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We solve in closed form the boundary-value problem for the partial differential equations which describe the
(azimuthal) rotation velocity and induced magnetic fields in a cylindrical plasma centrifuge with ring
electrodes of different radii and an external, axial magnetic field. The electric field, current density, and
velocity distributions are discussed in terms of the Hartmann number H and the magnetic Reynolds number
R. For small Hall coefficients, o7 < 1, the induced magnetic field does not affect the plasma rotation. As a
result of the Lorentz forces, the plasma rotates with speeds as high as 10° cm/sec around its axis of symmetry
at typical conditions, so that the lighter (heavier) ion and atom components are enriched at (off) the center of

the discharge cylinder.

I. INTRODUCTION

In principle, electromagnetic forces allow
plasmas to be rotated up to relativistic speeds.
Theta pinch experiments show that the plasma
rotates during the discharge pulse at such high
speeds that the energy distribution of the emitted
neutrons is shifted.! From the theoretical point
of view, the basic mechanism for plasma rotation
by means of crossed electric and magnetic fields
and Lorentz forces in rarefied'™® and dense!®™°
plasmas is understood qualitatively. Experimental
evidence on isotope separation in rotating plasmas
has been reported, e.g., by Bonnevier,°! Guil-
loud,? Heller and Simon,?! James and Simpson,??
and Ban and Sekiguchi.?®'?* Exact solutions for
the boundary-value problems describing plasma
centrifuge systems are not known, either for col-
lision-dominated®:2¢ or for collisionless®™ plas-
mas.

A simple model for an electrical discharge cen-
trifuge with an axial, external magnetic field §0
is shown in Fig. 1. This plasma centrifuge em-
ploys electrodes of different radii R, and R.

(R,> R.) in the end plates z=+c of an electrically
isolating discharge chamber of radius R, so that
the field lines of the current density j and of the
external axial magnetic field _]§0 cross under a
nonvanishing angle (except at the chamber axis).
The resultant Lorentz force j x B, rotates the dis-
charge around its axis of symmetry. In steady
state, the magnetic body forces in the azimuthal
direction are balanced by the viscous forces
(boundary layers at the chamber walls). As op-
posed to a centrifuge with radial electric cur-
rent flow between inner and outer cylinder
electrodes, the centrifuge schente in [Fig. 1 avoids
the boundary layer and losses at the inner cylind-
_er surface. In the following, the boundary-value
problem for this centrifuge is solved in closed

form based on the magnetogasdynamic equations
for dense isotope plasmas with negligible Hall
effect, i.e., wT<<1 (w=eB/m and T are the gyra-
tion frequency and collision time of the electrons).

II. BOUNDARY-VALUE PROBLEM

The plasma centrifuge model under considera-
tion is depicted schematically in Fig. 1. The
plasma is sustained by a discharge current],
which enters the centrifuge chamber of radius
R, through.a ring anode of radius R, in the anode
plane z=+c and leaves it through a ring cathode
of radius R_ in the cathode plane z=-c¢. Accord-
ingly, ’

Rq R,
2m J j v, 2)rdr=I j o(r -R,) dr=I,
0 0

[6( - R,) is the Dirac function] for the axial cur-
rent density j, in any plane —c=z=+c. The ex-
ternal magnetic field is axial and homogeneous:
§o= (0,0,B,). Inview of the symmetry of the sys-
tem with respect to the axis »=0, the plasma flow
field is azimuthal, V=(0, V,(r, 2),0), so that vV
=0, i.e., theplasma flow is incompressible. For neg-
ligible Hall effect (w7 << 1), j,=0and Vx B

+Z

-z

FIG. 1. Scheme of plasma centrifuge of radius R, and
height 2¢ with cathode (R.), anode (R,), and axial magnet-
ic field By (R,>R.).
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= l(4,, 0, 7,) in accordance w1th Maxwell’s equation
for the magnetic induction B. Hence, B,=0 and
B, =0 because of the homogeneous boundary con-
ditions for B, and B,. However, By(7,z)+#0, since

39(1", z),=R = U I/21R,, —c=z=+c,

1 _ ol 8(r-R)
7 or [TBQ(’V Z)]z == "9r 4

, 0=7=R,.

Since the induced magnetic field (B,) is azimuthal,
the induced electric field (E,) is due to the rota-
tion (V,) of the plasma across the external mag-
netic field (B,;). The pressure distribution p(7, z)
in the rotating plasma is determined by the » and
z components of the magnetogasdynamic equation
of motion®” (p,=plasma density),

ap ap

LBy 0=-2L4i,B,,

v ay(’}’B ) I‘J‘sz, _EB—— “’0]1‘

The current density j (7, z) and pressure p(7, z)
fields are readily determined from the magnetic
field B=(0, B,, B,) and the velocity field V
=(0, V,,0), whereas the electric field is given by
Ohm’s law, E=-VxB+]/o. The fields V,(7,z)
and B,y(7,z) are described by the 6 components of
the magnetogasdynamic equation of motion and the
magnetic induction equation, respectively.?’

For physical and mathematical reasons, it is
suitable to formulate the boundary-value problem
for the coupled plasma fields V, (7, z) and By(7, 2)
in dimensionless form by introducing the dimen-
sionless independent and dependent variables

p=7/R,, 0=p=1, (1)

¢=2/c, -1=g¢=+1, - (2
and l

V(p, £)= V(7,2)/ Vo, B(p,¢)=By7,2)/B,, (3)
where the reference value V, is defined as

V,=I/21R,B,oc. (4)

In the dimensionless formulation, the boundary-
value problem for the azimuthal velocity V(p, ¢)
and azimuthal induction B(p, ¢) fields assumes the
form

19 /8v\ Vv _,0°V_  H?8B
5o (Po) -7 - ®)
18/8B\ B _,¥B RV
;%‘(Tp)‘;?w N oL (6)

where

V(pyg)p_-.l:o, -1l=¢=+1, n

V(p,{):=ﬂ=0, OSPSI, (8)
and
B(p,8),q=R, -1=¢=+1, (9)
R@(p p*) <p<
E%[ B(p, Ol =——5— 0=p=1, (10)
with

H=(0o/p)*?B,Ry,N=c/R,,
R=poI/21R By = ooV, Z0.

(11)

The Hartmann number H (1 is the plasma vis-
cosity), N, and the magnetic Reynolds number R
characterize the ratio of Lorentz to viscous
forces, the geometry of the centrifuge, and the

-intensity ratio of the induced and external mag-

netic fields, respectively. Equations (7), (8) and
(9), (10) are the homogeneous and inhomogeneous
boundary conditions for the fields V(p, ¢) and
B(p, ¢), respectively. The linear statement,

reduces the Eqgs. (6), (9), and (10) for B(p, ¢) to
equations with a homogeneous boundary condition
(14) for ¥(p, &)

10 (30 ¥ \m®¥ A4 (13)
2o \Pap )Y TN R

where

¥(p,8),.=0, -1s¢=+1, (14)

_n(%p=p) - =
2 (2, e =R(HEL_2), 0=p=1. (15)

- Introducing Bessel’s function J,(%,p) of first order,

partial solutions of the coupled inhomogeneous
Egs. (5) and (13) are sought in the form,

Valp, &) =J,(R,p)f (L) , (16)

¥,.(0,8) = Jy(k,p)g, (L) , (1)

where the eigenvalues %,>0 are determined by the
homogeneous boundary conditions (7) and (14) as
the real roots of the transcendental equation,

J(k)=0, n=1,2,3,... . (18)

Thus, the general solution of the coupled Egs. (5)
and (13) obtains by linear superposition as the
Fourier-Bessel series®®

V(p, &)= 2 Jy(k0)f(8), (19
£)= 2 Jy(k,pg,(2). (20)

Substitution of Egs. (16) and (17) into Egs. (5) and
(13) yields ordinary coupled differential equations
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of second order for f,(¢) and g,(¢):
f,’,’ - k2N2fn= _HZNZR-lg;”
&y - kiN’g,= —Rf;.

By elimination, Egs. (21) and (22) are reduced to
decoupled differential equations of fourth order,

(21)
(22)

i (2R + HAN?f) + RN, =0, (23)
gy - (2k2+ HYN?g) + ki N'g, =0, (24)
with ‘
Fl8)go41=0 (25)
8Oy . 1= 2RE, N (k) /T (), (26)
as boundary conditions, by Egs. (8) and (15), re-

spectively. In deriving Eq. (26), the Dirac func-
tion in Eq. (15) has been expanded in the Fourier-
Dini series,*

(p pt 2 2 E JO( knpg

n=1 O(k
In addition to Egs. (25) and (26), f,(¢) and g,(¢)
have to satisfy also the coupled Egs. (21) and (22).
With the four real roots of Eqs. (23) and (24) [f,,8,
o« et],

(27)

Jo(k,P).

Win= Wy W= Wy, Wgy= =Wy, W= =W, (28)
where
wi=2"1AN{(2k% + H?) £[(2k% + H?)? = 4k3]1/2}1 /2,
(29)

the general solutions for f,(¢) and g,(¢) of Egs. (23)
and (24) can be written as

AR P
4 iiﬁi‘? e (30
O cf::ff (31)

Only four of the eight integration constants
A:,...D? are independent. Substitution of Egs.
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(30) and (31) into Eq. (21) and Eq. (22) yields
A*[(w¥)? = k2N?]/ wi= —H2N?R™'tanhw:D:,  (32)
B:[(w?)? - B2N?)/ wi= —H?N?R" * cothw*C%,  (33)
and
C:[(w?)? — k3N?)/ wt = —R tanhw? B, (34)
DE[(w%)? - B2N?)/ wt= —R cothw: A%, (35)

respectively. The coefficient determinant of Egs.
(32) and (35) or Eqgs. (33) and (34) vanishes (condi-
tion for existence of nontrivial solution),

AiE [(w:)z - kaZ]Z
in agreement with Eq. (29). From the latter or Eq.
(36) one deduces the relations,

[(wp)? - BIN*}/ wi=+NH, (37)

which simplify the left sides of Eqs. (32) and (35).
Application of the boundary conditions (35) to Eq.
(30) shows that

-A;=+A}=A,, -B,=+B.=B, (38)
Substitution of Eq. (38) into Eqgs. (30) and (31) gives
sinhw;¢  sinhw;g
sinhw? ~ sinhw;

coshw*¢
B n
"( coshw}

— HEN*(w2)? = (36)

Ao=a,(

coshw;§>

- 3
coshw), (39)

and

gl8)=-A

R /coshw;¢
"NH \ sinhw},
_B_R_<sinhw:§

coshwy,

. coshw,¢
sinhw;

(40)

sinhw, ¢
"NH

" coshw,
the latter under consideration of Egs. (34), (35)
and (37). Application of the boundary conditions
(26) to Eq. (40) yields, upon elimination,

A= _NH JIo(k,0.) + I(R,0,)
n ( cothw?+ cothw}) T X(k,) ’

krz
NH o(knp ) - o(knp+)

n k (tanhw? + tanhw;)J (%) ©

(41)

B = (42)

By combining Eqs. (39)—(42), we obtain the solu-
tions for f,(¢) and g,(¢) in final form:

I8 - Ik + I(Rep,) (sinhw;‘,g _ sinhwjt Joko0.) = I kp,) ( coshwit coshwyt
NH (cothw}+ cothw))k,J&(k,) \ sinhw}  sinhw; ) (tanhw}+ tanhw,)k,J5(%,) \ coshw’ ~ coshw, )’
(43)
gd8) _, _ Jokyp.) + Io(kep,) coshwit  coshwis Jy(kp.) = Ik, <s1nhw;§ sinhw;g )
R ( cothw?+ cothw;)k,J %(k,) \ sinhw?, smhw ~ (tanhw? + tanhw})k,J 5(k,)\ coshw} = coshw; /

(44)
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Below, also the ¢ derivative of g,(¢) is required, which is given by

g8 _ Iolkyp.) + I(Rap,) <w+ sinhwi¢ - sinhwjt
R ( cothw} + cothw))k,J5(k,) \ " sinhw? " sinhwy,
JK,p.) = Io(k,p,) ( .coshwir . coshuwit > (45)
~ (tanhw?+ tanhw))k,J(k,) \ "coshw? "coshw; /° ‘

In terms of f,(¢), £,(8), and g/(¢), the solutions
for the dimensionless fields V=(0, V,0), B=(0,B, 1),
J= (Jpy 0,J; ), and E= (Ep, 0, E; ) of the plasma cen-
trifuge are by Egs. (12), (19), and (20)

V(p, &)= Jy(k0) £(2), (46)
n=1 .
B(p,¢)=Rp+ Z g (R0)g (L), (47)
TPy &)= = RN D Jy(up)gl(8), (48)
n=1

Je(p, §) =2+ R Y b Jy(k,0)g,(8),

- (49)

n=1
E(p,8)==V(p, ) +NJ,(p, &), Ep,t)=NIy(p, ).
(50)

The reference values V, and B, for V(p,¢) and
B(p, £) are defined in Eq. (4). The dimensionless
fields J, (p, £) and E, ¢(p, ¢) are normalized with
respect to ’

jo=I1/2mR%, E,=V,B,=I/2nR,0cC. (51)
0 0’ 0 00 0

If the cathode is in the plane z=—-c¢ ({=-1) and
the anode is in the plane z=+c¢ ({=+1), then the
reference fields V,, j,, and E, [Egs. (4),(51)] are
negative, since ] <0, The results are also appli-
cable to the case where the anode is in the plane
z=—c ({=-1) and the cathode is in the plane z=+c¢
(¢=+1). In the latter situation, the reference fields
Vos jo, and E, [Eqgs. (4),(51)] are positive, since
I>0. These explanations hold for magnetic fields
pointing in the positive z direction, B,>0; V,
changes its sign with the sign of B [Eq. (4)]. Note
that the magnetic Reynolds number R in Eq. (11)
is defined to change its sign with the sign of V.

III. APPLICATIONS

As an illustration, the radial (p) dependence of
the dimensionless discharge fields V(p, ), B(p,¢),
Ep,8), J,(p, ), and Jy(p, £) has been computed
for 1 <0 in the cross-sectional planes £=-0.99
(cathode region), ¢=0 (central region), and ¢
: +0.99 (anode region) based on Eqs. (46)—(50). The
remaining field E,(p, £) is proportional to J,(p, £)

L

[Eq. (50)]. The characteristic (dimensionless)
magnetic interaction number H is treated as a pa-
rameter: H=1, 10, 100, The geometry parameter
N=c/R, is taken to be N=1 corresponding to R,
=c¢ [Eq. (11)]. The radial positions of the cathode
and anode are assumed to be

p.=0.01 (R.=0.01R,), p,=0.9 (R,=0.9R,).

With the exception of B,=B,B, the dimensional
fields are negative everywhere where the dimen-
sionless fields are positive, and vice versa since
V<0, j,<0, and E <0 for I <0 [Eqgs. (4),(51)].

The Egs. (46)-(50) indicate that the velocity field
V(p, ), the current density field J, (p, ¢), and the
electric field E, ((p, ¢) are independent of the mag-
netic Reynolds number R, whereas the induced
magnetic field B(p, ¢) is proportional to R. This is
due to the azimuthal direction of the induced mag-
netic field B(p,¢), which is parallel to the velocity
field V(p, ¢) of rotation. Accordingly, the plasma
fields V(p, &), B(p,8)/R, J,,(p,%), and E, ,(p,¢)
depend only on the Hartmann number H, presuming
that the Hall effect is negligible (wT <<1).

Central vegion, £=0. In Figs. 2-6, V(p,0),
[B(p,0) - Rp/R, E,(p,0), J,(p,0), and Jy(p,0)

« E¢(p,0) are shown versus 0<p<1 with H=1, 10,
100 as a parameter. It is seen that |V| increases
considerably at any point 0<p<1 as H is increased.
Similarly, (B — Rp)/R and the sources dJ,,¢ of the mag-
netic induction increase in intensity within the main
central region 0<p<1-Ap as H is increased. For
large values H 2 10, B and J, , decrease in the wall
region Ap=Ap(H), so that the electrical discharge
becomes more concentrated in the center 0<p<1
—Ap of the centrifuge. The intensity of E, in-
creases uniformly in the region 0<p<1 as H is in-
creased, while E, < J,.

Cathode vegion, {=-0.99. The Figs. T-11 show
p, -0.99), [B(p, -0.99)- Rp)/R, E(p, —0.99),
J(p, -0.99), and J,(p, —0.99) = E,(p, -0.99) versus
Os<ps<1for H=1, 10, 100. The fields V, E, .,
and J, , increase in intensity at any point 0<p<1
with increasing H, whereas B/R decreases in 0<p
<1 with increasing H. Since the ring cathode is at
p.=0.01 (¢ =-1), the field distributions are more
closely concentrated at the axis p=0 than those
in the plane =0 (Figs. 2—-6). Note that the plasma
rotates only in the region p=0.1 with a significant
velocity, since the Lorentz force —j B, decreases



2112 H. E. WILHELM AND S. H. HONG 15

OO 0.2 0.4 06 _ 08 1.0 P

-001f

-0.02}

-100f
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-150r

\

FIG. 2. V(p,¢) versus p for £=0, and H=1,10, 100.

rapidly with increasing p—1.

Anode region, £=+0.99. The Figs. 12-16 pre-
sent V(p, +0.99), [B(p, +0.99) ~Rp|/R, E,(p,*+0.99),
J(p, +0.99), Jy(p, +0.99) = E,(p, +0.99) versus
O<ps<1for H=1, 10, 100. The velocity field
is fully developed nearly through the entire centri-
fuge cross section 0<p=0.9, since the Lorentz
force —j, B, is strongest in the vicinity p=0.9 of
the ring anode p=0.9 ({=+1). As a result, a thin
and steep boundary layer exists close to the cylin-

B-Rp

Ro 02 04 06 1.0 P

0.2 H=10
0.4r
0.6t

o8t
I H=100

1.4+

FIG. 3. [B(p,%)—Rpl/R versus p for £¢=0, and H=1,
10, 100.

100

50

H=1

OO 0.2 0.4 0.6 0.8 10 p

FIG. 4. E,(p,&) versus p for {=0, and H=1,10, 100.

der wall (p=1) with plasma counter-rotation at
sufficiently small H values. The radial distribu-
tions of B,E, ,,J, , clearly indicate that, in the
plane £=+0.99, the electrical discharge has shift-
ed to the region p=0.9 due to the influence of the
(nearby) ring anode at p=0.9 (£=+1).

In the graphical illustrations, the cathode radius
R_. was chosen to be small compared to the anode
radius R, to ensure a large angle between the cur-
rent field lines 'jb(f) and the external magnetic field

0.8

0.6

04

0.2

% o0z o0&

06 08 10p

FIG. 5. J,(p,%) versus p for £{=0, and H=1,10,100.
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10 P

H=100

20r

20
5
25 U
o FIG. 8. [B{(p,£)-Rpl/R versus p for {=-0.99, and
H=1,10,100.
0 02 04 06 08 105
FIG. 6. J¢(p,&) -2 versus p for §=0, and H=1, 10, 100. strates that a velccity profile rising uniformly with
. . radius 7 and decreasing rapidly irn a steep boundary
B,, i.e., a significant Lorentz force. A compari- layer of narrow width Ay, is obtained by using a
son of the Figs. 2 and 7 with Fig. 12 indicates that cathode and an anode of the same radius R.=R,
this choice of electrode radii results in a radial < R,, which is nearly as large as the centrifuge
boundary layer of large width and low velocity in radius R,. Although R_=R, in this case, the cur-
the lower half —c <z <0 of the centrifuge. Hence, rent field lines j(¥) intersect with B, at a sufficient-
R.<R, (or R.>R,) is not the best choice for a cen- ly large angle due to the repulsion of the current fila-
trifuge of maximum efficiency. Figure 12 demon- ments. Asaresult, anet Lorentz torque results fora
EP
OO I‘.O P
-0.05} 2500
-0.10
2000
\
[¢]
1500

1000}

500}
-500¢}

I T— e

0 02 04 06 08 105

-1000
\

- FIG. 9. E,(p.%) versus p for £{=-0.99, and H=1,10,
FIG. 7. V(p,&) versus p for'é‘ =-0.99, and H=1,10, 100. 100.
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1500 i
0 . S —.
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1000 -04} H=10 ——
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o} . —— .
500} ook
H=l L
H=10 -40}
H=100 a
oL . -60+ H=100
(o) 0.2 04 06 08 10 p L
v

FIG. 10. J,(p, &) versus p for {=-0.99, and H=1,10,

100.

100.

centrifvge with R_=R, which is still of the same or-

der of magnitude as for a centrifuge with R. <R,
(presuming that7, and B, ¢, and R are the same).
The Figs. 2-16 are based on the Fourier series
solutions, which were summed numerically up to
n=100, and the eigenvalues %,, n=1,2,3,...100,
were computed up to the tenth decimal point. The
resulting accuracy is adequate as a test run with

n=110 indicated.

The centrifuge analysis presented indicates that

extremely high speeds of plasma rotation are ob-

|1 | =102 amp,

Hence, by Eq. (14)

FIG. 12. V(p,¢) versus p for £=+0.99, and H=1, 10,

netic inductions B,, presuming the Hartmann num-
ber H is not small, H>1. As an example, consider
an isotope centrifuge discharge with:

lBol =10°T,

=10 mhom™, Ry=c=10" m.

B-Rp
tainable at moderate discharge currents J and mag- R
i H=1
-2 -0.6}
H=1
4000¢ H- 0 I H=10
d_H=100
-04}
H=100
3000 i
-0.2+
2000
0] V
1000{] *0.2r
+04}
% oz 04 o6 08 0% © 02 04 06 08 10p

FIG. 11. Jp(p,£)—-2 versus p for £ =—-0.99, and H=1,

10, 100.

H=1,10,100.

FIG. 13. [B(p,&)—Rpl/R versus p for £=+0.99, and
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201
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FIG. 14. E,(p,&) versus p for £=+0.99, and H=1, 10,
100.

V,=1/21RB,oc=(5/m) X 10' msec™,
and, by Fig. 2,
Vy=V,V~10° msec™, for H=100.

Since the working gas of the centrifuge discharge
consists of two isotope gases, the centrifugal
forces would concentrate the lighter isotope ions
and atoms in the central region and enrich the
heavier isotope atoms and ions in the peripheral
region of the discharge. According to the equations
of motion for two isotopes of masses m; and m;,
the isotope density ratio at distances 0<#»<R,- A7,

Jp

H=100

40

30r

2% oz o4 o6 o8 105
FIG. 15. J,(p,¢) versus p for {=+0.99, and H=1, 10,
100.

L
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J;-Z
H=1
H=IO\
30 | H=100
- 20}
|0}
Y/ \<gj:o
H=100

O 02 04 06 08 10p
FIG. 16. J¢(p,&)—2 versus p for £ =+0.99, and H=1,
10,100.

where A7 is the viscous boundary layer thickness,
is approximately (T, is the temperature of the iso-
tope ions)

7(7) 7,(0)

ORI

where the bar designates a spatial average over
the region |z]| <c.

As a specific example, consider a uranium plas-
ma centrifuge containing the isotope ions (7)U%¥"
and (j)U%* at a temperature 7,=10° °K (and elec-
trons at a temperature 7,>7T,). In this case, one
has Am;;=m(237) - m(235) = 3.320 X 107" kg, kT
=1,381x10"%° J, Hence, the isotope separation
ratio is:

L —
sam,;,; V,(7)?
p<+ 3——7;11—,0—”—— , Amy=my—-my,

.ﬁ237(7’)/ Tiag5(7)

Tingr(0)/ Tipas(0)
21.128x 10° for V,(#»)=1x10° msec™
21,617x10° for Vy(r)=2x10° msec™
22.950x 10° for V,(»)=3x 10° msec™.

Based on these examples, one can assume with
some confidence that high-power plasma centri-
fuges are technically realizable employing dense,
collision-dominated isotope plasmas. The separa-
tion of isotopes by centrifugal forces in low den-
sity plasmas has been established experi-
mentally.1°’11’2°'24‘ )

A disadvantage of collisionless plasma centri-
fuges is the small amount of isotopes they per-
mit to separate. The proposed high-density plas-
ma centrifuge would use arc plasmas at pres-
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sures of about one atmosphere so that the isotope
masses separated are increased by orders of
magnitude. The large Hartmann numbers H

=(0/ 1)/ 2B, R, required for high speeds of isotope
rotation are achievable because of the (relative)
small viscosity 1 and large conductivity ¢ of gas-
eous plasmas. Speeds of plasma rotation, which
are an order-of-magnitude larger than those in the
above examples, can be achieved at realistic
Hartmann numbers H. Since w=1.76x 10" B sec,
the Hall effect is insignificant in dense plasmas
for B=1 T as long as 7<107'2 gec. In general,
the Hall effect increases the speed of plasma ro-
tation for wt>1, i.e., in plasmas of lower den-

sity.?® In developing a plasma centrifuge, there-
fore, apparently a trade-off between isotope den-
sity and rotation velocity has to be made.

For mathematical convenience, we have dis-
regarded possible secondary flows (superimposed
on the main azimuthal flow) in the analysis of the
plasma centrifuge. Although experiments indicate
secondary flows in the motion of liquids between
rotating cylinders,*® secondary flows have appar-
ently not been observed in plasmas which rotate
under the influence of electromagnetic forces. In
spite of the mathematical complications involved,
consideration of secondary flows would be of in-
terest from the theoretical point of view.

*Supported in part by NASA.
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