a spatial average over
the region ~z~ &c.

As a specific example, consider a uranium plas-
ma centrifuge containing the isotope ions (i)U"'
and (j)U'" at a temperature T, =10' K (and elec-
trons at a temperature T, & T,). In this case, one
has gm, , = m(237) —m(235) = 3.320 x 10 "kg, kT
=1.381 ~ 10 '0 J. Hence, the isotope separation
ratio ls:

Fly 37(x) /FEgg5 (7 )

~„,(0)/a„, (O)

==1.128 x 10' for I7',(r) =- 1 x 10' m sec '
==1.617 x 10o for ]~8(~) = 2 x 10' m sec '

"=-2.950x 10' for I'(x) =3x 10' msec '

IO

0

-IO

I 1

O O.2 O.4 O.e O.a i.O p
FIG. 15. ~,(p, ~) versus p for g=+0.99, ~naII=1, 10,

100.

Based on these examples, one can assume with
some confidence that high-power plasma centri-
fuges are technically realizable employing dense,
collision-dominated isotope plasmas. The separa-
tion of isotopes by centrifugal forces in low den-
sity plasmas has been established experi-
mentally

A disadvantage of collisionless plasma centri-
fuges is the small amount of isotopes they per-
mit to separate. The proposed high-density plas-
ma centrifuge would use arc plasmas at pres-
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sures of about one atmosphere so that the isotope
masses separated are increased by orders of
magnitude. The large Hartmann numbers II
=(o/p)'~'B, R, required for high speeds of isotope
rotation are achievable because of the (relative)
small viscosity p, and large conductivity o of gas-
eous plasmas. Speeds of plasma rotation, which
are an order-of-magnitude larger than those in the
above examples, can be achieved at realistic
Hartmann numbers II. Since ~ = 1.76 x 10"B sec,
the Hall effect is insignificant in dense plasmas
for B=1 T as long as 7&10"sec. In general,
the Hall effect increases the speed of plasma ro-
tation for ~7 &1, i.e. , in plasmas of lower den-

sity. " In developing a plasma centrifuge, there-
fore, apparently a trade-off between isotope den-
sity and rotation velocity has to be made.

For mathematical convenience, we have dis-
regarded possiMe secondary flows (superimposed
on the main azimuthal flow) in the analysis of the
plasma centrifuge. Although experiments indicate
secondary flows in the motion of liquids between
rotating cylinders, "secondary flows have appar-
ently not been observed in plasmas which rotate
under the influence of electromagnetic forces. In
spite of the mathematical complications involved,
consideration of secondary flows would be of in-
terest from the theoretical point of view.
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