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Thermodynamics in finite time. I. The step-Carnot cycle
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The object of this paper is the beginning of a formulation of a method to find bounds to process functions,
such as work and heat, for processes occurring in finite time. A general variational statement of the problem
is given. Then model problems are solved, all but one of which are based on the "step-Carnot" cycle. This is
similar to the reversible Carnot cycle but with the external pressure varying in finite steps. Such a system only
needs to go through a finite number of equilibrium states during its cycle. The problems. are the maximization
of effectiveness of the step-Carnot cycle, the maximization of efficiency of the same cycle, the deter-
mination of optimal period for a step-Carnot cycle whose contact with the external reservoirs has finite
heat conductance, and the determination of the maximum power and the rate at which maximum power is
obtained, for a continuous Carnot cycle with finite heat conductance between system and thermostats.

I. INTRODUCTION

Thermodynamics gives us many insights, One
of the most important of them, since the earliest
years of the subject, has been the capacity of
this discipline to furnish natural limits on the ef-
fectiveness with which we can carry out real pro-
cesses. Much of the first strong motivation for
the creation of a science of heat was the desire
to make steam engines as effective as possible. '
As Tisza points out, ' the emphasis from the time
of Carnot, and the tradition that was carried on
by Clausius and Kelvin and made rigorous by
Caratheodory, was on using thermodynamics as
a tool to find limits on work, heat transfer, and
efficiency. But with Gibbs, the focal point of. the
subject moved away from the Process variables
of heat and work, toward the state variables,
particularly among scientists, perhaps less so
among engineers. The Gibbsian view only be-
came possible with the recognition of the existence
of the state variables energy E and entropy S. The ap-
proach we take here, as the discussion following
will show, is far more in the spirit of the Carnot,
Clausius, and Kelvin view than of Gibbs.

The Carnot-Clausius-Kelvin view emphasizes
the interaction of the thermodyn3mic system with
its surroundings, while the Gibbsian view makes
the properties of the system, the state variables
themselves, dominant. Thus the Carnot-Clausius-
Kelvin formulation is the one in which the im-
possibility of perpetual motion machines is an
important physical postulate. Most important for
us, this is the formulation in which the role of the
thermodynamic potentials becomes one of setting
natural limits: The thermodynamic potentials
are the state variables whose changes are the
natural limits on the process variables of heat

and work. Traditionally, thermodynamic potentials
are defined without regard to time, and thus
achieve their roles as limits when the correspond-
ing limiting processes proceed reversibly and
therefore infinitely slowly. In the Carnot-
Clausius-Kelvin approach, it is these limits on
process variables that we really want to know.

In the real world, we find that the actual changes
in enthalpy and free energy in aprocess rarely
approach the ideal thermodynamic enthalpy and
free energy changes for that process. Typically,
the actual expenditure of enthalpy and free energy
as fuel and other inputs is ten to a hundred times
the ideal thermodynamic limit. ' Sometimes we
expend energy on processes that could, in prin-
ciple, return energy. One example is the con-
version of copper sulfide ores to copper and
SO, . (A few processes are exceptions to this
general picture; the generation of electric
power from fossil fuel and the manufacture of
ammonia are two examples of relatively ef-
ficient real thermodynamic systems. ) We would
obviously like to understand the origin of this
large disparity and do what we can to reduce it.

It is tempting to use the difference of actual and
ideal requirements for energy, enthalpy, free
energy, or availability as an index of how much
a process could be improved. ' Any realistic
thermodynamicist challenges this position on the
grounds that nobody wants to operate a factory
reversibly. This and subsequent discussions are
intended to meet this challenge by providing an
extension of conventional thermodynamics that
will give limits on process variables for processes
carried out in finite time intervals.

The goal of our present line of thinking is the
creation of a means to evaluate the ideal limits of
heat and work for processes operating at finite
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rates. One approach is to require processes to
take place in an arbitrary but fixed time intervals.
Given a set of constraints sufficient to define the
possible paths, we find the path which makes the
work done or the heat exchanged in the process
an extremum, and evaluate the work or heat along
that path. We then carry the analysis one step
further, to determine the optimum time interval
in. which a- process should be carried out, in order
to optimize power, output, or whatever else one
chooses as an index of optimality.

In the following sections, we give a rather quick
picture of our broad overview and then turn to a
detailed treatment of the simplest system we have
been able to analyze, which we call the step-
Carnot cycle. In much of our treatment of this
particular problem. , we can eliminate all explicit
considerations of time; only in a later section do
we examine the problem in a way that makes its
time- dependence explicit.

This presentation is not meant to explore in
depth the general principles of natural constraints
on processes conducted in finite time. We want
now to provide examples of solvable systems, upon
which we shall build.

II. FORMULATION OF THE PROBLEM

One way to take the first step in finite-time
thermodynamics is to set up the (Stieltjes) path
integral for work or heat,

A, 2t2

F(a, t) ds(X, t)

or

whose extremum we seek. The generalized force
F may be an exceedingly complicated quantity, de-
pendent on a large set of internal variables X as
well as the time t; so may the generalized heat-
capacity function C. However, we shall see that
the integrals can, in several interesting andper-
haps even useful cases, be yut in simple, tractable
form.

In conventional thermodynamics, the only system
parameters are masses, volumes, and heat
capacities. To do finite-time thermodynamics,
one must expand one's set of parameters to include
relaxation-rate parameters, such as diffusion co-
efficients, heat-transfer coefficients, friction
constants, and relaxation times among different
degrees of freedom. The most general problems,
involving a nonuniform working fluid and many
interacting degrees of freedom, are clearly too

difficult to solve now, if ever. By making suit-
able assumptions about the time scale of our
process, relative tothe time scales set by the
relaxation parameters, we can set up simpler
problems. For one, we assume throughout this
discussion that the working fluid is always uni-
form, sothatitsinternal pressure, density, and
temperature are always well-defined and indepen-
dent of position within the fluid. This assumption
is equivalent to supposing that the processes we
are now examining occur slowly with respect to
the internal transport and relaxation times of the
working fluid, at least for all those internal de-
grees of freedom that participate in energy ex-
change in the process. ' Thus the heat capacity
of the system must be treated as a function of
the characteristic time of the process. Here we
shall not consider processes occurring on time
scales comparable to internal relaxation times
of the system. (Such situations have been ex-
amined many times in the past; in fact the ap-
proach of Wang Chang and Uhlenbeck' on relax-
ation in shock waves was influential in our thinking
about the finite-time problem. ) In the step pro-
cesses equilibrium with the surroundings is re-
quired only at a finite number of points, viz. ,
after each step change in the external pressure.
The time spent on each step is composed of a
period in which the gas moves toward a, new in-
ternal equilibrium at the new pressure, and a
subsequent period when the system is quasistatic,
while it regains equilibrium with the surround-
ings. The latter, quasistatic period vanishes for
adiabatic steps, but not for any other kind of
step. Our assumption of fast internal relaxation
amounts to assuming the former time period is
instantaneous.

Let us now specialize (I) to the case of an ideal
gas acting as a working fluid on a piston, sub-
ject to the condition that the internal pressure P;
and temperature T; will always be well-defined
and uniform within the gas, so that

V2

P, (t) dV

dV
P, (t) dt . (3)

tj

The time interval t, —t, is fixed, dV/dt must be
obtained from the properties of the system, and
the external pressure P, (t) is the control variable
whose path we want to find, in order to make W
an extremum.

Our language already indicates our mathematical
tools, the variational methods of optimal control
theory. ' The work W is the objective function. We
need only specify the constraints that make the
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problem well-defined, andwe are on our way. For
W the physics of each individual case will be in
dV/dt and in the constraints. For Q the heat-
eapacity function also contains physical charac-
teristics of the system, so that it is often going
to be advantageous to recast (2) as

T(t) dS

t2
T(t) —dt,

dt (4)

III. DEFINITION OF THE STEP-CARNOT CYCLE

The step-Carnot cycle is a simple modification
of Carnot's original reversible cycle as follows.
We suppose that (a) the working fluid is an ideal
gas; (b) the system operates against an external
pressure P, (t) that varies discontinuous/y, in
steps, in a manner controlled by a hypothetica, l,

machine operator, with the steps always in-
volving an instantaneous change of P, followed by
a change in the volume V and temperature T of
the working fluid, at constant P, (but not neces-
sarily P;); and (c) the temperature, pressure,
and density within the working fluid are uniform
before each step; for those aspects dealing ex-
plicitly with time this must be true for every in-
stant.

The system goes through a cycle shown by the
stepwise path inscribed in the reversible Carnot
cycle of Fig. 1. Note that although (c) implies that
the system follows a quasistatic path insofar as
internal relaxation times are short compared with
the time of any step, the path is only required to
contain a finite number of points of equilibrium.

t~

where S denotes the entropy associated with the
heat flow into the system.

In some situations, we find that care is required
in defining the constraints. Underconstrained mo-
dels lead to trivial solutions and overconstrained
systems are either redundant or inconsistent.
However, the example of the step-Carnot cycle
which we are about to analyze is straightforward,
in that necessary and sufficient constraints can be
stated easily from the onset.

A word is in order about the relationship of the
optimal control or variational approach of finite-
time thermodynamics and the conventional thermo-
dynamics of irreversible processes. ' " Both
obviously deal with irreversible systems. The two
approaches can be thought of, in some regards,
as integral and differential approaches to the
same problem. As such, they ask different ques-
tions; the integral, global approach is a comple-
ment to the differential, microscopic approach,
not in any sense a replacement for it.

ll(

PQK

V4 P4

T3
V4'

Pp

V2

T1

P3 Vg Tg

FIG. 1. PV diagram of the step-Carnot cycle ( )
with its envelope ( ) and the reversible Carnot
cycle (-—) operating between the same extreme states.
The indicated pressure for the step-Carnot cycle is
the external pressure Pe, not the internal pressure.

IV. ISOTHERMAL BRANCH

The work W„done in step n is done against the
constant external pressure P, = P„over the volume

This is the essential difference between the ir-
reversible step-Carnot cycle and the reversible
Carnot cycle. Along the high- temperature "iso-
therm, " the system, in contact with a reservoir
at temperature T„, expands irreversibly, working
against a, constant external pressure P, until it
returns to equilibrium. Similarly, along the low-
temperature "isotherm, " the system, in conta, ct
with a reservoir at temperature T'~, is compressed
by subjection to an instantaneous increase in P„
until equilibrium is attained. Along the adiabatic
expansion branch of the cycle, in each step the
volume of the system increases until equilibrium
is reached with the external pressure. We shal. l
see that this occurs at a volume greater than
that of a reversible adiabat, or at a temperature
higher than that of a reversible adiabat. In other
words the stepwise adiabatic expansion has an
outer envelope that is flatter than a continuous,
reversible adiabat. Likewise, the stepwise adi-
abatic compression, branch 4, has an outer (left)
envelope steeper than the curve of a reversible
adiabatic compression.

To complete the specification of the system for
the first part of our analysis, we now fix the total
number of steps N. The first large stage of the
problem is thus one of allocating the number of
steps N„. . . ,N4 among the four branches of the
cycle, so that N, +N, +N, +N, =N, and of deter-
mining that pressure and final volume for each
step that maximizes the work done per cycle. To
carry this out, we now examine the "isothermal"
and "adiabatic" branches individually, . and then
optimize the entire process.
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W =nRTf)f [1 (P /P )~~+r] ~RTln(P /P )

which is the work obtained along the reversible
isotherm.

FlG. 2. Enlargement of one step on the isothermal
branch showing work being done by the gas against the
external pressure P„ from V~& to Vn.

V. ADIABATIC BRANCH

When no heat is exchanged with the surround-
ings, PdV = —C„dl", so that the work extracted
from one step is

P„(V„—V„,) =nRP„
n n-1

so
= —C,(T„-T„,),

V„- V„, (see Fig. 2), so it is W„=P„(V„-V„,),
and the total work obtained along the isothermal
branch is

W, = QP„(V„-V„,f.
n=l

Note that for each step, the initial and final points
(P„„V„,) and (P„,V„) of the step-isothermal pro-
cess are state points on the reversible isothermal
curve, since the gas has reached the reservoir
temperature at the end of each step. The working
fluid is an ideal gas, PV=nRT, so

W =nRT PI n
n= j. Pn Pn-1

T„=T„y [1+(P„/P„)(y —1)],
where as usual y= C&/C„. Solving instead for P„
gives

Hence,

V„=nRT„/P„= V„,y '[P„ /P„+ (y 1)] . (10)

The total work
Pfp

W„= g P„(V„V„,) = C„(T„T,)
n=J

is maximized when T„ is a minimum:

T~=Toy"" [ [1+(P./(P. ,)(y- 1)l,

Maximum WI is obtained for a fixed N, when for
any n

so

I Ry n+I. P
dP P ~

P2

I „/P„,=P„.,/P„,
i.e. , all the steps must change the pressure by the
same factor nr and all N~ steps must give the total
pressure change from P, to P„. Hence

Ny

c(,=P /P, = (P~/P, )&~Nr. (6)

Combining (5) and (6) the total work obtained
along the isothermal bra.nch is

Wl=nRTN~ (1—o.l) .

As Ny increases it is reassuring to see that

d)nT„y (( P„( -)'
dPn Pn q P„q

1
—(y 1) ~'—1+ ""(y 1)—

lmplylng

P„/P„,= P„„/P„,
so that again the pressure must change in steps by a
constant factor o.„(although different from o.'z), and

n„=P„/P„,=(P /P, )""~.
Now let us examine the system when N„be-

comes large. The pressure of the nth point is

J „=P,(P„/P,)"'~~ = P,n„".

Hence, to fix our reference to a specific pressure,
we require that n/N„(and thus c(„")be constant.
From (10)-(12) we obtain

1n(P„V„")= ln(P, V,")+ ln c(„" — +
I y-1

Y g Y
„) „.(exp(- ()nn"„)/n]+ y —()

y

=)n(H) ')+In(a"„)any)n (-. "+," — ),inn„" (inn„")'
ny 2n'y
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so that at constant pressure (n/N„con st ant),
lim„.„(P„V"„)= P,V"„ the equation of the reversible
adiabatic process for an ideal gas. Note however,
that for finite N„, once this branch leaves the
initial point at which T= T~, the step adiabat does
not touch the reversible adiabat again. This is
because the irreversible adiabatic expansion con-
verts less internal energy to work than the rever-
sible process does and therefore achieves a higher
temperature for a given final volume or a larger
volume for a given final temperature. The enve-
lope of the step-adiabatic expansion will therefore
be flatter and that of the compression steeper than
the corresponding reversible branches (see Fig. 1).

For real gases the derivation of the behavior on
an isothermal branch is the same, through the
order of the second virial coefficient J3, as it is
for the ideal gas. However, the behavior of real
gases differs from that of ideal gases on the adia-
batic branches. The difference sets in with terms
of the form (P'/nR)(BB/BT)„, and complicates the
expressions from (8) onward.

VI. CLOSING THE CYCLE

We are now in a position to combine two step
isotherms and two step adiabats into a step-
Carnot cycle as shown in Fig. 1. We want this
cycle to operate between the same extreme states
P, V, T, and P,V,T, as the reversible Carnot cycle.
These extremes satisfy the condition V,/V,
& (T,/T, )'i '" " so that positive work is achieved in
going from 1 to 3 in a reversible process. For the
present case of finite-step processes the onset of
the adiabatic branch P, V, must be chosen accord-
ing to (9) and (10) so that

P, V, V, V,
1 ~ V V V ~ (T /T )1/N2

We can simplify by defining the ratios

6 —= T,/T, and e = V, /V, ,

so that

N2/ Nl

Ql g ~l/ N ~

since the contributions from the adiabatic branches
cancel according to (11). Although only N, and N,
enter explicitly in (16), W still depends on N., and

N, through (14) and (15).

VII. MAXIMIZING WORK AND EFFECTIVENESS

For a given total number of steps

N =Nl+N2+N3+N4.

The distribution of the steps which produces max-
imum work per cycle may be found as the maxi-
mum of

N /N-lE=T N l gl/ jto

3 3 l/N3 3 y g l/N4

which leads to the conditions that four derivatives
vanish:

aF-= Tl+ Tl l/ Nl
gl/ NBNl y —5

N, y-& 1—ln l/N +—h —1 —X=oq

(18)

l gl/ N2

gl/N2 y ].
x —

/ ]n5 —ln / g 0,

plus a similar pair of equations with (N„N„T„6,&)

replaced by (N„N„T„6 ', & '). We have not been
able to solve (18) for arbitrary N. However, for
large N„N„N„N4, as the step cycle approaches
the reversible Carnot cycle, we can use expan-
sions in 1/N,. to second order, from which we ob-
tain the expressions

N~ 1 —y ink

1) ~ in''

8 imilarly,

(15)

N j. —y in/
ln6 ' (19c)

(19d)
The total work extracted from the step-Carnot
cycle is

W= W1+ W, =nRT„N1(l —n1)+nRT3N (1 —n3),

(16)

where

g
= ~61/('Y-1) (0( g ( 1)

and q is a normalization constant

(20)



THERMODYNAMICS IN FINITE TIME. I. THE. . . 2091

2=(1+&5)(l- ).
It is worth noting that N, /N, = v 5, which in physi-
cal terms says that the optimal path takes more
steps along the upper isothermal branch than along
the lower one. This reflects what we see when we
compare the actual work, Eq. (16), with the work
for the ideal Carnot engine, Eq. (21), below: The
irreversible losses are weighted in proportion to
their thermostat temperatures, so that the optimal
path allocates more and smaller steps to the high-
temperature branch.

We find it informative to look at W relative to
the work done by an ideal reference system, a,

reversible Carnot cycle operating between the
same two heat reservoirs, and between I', V, and

P,V,. This is the effectiveness" W/W, (also
called second-law efficiency'), the ratio of work
done to the total change of availability. With

(~RT /I/ )62/r-2 P (~RT /y )6-&/r-).

W &W

Wi 'Ni

we find, to first order in N ',

ln'5 y 2

In/ 2(y- 1)' N, N,
(24)

and a. similar expression from the condition
BF/&N, =O. In this example, the expressions for
the other two branches are not of the same form
as (24), in contrast to the case of maximum work.
We find from &E/&N, =O that

in/ in/ ln'5 1 y
25N' 2N )n( 2N (y —1)')

to order N '. A similar expression comes from
the condition SF/8N, =O. We solve the four equa-
tions for N„N„N„and N, to find (again to first
order in N ') that

W, = nRT, ln(P, /P, ) + r/R T, ln(P, /P~)

nR(T, —T,) in/,

(21) N p,
N~ = ——in/, (26a)

which, combmed with (14)-(16), and (19), gives
the effectiveness

W 1 2(5+1 ~ vy 1n5

2N v 6 1 y- I v' ing

2p, 4

N, =2 +—ln
N p,

2p,

(26b)

(26c)

T, + T, + 2v'T, T,
Ti- T3

(22)
u(u-1)

4 2 4 (26d)

where

The expressions (22) are correct to first order in
N ' for the optimal distribution of steps. The
second term in (22) is negative for all initial and
final states, so W& W, as it should but approaches
the reversible limit from below as N- ~.

VIII. MAXIMIZING EFFICIENCY

As an alternative to maximizing the total work
per cycle and the effectiveness, we can find that
program of steps which maximizes the efficiency
of the step-Carnot cycle. We now maximize
W/Q„ the ratio of net work, per cycle, to the
heat absorbed from the hot reservoir, again sub-
ject to (17), the constant number of steps:

W
&

p, T+T,
W N T —T (27)

The difference between the effectiveness of the
two systems is

W W' p,
' in/

T (2l T,T, —T, —T,)
0 0 1 3

(28)

We can also compare the efficiencies of the two
kinds of optimized step cycles. First, for the
cycle with maximized work per cycle, the effi-
ciency

Let us call the work per cycle TV', when the ef-
ficiency is a maximum. The effectiveness W'/W,
for the most efficient cycle is less than W/W„ the
effectiveness of the most effective cycle, Eq. (22):

W 4
N=——1 QN; —N)

W3
4 1

=1+ ' —A. gN; —N
Wi

W W3+
Q, W2

-" "-"' -' ' ")"'T, 25N y-1 (29)

Setting to order N"'. For the cycle with maximized effi-
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FIG. 3. TS diagram of Carnot cycle operating between
T& and T3 with heat exchanged with the reservoirs at Tz
and TI through the thermal conductances K.

ciency (Q,
' is the heat absorbed from the reservoir

at T,),

T, -T, 2p,

negligible compared with t,' and t, , since the sys-
tem exchanges no heat with the surroundings along
these branches.

Let us examine in detail each step along the
step- isothermal branch. The first part, drawn
with a heavy line iri Fig. 4, is effectively instan-
taneous in that no heat is transferred. Work is
done by adiabatic cooling from T, to T(t,) where
the gas is in equilibrium with the external pres-
sure P„ i.e. , the time difference t, —t, =o. The
expansion from V(t, ) to V» is done while the gas
remains in equilibrium with the external pressure
and at a rate determined by the rate at which heat
leaks into the gas and heats it to T,. The work
done from t, to t,

a„[V(t.) - V,] =nZT(t. ) Z, y. = c„[T(t ) T,]
thus determines

again to order N '. The difference

W' W tj, (~5 —1)' ~y
Q' Q 6N 2~g y —1

IX. OPTIMAL PERIOD

(31)

T(t.) = —+— a, )
'l', .y 1

The energy balance equation

dQ = ~[T(t) —T„]

dT dV dT
v yg b yg P yg

(33)

So far time has not entered our analysis, be-
cause we have assumed that the gas adjusts in-
stantaneously to changing conditions, and that
there is perfect thermal conductance to the re-
servoirs T, and T,. Now we will relax the last
assumption and introduce a (finite) thermal con-
ductance K between the reservoirs at tempera-
tures TH and T~ and the system, so that the sys-
tem has isothermal steps at the temperatures T,
and T3 re sp ect ive 1y, betw een w hi ch the cy c1e
actually runs, and T~& T3& T, & T„. This is illus-
trated in Fig. 3. The differences between T, and

T~ and between T, and T~ allow a finite-time
operation of the isothermal branches, while the
adiabatic steps may be assumed to occur instan-
taneously on the time scale associated with ther-
mal conduction.

Again we take the reversible cycle as our yard-
stick. It follows from (21) and the heat-flow equa-
tion dQ/dt = K4T, that

W, = ~(T, —TH) t,'+ z(T, —T~)t', ,

so one cycle is completed in time

may be integrated to yield

T(t, ) —T

which upon substitution from (33), (14), and (19)
gives the total time for expansion

t =N, (t» —t,)

R Ti
K T~ —Tg

X
q~yln~ Wy Inr T, y-1-1—2¹5 (y —1) y —1 In/ T~ —T„y

$0
I

nR T
K 1 —

H 3
—

L,

t,' and t3 are the times associated with the upper
and lower isothermal branches. We assume that
the adiabatic branches transpire in time intervals

FIG. 4. Enlargement of one step on the isothermal
branch when thermal conductance to the heat reservoir
is finite. Along the segment t~ to t, work is done by
adiabatic cooling of the gas. From t~ to t& the gas is
reheated to T& while in equilibrium with the external
pressure P&.
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for the maximum-effectiveness step-isothermal expansion. Branch 3 gives a similar equation, whereas the
step-adiabatic branches are not delayed by thermal resistance, so the total cycle time becomes

2N y y 1 I(~gT, —T„T,—T )( y —link) ~g(T, —T„) (7, T ) Y

(34)

The step-cycle time t, &t,' for two reasons: Each
step is speeded up by the instantaneous portion
t, —t, as well as the larger temperature gradient
from T„to T(t,) than to T„and V, & V,'(see Fig.
1), so the step isotherm is shorter than the re-
versible isotherm. The first of the two reasons
also holds for branch 3. However, V4& V', making
the step isotherm longer than the reversible iso-
therm in this case. Therefore, t, can be either
smaller or larger than t,', and the whole cycle will
run faster as a step process if the reservoirs are
close to T, and T„slower if there is already a
considerable temperature gradient. The precise
dividing point, where t = t„ is determined implic-
itly by the transcendental condition that the quan-
tity in braces in Eq. (34) be zero.

The irreversibility introduced in this section
has been purely thermal. Mechanical irrevers-
ibility (friction) could also be added, but that will
be treated in a more general framework in a sub-
sequent paper.

Other approaches can be taken to optimize ther-
modynamic systems by variational methods. For

example one can maximize the power output of a
Carnot engine with finite heat conductance to its
thermostats. This analysis was carried out by
Curzon and Ahlborn, ' who showed that the maxi-
mum power of this engine depends only on the
heat conductance and the reservoir temperatures,
and that its efficiency is 1 —(Tz/T„)'i', rather
than 1 —(Ti/T„). This efficiency is independent
of heat conductance. The period for maximum
power of such an engine is

nRVT +V'T 1 T V,
+ gT„v'T r 1T„-V,

so depends only on the reservoir temperatures,
the mechanical parameter V,/V„and the thermal
conductance K.
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