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Magnus approximation for K-shell ionization by heavy-ion impact*
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The Magnus approximation (or sudden approximation) is applied to derive the transition amplitude and the
cross section for K-shell ionization of atoms by heavy-ion impact, The target electron is described by a
hydrogenic wave function and the projectile as a point charge moving along a straight-line trajectory. The
transition amplitude for each partial wave of the ejected electron is expressed as an infinite (but rapidly
converging) sum over hypergeometric functions. To obtain the total cross section, only integrals over impact
parameter and the final electron momentum have to be evaluated numerically. The approach, because it is
nonperturbative, should be particularly useful for treating collisions of light atoms with much heavier
projectile ions. It also allows the study of the impact-parameter dependence of the ionization process. The
connection with the Glauber approximation is pointed out.

I. INTRODUCTION

K-shell ionization of atoms by collisions with
energetic ions is an important process in heavy-
ion physics and of considerable interest both in
terms of basic theory and in various practical
applications. In the theoretical investigation of
these reactions, usually three approximate meth-
ods have been applied: the plane-wave Born ap-
proximation (PWBA), the semiclassical approxi-
mation' (SCA), and the binary-encounter approxi-
mation' (BEA). All three approximations are
valid for sufficiently high energy of the projectile.
By using relativistic electron wave functions, '
the treatment may be extended to heavy target
atoms. However, it is always assumed in these
calculations that the projectile is a relatively
light ion such as a proton or an ~ particle.

Very few studies, either experimental or theo-
retical, have been made of the ionization of light
target atoms by much heavier projectile ions.
Yet such ionization processes are of considerable
interest in connection with problems associated
with fusion reactors and with the energy deposi-
tion of heavy ions in organic matter. It has been .

the purpose of the present work to develop an
approach which should be particularly suitable
for dealing with collisions of light atoms with
heavier projectile ions,

To develop this approach one has to abandon
the perturbation approach which is the basis of
the Born' and semiclassical approximation. "
If the charge of the projectile nucleus is large,
its time-integrated interaction with the K electron
will also be large„and a perturbation expansion
will not be appropriate. The basis of this present
approach is the Magnus expansion, "which is
nonperturbative but rather uses the ratio of the
characteristic collision time 7„» to the character-

II. THEORETICAL BACKGROUND

Consider a beam of projectile ions (with charge
number Z~, velocity v~ ) impinging on a target
atom (with charge number Z, ) along a classical
orbit characterized by the impact parameter b.
The cross section for excitation to a specific
final state f from the initial state i is given by

0] g =2K bdb[a, i(b)i',

where a, z (b) is the excitation amplitude as-
sociated with a specific trajectory. I et T denote
the time-ordering operator. " The excitation

istic time v, b of the unperturbed system as an
expansion parameter.

The first term in this expansion leading to the
(first-order) "Magnus approximation" or "sudden
approximation" was originally introduced by Alder
and Winther' and independently by Takayanagi'
and subsequently was used by a number of oth-
ers. ' " The approach has some relationship to
the Glauber approximation, ""which has also
been applied toZ-shell ionization" "but so far
only for light projectile ions." The projectile
charge dependence has been systematically treated
from a different point of view. "

In this paper, we assume the projectile moves
along a classical straight-line trajectory, and
we study the collisional ionization process in the
(first) Magnus approximation. In Sec. II, we dis-
cuss the Magnus approximation and specify our
assumptions. In Sec. III, we derive expressions
for the transition amplitude, the ionization prob-
ability as a function of the classical impact pa-
rameter, and the total ionization cross section.
A summary discussion and some concluding re-
marks are presented in Sec. IV.
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amplitude can then be written" in the usual per-
turbation expansion

Here, the time -dependent inter ac tion is given
in the interaction representation by

/a OO

a; t-(f IT axp(- — H(t)dt)l ') (2a) If (f ) (i/pt)Hpt V(f )
-(i/h)Hpt

or

df 'e(t )a(t ')) i)+ ~

(2b)

wlth+p denoting the Hamiltonian of the free-tar-
get atom and V(t ) is the time-dependent perturba-
tion caused by the projectile. The first two terms
of Eq. (2b) correspond to the SCA.'

An expansion alternative to Eq. (2) has been
derived by Magnus and analyzed in detail by Pechu-
kas and Light. ' It leads to

~ tea OO 2 t oo t

oi, =(f~ exP —— H(t) dt + —— dt dt '[e(t), II(t ')] + ~ ~ ~ I i).j 2 (4)

tta OO

a, t=(flaxp(- —
i V(t)ttt)(t).

~ oo

(5)

The approximation of Eq. (5) was first introduced
by Alder and %inther' to describe multiple Cou-
lomb excitation of deformed nuclei by energetic
heavy ions and, independently, in an atomic col-
lision problem by Takayanagi. ' Subsequently,
Eq. (5) rederived in various ways, was used by
several authors. ' " Also, corrections resulting
from the second Magnus term were investi-
gated "'

To evaluate the right-hand side of Eq. (5), a

In contrast to the perturbation series (2), the
Magnus expansion (4) has the virtue that the tran-
sition operator is unitary at each level of ap-
pr oxlmation.

In the same way, as for Eq. (2), expansion (4)
may serve as a starting point for various approxi-
mations. In the (first-order) Magnus approxima-
tion, only the first term in the exponential of
(4) is retained. It can be observed that, in this
approximation, only the total interaction enters
or, equivalently, the operator T in Eq. (2a) is
replaced by unity. The approximation will thus
account only for instantaneous effects; it ignores
any correlations between the values of the Ham-
iltonian at different times. (The time structure
of the excitation process is described to the low-
est order by the second term in the Magnus ex-
pansion. )

The physical interpretation above suggests that
the first-order Magnus approximation will be
justified if the time structure may be disregarded,
that is, if the collision time 7 „ is small com-
pared to the orbiting time 7„b of the relevant
electron, or if E=a,„„/v„b«1 In this case. , it
is consistent to replace II(t) by V(t) so that the
transition amplitude becomes

unitary transformation is usually introduced, ' "
which diagonalizes the interaction integral

J V(t ) dt . In practice, the diagonalization is
carried out in a truncated set of basis states.
Unfortunately, it is difficult to estimate the error
introduced by the truncation procedure. In the
present work, we avoid this additional approxi-
mation. %'e believe that this is important, be-
cause otherwise one combines the shortcomings
of the Magnus approach (no time structure) with
those of the close-coupling approach (limited
basis set).

Turning now to the specific problem of K-shell
ionization by ion impact, we make the following
assumptions: (a) the ionization process is de-
scribed as a single-electron problem involving
nonrelativistic hydrogenic wave functions for the
initial bound and final continuum state; (b) the
projectile is approximated by a point charge
moving along a classical straight-line trajectory";
(c) the projectile velocity v& is large enough, so
that g „„=2ar/v~ is small compared to q „„=—2)(I/
EH = 4''/Z', Ie' or ( = (2H) 'o Z, c/v~ «1. Con-
ditions (b) and (c) are satisfied even for heavy
projectiles, provided that Z, /ye~ «1 where e),
is the projectile energy measured in keg per nu-
cleon.

For the assumptions just specified, the tran-
sition amplitude (5) is writ'ten

~i f (&) =(fl e'"I ~),

with

tt(t ) tx -%(t )I)

where r and 8 are the electron and projectile
coordinates (measured from the target nucleus),
respectively. The term 1/Il(t ), while ensuring
convergence of the integral contributes only a
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constant phase to the amplitude (6).
Before proceeding to the evaluation of Eq. (6),

it is instructive to establish the relation of our
approach to the Glauber theory which is another
nonper turbative high-ener gy approximation. The
correspondence between wave and impact param-
eter treatments has been discussed by McCarroll
and Salin." Starting from the quantum mechan-
ical eikonal ansatz the conventional (small-angle)
Glauber scattering amplitude is derived as" "

A; /(q) = ' d'be'"'b(fI1 —e'"Ii).

Here k; is the initial projectile wave vector and
hq =h(k/ —k;) is the momentum transfer which is
assunzed to be perpendicular to jp,. =0&, i.e., to
the beam axis. The path integral X defined in Eq.
(7) is evaluated along a rectilinear trajectory The.

total cross section for exciting a specific final
state is then written'4

ns+~y /2&

~dq I dy, l &;,(q)l'. (9)
0 ~ -3~) 0

Qne may obtain a result similar in form by
starting from the impact parameter picture of
Eq. (1). For

iaaf

the transition amplitude a; &(b)
can be introduced (aside from an overall factor)
as the two-dimensional Fourier transform of
A; & (q) in the plane perpendicular to the beam
axis (i.e., q v~ =0). Using the familiar represen-
tation of the delta function which reduces the
double integration over the q plane to a single
integration, one obtains an expression which is
formally identical to Eq. (9) except for the limits
of integration. In the wave picture, the limits
of integration in Eq. (9) arise from the conserva-
tion of linear momentum. In the impact param-
eter picture, momentum conservation does not
hold and q enters originally through the Fourier
transform but may be interpreted' as transfer
of transverse momentum with the limits of in-
tegration extending from zero to infinity. The
upper bound is in accordance with the classical
assumption of an infinitely heavy projectile. The
discrepancy in the lower bound of Eq. (9) arises
from the interpretation of q as transverse mo-
mentum transfer q„ in the impact parameter pic-
ture but as tota'Emomentum transfer in the Glauber
approximation [cf. Eq. (8)]. The latter interpre-
tation, however, is inconsistent with the fact,
that in the derivation of the conventional ("re-
stricted"") Glauber approximation the longitudinal
momentum transfer q, = DE/v~ is discarded for
mathematical convenience. " " Certainly, this
approximation does not apply to zero-degree in-
elastic scattering. These difficulties have been
removed, at the expense of mathematical com-

/

plexity, in the "unrestricted" Glauber approxi-
mation formulated by Byron" and by Gau and
Macek. "

Clearly, the present approach is related to the
conventional (often quite successful"' "" '")
Glauber approximaiion, but avoids the inconsisten-
cies mentioned above. While it is not immediately
clear which approach should be better, the semi-
classical picture employed here has the appeal
of greater conceptual clarity. The close cor-
respondence between the two approaches is, of
course, not surprising, because in the deriva-
tion" of the Glauber theory, it is assumed that
the values of the interaction operator taken at
different points along the trajectory commute,
as in the (first) Magnus approximation.

III. TRANSITION AMPLITUDE AND CROSS SECTIONS

(
2. , I'(l+I+iy)

(21+1) t

xe"",E,(/+1+ i~, 2I+2; 2ikr)-
x g Y, (k)Y+ (3"').

m= —f
(12)

Here we have introduced a partial-wave expansion
for the ejected electron and a normalization on
the energy scale. Inserting Eqs. (10) to (12) into
Eq. (6), we obtain a partial-wave expansion of
the transition amplitude

a. (k) —(2k)&/3p ~)P/3e y&/3

with

xP(-2ik)', I, (k) Y, (k), (»)
fm

In this section we calculate the transition am-
plitude (6) for the ionization of a & electron into
a continuum state with momentum k. Atomic
units are used in the following presentation. Using
a straight-line trajectory, one may rewrite the
path integral (|)as"

lt(r, k) =23) ln(IS —s [/5),

where s is the projection of the electron coordinate
r on the impact parameter plane (normal to the
beam axis) andy=-Z~/v~. If A. =Z*, and y=-Z*, /k
with Z*, denoting the effective charge of the target
nucleus, we may write the initial and final electron
states in the form" "

(r) p-1/2/3/3 e-Xr

and

+X(r) = —„2y '/"
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I, (k)= r e "e "- Y'*, (r")

{f-m /2
I'*, (r) =e '"~sin 8 C{"eos" 8,

0

with

(2(i. ()()—m)!)')'
4w(t+m)!

(t+m+2j )!
[-,'(l+m)+ j ]![-2'(l-m) —j ]!(2j)!

(15a)

(15b)

Up to this point, our development is practically
the same as the reduction by Golden and McGuire"
for the Glauber amplitude. We ean now write

) 6 —s i /b = (1+z2 —2z cos()))'/2,

where e =s/b =(r sin8)/b and 9) denotes the angle
between s and b. At this point we introduce the
integral representation

J e' ~(1+z2 —2e cos)p)'" d)/)
0

„2 I"(1+ir!)
I'(1 —i)))

dt [Z! !(et )J! '!(t )] dt, (17)
0

given by Thomas and Gerjuoy. " From this re-
lation and the property of the spherical harmonics
under complex conjugation, it is readily seen
that in Eq. (13) the quantity

I),-!)2!
= (-) I) !)2! . (18)

Owing to this symmetry, we may immediately
obtain the partial transition amplitudes J, for
m&0 from our explicit treatment of the cases
m& 0. At first we confine ourselves to e& j. . In
this case, integration by parts may be carried

x,E,(l +1 +i y, 2 l. + 2; -2 i kr ) d 'r

Owing to the symmetry of the integrand with re-
spect to reflections on the impact parameter
plane, "only i.ntegrals with 1+m an even number
are different from zero. Restricting ourselves
for the moment to m ~ 0, the spherical harmonics
in Eq. (14) are expanded as

out" on the right-hand side of Eq. (17). Intro-
ducing Eqs. (15) and (1"I) into Eq. (14) and col-
lecting 8-dependent terms, we arrive at the in-
tegral"

~ ~sin "icos'~88 —sin8 d8
0

It would be possible to do the f integra, tion" as
the nextstep; however, this is not practical" for
the further reduction. Nevertheless, it can be
verified that after t integration a distinction be-
tween the cases nz =0 and m ~ 1 is not necessary;
for m =0 the differentiation in Eq. (17) has to be
carried out explicitly. When integrated over 8

and t, the two resulting hypergeometric functions
are combined through an appropriate Gauss re-
lation. " This, however, leads precisely to the
result obtained by partial integration in Eq. (17)
(applicable for m ~ 1 only) and specialization to
m =0 after t integration.

To perform the x integration as the next step,
we introduce the standard integral representation"
of the confluent hypergeometric function into Eq.
(14) and insert the expressions {15), {17), and
(19) to obtain the partial transition amplitude

2„„( 2
.

)
I'(1+ i)!) I (2l+2)
1'(1 —i)!) I'(I+ 1 + iy)I'(l+ 1 —iy)

{1-m /2
Q(/ ) 2/+)/2 Ii(j + 1 )b)+ 1/2g() )

p=0

with

1 OQ

dxx"' (1 —x)' '& drr' '"/'e ""
gm

0

dg ] -{f+s/2'+2iq)g
m m+g+ 1/2 b0

{201)

where u = A, —ik(1 —2x). The r integration" leads
to a hypergeometric function with a terminating
power expansion in the variable -t'/0)'b'. If the
finite series is written explicitly, we get

(,/„/', ) (l+m + 2)![ —,'(l —m) —j ] ! ' " ' ( Iv')b'-
I [ --', (l —m) +j ——,

' ] v! [-,'(l -m) —j —v]!I'[-2'(3+m) +-,' —v]

1 oo

dxx)+)') (I x)) &P n)2)) +& dt t )-2) -1-2() -2& Tl (~2b2 + t-)-{)-)+2)g (t )
0 0 (21)
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The i integration" now yields a sum of two generalized hypergeometric functions, F,(a; b, e; z), which can
be written as a convergent series in the whole z plane (z = -n'b'/4} and may be expected to converge rapid-
ly. For each term in the series, the remaining integral over x can be identified with the fundamental inte-
gral representation" of the hypergeometrie function.

Thus, the final result (valid for m ~ 0) is expressed as an infinite but presumably rapidly converging sum
over hypergeometric functions

I2 =(-1)" "47(&'2"" [I (iq)]'(i+m+2)!

(2-))2 /2 F(j~ I)[ 2(l )
~

] ( (2 yd 2--J
( 1)lid( v )bi+4+221

I [-—,'(I —m) +j ——,'] (l- j+1)! v![—,'(l —m) —j—v]!I'[ 2(l+m)+ —,
' —v]

~

~ ~

~

2)O -2'x P A, (1 —ik) "+" +'" "y,y, 1 —m+2 — m2+2 (2l+1+ iy; 2l+ 2; . }n=Q

-22k+5„(2—i )'"'2*"",
( »2y —in —1, -1+1+ iy; 2l+2;

with the coefficients

{2 2„4 2„2 )) 22 I [ 5(1+m) —j —v +n —i']
I'[-—,'(l —m) —v —1 +n —i)I ](m+n)!n!

(22)

(23a)

2-( 2+2v+5+222+ 212))(1 ~+ 1 +n) (

8„(b)= -b'"—
I'[ —,'(l+m)+3+ v+n+ i)I] I'[-',,-(l —m)+ 3+v+n+ ir!]n! (23b)

d 0

dg dQ Q

bdbia, Ti'.

If the ejected electron is not detected, one has
to integrate over the energy and angle variable
to get the total cross section for a given center-
of-mass energy E~ of the projectile. The cross
section is expressed in terms of the excitation
probability P(E», b) integrated over all impact
parameters as

o(E, ) = 2w, b dbP(E„b),
"o

with

(25)

The expression (22) has to be inserted into E(I.
(13) to get the transition amplitude. It is note-
worthy that the transition amplitude is well-be-
haved as 0 - 0. For 0 -~, the orthogonality of
the wave function in E(I. (14) leads to a vanishing
amplitude.

From the transition amplitude (13), one im-
mediately obtains the cross section for ionizing
a given electron from the K shell of the target
atom into a final state characterized by the elec-
tron energy E and the solid angle dQ (in units of
a'„a, Bohr radius), namely,

!"&max

P(E b) = k'dke )"
Q

„ir(!+I+ I) )I',
Q( )'

[(2l 1),]2 Il 2 (a)l'.
lm

(26)
Here, the wave number 4 „.„is determined by the
energy loss of the projectile. In practice, how-
ever, the cross section is expected to become
negligible" at electron energies far below the
projectile energy, consistent with the adopted
approximations. The cross sections (24) and
(25) have to be multiplied with a factor of 2 if
initially there are two electrons in the & shell.

IV. DISCUSSION AND CONCLUDING REMARKS

The cross sections given in E(ls. (24) and (25)
are expressed as integrals over the impactpa-
rameter. The impact parameter by itself is not
a measurable quantity. However, for a repulsive
Coulomb force acting between the target and the
projectile nucleus there is a one-to-one correspon-
dence between the impact parameter b and the
deflection angle 8» (in the center-of-mass sys-
tem). The relation is established' via the ec-
centricity e of the hyperbolic path, which is con-
nected to the deflection angle by e = (sin —,'8») ' and
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also to the impact parameter by e' = 1+5'/d'
where d = Z~Z, e~/2Z~ is half the distance of closest
approach. Under these conditions, therefore,
the impact parameter is accessible to experi-
mental investigation. In our calculations we have
assumed straight-line trajectories, but the path
integral ('I), and hence the ionization probability
(26), will not differ very much from the case
where Rutherford orbits are used instead (pro-
vided 8~ is not too large). Thus, one may use
our formulas and still associate a scattering
angle with each impact parameter. The differ-
ential cross section with respect to projectile
deflection then is

(2I)

where dos/dQ~ =-', e4d' is the differential Ruther-
ford cross section. According to Bang and Han-
steen' the differential cross section calculated
in this way from a theory using straight-line tra-
jectories has a shape very similar to the cross
section derived from Rutherford orbits.

The dependence of the cross section on the pro-
jectile is entirely contained in the parameter
q-Z~/v~. In our approximation, the cross sec-
tions should hence be a universal function of Z~/
v~. As was noted in Ref. 20, this is not so in
the Glauber approximation, because the minimum
momentum transfer does not scale with Z&/v~.

As has been discussed in Sec. II, the present
formulation has much in common with the Glauber
approach" "but we believe that the final ex-
pressions are simpler to evaluate than the cor-
responding results from Glauber theory. More-
over, since the Magnus approximation is the first

. term of an expansion, it is a straightforward,
although' rather involved, procedure to include

the next higher term in the expansion (4). For
some applications, the possibility of obtaining
the impact-parameter dependence of the cross
sections mould be of considerable interest.

We conclude the discussion by pointing out some
effects that are neglected in the present treatment.
(a) We have disregarded all the complex processes
which the outer target electrons may experience.
(b) Electron capture into the continuum" may be
significant, especially if the projectile charge
exceeds the target charge. However, it is very
difficult to include this effect. (c) If the projectile
is only partially stripped, the projectile electrons
will contribute to the interaction with the target
g electrons. To the lomest order, in particular
for Z~»Z, , this effect might be accounted for
by introducing an effective charge also for the
projectile.

We believe that the present approach makes it
possible to calculate g-shell ionization cross
sections for systems which in the past mere not
easily amenable to theoretical treatment. De-
tailed calculations of the ionization cross section
for a number of ion-atom collision systems are
in progress.
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