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The spin-density functional formalism is investigated with the objective of producing practical methods for

calculating the spin (magnetic moment) density, m(r), of atoms, molecules, and metals. Calculations are

performed for the atoms Li, Na, K, N, P, Mn, and As in their spherically symmetric ground states using two

approximations for the exchange-correlation functiona): (i) the exact treatment of exchange with a local

approximation for correlation (referred to as "SUHF-C"), (ii) the local spin-density (LSD) 'approximation for
both exchange and correlation. The "SUHF-C" values of m(0) for Li, Na, K, N, P, Mn, and As are 108, 99,
91, 200, —30, 108, and 93%%uo of experiment, respectively. For Li, Na, and K the LSD approximation yields

98, 109, and 106%, respectively. Away from the nucleus, in all the cases studied, the LSD and "SUHF-C"
results for m(r) are in close agreement. %e conclude that for systems where there is a large direct

contribution the LSD approximation should give better than 90% accuracy, even at the origin. The results

using "SUHF-C" suggest that it has the capability of yielding accurate values of m(r) for atoms and

molecules.

I. INTRODUCTION

The electron spin (magnetic moment) density
m(r) enters a number of phenomena that are of
current interest: (i) magnetic form factors as
determined from neutron scattering experi-
ments, "which are related to the Fourier trans-
form of m( r), i.e., m(q); (ii) hyperfine inter-
actions'4 in atoms, molecules, and metals (Knight
shifts), i.e., dipole-dipole and Fermi contact
terms. The latter is especially difficult to cal-
culate accurately since it depends on the value
of the spin density at the nucleus, m(0), where
nz(r) has a, cusp behavior which tends to amplify
any absolute errors introduced by approximations
in the theory.

There have been a number of calculations'"' of
m(0) for atoms using many-body perturbation
theory (MBPT). Although quite accurate, this
procedure involves a great deal of computation
even for relatively small atomic systems and it
is unlikely that it can be extended to more com-
plicated systems in the near future. In contrast,
the spin-unrestricted Hartree-Fock (SUHF)
method" is relative1y simple to apply. However,
after a number of initial successes in calculating
m(0) (for a recent review see Ref. 12) it has fallen
out of favor as a procedure for obtaining reliable
estimates of this quantity. In particular the pre-
cise numerical solutions of the SUHF equations
by Bagus et al."emphasized its inadequacies.
On the other hand, it is clear from the spin-den-
sity functional (SDF) formalism'4 '7 that exact val-
ues of the spin density can, in principle, be ob-
tained from the self-consistent solutions of a set

of single-particle equations which contain the ef-
fects of exchange and correlation (XC) through
the appropriate functional of the electron number
and spin densities E„,[n, m] (=E„,[n„n ]).

The central problem in the SDF approach is that
the exact E„,[n„n ] is unknown. Most efforts at
practical applications of the SDF formalism have
concentrated on making the local spin-density
(LSD)"'"approximation for E„,[n„,n ]. Although
this approximation has proved to be quite useful
in a number of applications, ' "we shall see that
it is not adequate for all situations.

One purpose of this work is to establish the ana-
log of the SUHF procedure from the viewpoint of
the SDF formalism as an accurate method for
calculating m(r) in atoms and molecules. Since,
in general, exchange is more important than cor-
relation in such systems, we treat exchange ex-
actly and correlation in the I SD approximation.
Our results indicate that this procedure has the
capacity to produce accurate values of m(r) for
r in the vicinity of the origin, the region present-
ing the greatest difficulty.

We wish to emphasize that the Slater-deter-
minant formed from the wave functions of the
single-particle SDF equations is an auxiliary
quantity and is not related (nor an approximation)
to the true ground-state wave function. These
single-particle wave functions should only be used
to calculate the electron number and spin densi-
ties. Thus the problem of S' not being a good
quantum number in the usual SUHF theory'"'~
does not exist in the SDF formalism. Since the
single-particle SDF and SUHF equations are ident-
ical when correlation is neglected and only differ
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in interpretation, we shall refer to this approach
as the "SUHF" method. When correlation is in-
cluded by the LSD approximation the method shall
be referred to as "SUHF-C". (We prefer to use
the quotes ta distinguish between SDF and Hartree-
Fock theory so as to avoid new nomenclature. )

We also evaluate the accuracy of the LSD ap-
proximation for spin-density calculations with the
intent of applying it to spin-polarized metals
where the comparable importance of exchange and
correlation dictates that they should be treated on
the same level of approximation. We shall see
that the LSD scheme works quite well for m(r)
where r &0 but is inadequate for m(0) in situations
where m(0) arises solely from XC core polariza-

tionn.

Attention in this work will be focused on the
neutral atoms Li, Na, K, N, P, Mn, and As,
having spherically symmetric ground states of
nonzero total spin. In the tables we present val-
ues for m(0) in various approximations for
E„,[n„n ] and compare these results with the
Slater approximation, MBPT calculations, and
with experiment. Graphs of m(r) for Li, Na, K,
and Mn are also presented for some of these ap-
proximations. Section II summarizes the theory,
and Sec. III contains a discussion of the results
and conclusions.

II. THEORY

Consider a nonrelativistic inhomogeneous atomic
system of X electrons in the presence of the nu-
clear potential v(r) = —Z/r (Z is the atomic num-
ber) and a constant magnetic field B in the z di-
rection which couples only to the spins. In the
absence of spin-orbit interactions the density
functional theory of Hohenberg, Kohn, and
Sham, '3 as elaborated by von Harth and Hedin
leads to a self-consistent set of single-particle
Schrodinger equations (atomic units) for the ground
state:

(-—,'v' Z/r+v„(r-)+v,", [r;n„n ]

op,B}g„(r)= a„g„(r), (2.1)

total number density, and p,, is the electron Bohr
magneton. The chemical potential p. in (2.2) is
determined by the constraint

N= g 8(p, —e„),
ZV

where i denotes a complete set of quantum num-
bers excluding spin. A complete knowledge of the
usual exchange-correlation energy functional

E„,[n„n ], and hence its functional derivative,
would enable one in principle to solve Eqs. (2.1)
to (2.3) iteratively for the exact ground-state num-
ber densities n, (r), in terms of which the total
spin density (or spin-magnetic-moment density in
units of p, ) is m(r) =n', (r) -n (r). Note that in
the above c,, and g,;,(r) are to be regarded as aux-
iliary quantities used to construct the necessary
functionals.

The derivation of these equations was based
upon the generalized Hohenberg-Kohn theorems
which require that the ground state of the system
be nondegenerate. For the spherically symmetric
atoms that we will be considering, the presence of
the magnetic field B ensures the fulfillment of this
condition and at the same time fixes the total num
bers N, and N of spin-up and spin-down electrons,
respectively. Having applied the field and ob-
tained Eqs. (2.1) to (2.3), we then can let B be
infinitesimally small.

The functional E„,[n„n ] is not known for a gen-
eral system. The simplest approximation is the
LSD,

(2.4)

where c„,(g,(r), n (r)) is the exchange-correla-
tion energy per particle at the position r in a
homogeneous electron gas characterized by con-
stant spin number densities equal to the n, ( r) and
n (r) of the inhomogeneous gas. Hence the ex-
change-correlation potential of (2.3b) becomes

(2.5)

the energy e„,(n, (r), n (r)) can be written

~xc= ~a+ ~c ~ (2.6)
(2.2)

(2.3a)

where &„and a, are exchange and correlation con-
tributions, xespectively. The exchange term is
the usual Hartree-Pock result for a spin-polarized
Fermi system

(2.3b) [n„(r) '+n (r) ~'].3 3 'j'1-
2 4m n(r) (2.7)

where the quantity n, (r), o =+/- is the number
density for spin-up/down electrons, n(r) is. the

Since the. , energy e, will be a function of n, (r),
n (r) , and n(r), we. can write
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v&'&(r) =v'"(r)+ &'&(r) (2.8)

v„"(r) = —2(3/4)T)' [n,( r)]'

v,"(r)=e, (r„x,)+(I —x,)
&e (r, x)

fy

(2.9)

r &a,(r„x.)
3

with x,( r) =n, (r)/n(r) being the fractional spin-o
electron density at r and r, ( r) = [3/4)) n(r)]'~ '.
Note that for convenience we have transformed
the dependence of e, on n, (r), n (r), and n(r) to
the variables x, and x,. All future references to
Eq. (2.1) will imply the use of the. potential de-.

fined in (2.8).
In the above, both excbange and correlation ef-

fects have been treated approximately. We may
expect better results for atoms and molecules,
however, if we make use of an alternate proce-
dure which includes exchange effects exactly.
Following Kohn and Sham" we take, a Priori,

(2.iO)

where

p(r, r') = Q g,.(r)(()).(r') (2 13)

and v~'~ [r; n„n ] is given by (2.10).
Equations (2.12) have the form of the Hartree-.

Fock equations, but they have two advantages.
Correlation is included explicitly (albeit in a local
approximation, but in principle'could be im=
proved'"") which should improve the results, and
the auxiliary wave functions P,,(r) and their as-
sociated Slater determinant are not related to the
true ground-state wave function. Because of this
latter property, such'a determinant does not have
to be an eigenfunction of the operators represent-
ing constants of motion. SpecificaQy, we do not
face the problem, which arises. . in the c)onventional
SUHF method, of the Slater determinant failing
to be an eigenfunction of the total electron spin'-
angular momentum operator O'." This explains

E„,[n„n ]=E„[n„n]+ drn(r)e, (n, (r), n (r)),
(2.ii)

where &Jn„n ] is the Hartree-Fock exchange en-
ergy of a system with number densities n, (r) and
where we have made the LSD approximation for
the correlation energy. Then using the previous
notation, we get

p2————rvr(r)rv~ ~[r;v„v ) —vtr, B)(v(r)

why the SURF method works so well in many cases
in spite of this apparent drawback and why efforts
to improve it by projecting out that part of the de-
terminant which is not the appropriate eigenfunc-
tion of S' have often led to worse results. ""
Equations (2.12) and (2.1) differ solely in their
treatment of the exchange term. The exact non-
local treatment in (2.12) removes whatever elec-
tron self-interactions are incorrectly present in
the local exchange term of (2.1). Because of this
nonlocality, an exact solution of (2.12) even for
small-N systems is a nontrivial computational
problem, yet a relatively simple one when com-
pared with the computations required- by the MBPT
method. For the atomic systems under consider-
ation the equations can be solved by assuming or-
bitals g„(r) of the form

g,,( r) = (1/r) P (n,l p; r)Y, . „(8,(p)x,

subject to the orth+normality requirement

(Z.14)

drP(nlrb;r)P(n'fo;r) = & (2.i5)
0

where Y, (8, (p) is a spherical harmonic and X, is
a spin eigenfunction. The quantum numbers n, l,
and m, have their usual meaning. For the spher-
icaQy symmetric atoms that we wi. ll be consider-
ing, the separation of the spatial wave function
into a product of a radial part, independent of the
magnetic quantum number m„and an angular
part is an exact procedure and will reduce (2.1)
and (2.12) to sets of equations for the radial. func-
tions P(nfo", r). As a result, for each (nl) shell
there will be only orie radial equation for each
spin. If the atom has unequal numbers of spin-up
and spin-down electrons, the presence of the
spin-dependent potentials in these equations will
yield different radial functions for electrons
which differ only in their spin quantum numbers.
Hence the spin densities at the nucleus from
closed shells of such atoms will generally be non-
zero. An often used approximation in which the
I"s are taken to be independent of spin lead~' to
a "restricted Hartree-Fock" (RHF) set of equa-
tions with the undesirable feature of yielding no
contribution to spin densities from closed shells
for any atoms.

In order to include correlation effects in (2.1)
and (2.12), we need to know the (.', (r„x,) in (2.j.o).
Using the random phase approximation, von Barth
and Hedin" computed a correlation energy
P, "(r„x,) for total densities in the metallic range
x, =1 to x, =6 and for several values of x,. For
atomic systems we require a knowledge of i,(r, , x,)
outside this density range. Our procedure will be
to use &, "(r„x,) between r, =1 and r, =6 and then,
keeping the von Barth-Hedin x, dependence at
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TABLE I. Spin densities (a.u. ) at the nucleus for Li, Na, and K atoms.

18 28 3s Total

Li(2S)
LSD-X
LSD-XC
"SUHF"
"SUHF-C"
Slater
MBPT
Experiment"

NR(2S)

LSD-X
LSD-XC
"SUHF"
"SUHF-C"
Slate r
MBPT
Experiment d

K('S)
LSD-X
LSD-XC
"SUHF"
"SUHF-C"
Slater
Experiment

-0.0092
—0.0006

0.0609
0.0720

-0.0142

0.0197
0.0069
0.0463
0.0480
0.0416

0.0139
0.0136
0 ~ 0342
0.0368
0.0298

0.2108
0.2278
0.1638
0.1772
0.2760

-0.0405
-0.0311

0.0746
0.1004

—0.0806

-0.0013
—0.0011

0.0409
0.0504

—0.0021

0.7540
0.84i.4
0.5265
0.5900
1.0220

-0.0475
-0.0290

0.0875
0.1211

—0.0949

1.0327
1.1860
0.6908
0.8032
1.4309

0.2106
0.2272
0.2247
0.2492
0.2618
0.230
0.2313

0.7332
0.8172
0.6474
0.7384
0.9830
0.7255
0.7492

0.9978
1.1695
0.8534
1.0115
1.3637
1.1068

Reference 7.
"Q,eference 36.

Reference 9.
references 35 and 36.

these end points, to extrapolate for small and large
x, values according to the ~, dependence given by
Carr and Maradudin" and Carr et a L,"respectively,

1for the case x,=2.

III. DISCUSSION AND CONCLUSIONS

We have considered the atoms Li, Na, K, N, P,
Mn, andAs in their ground-state configurations.
The multiplets of lowest energy are 'S for the
alkalis Li, Na, and K; ~S for N, P, and As; and
'8 for Mn, and because they correspond to atomic
states of zero total orbital angular momentum the
electron distribution for each atom is spherically
symmetric. These multiplets are twofold, four-
fold, and sixfold degenerate, respectively, because
of the possible orientations of the total spin. Ap-
plication of an external magnetic field B, which
couples only to the spins, lifts these degeneracies
and gives a unique ground state which corresponds
to S,= —,', 2, and 2, respectively, for the above systems.
Thus if E„[n,m] were known exactly, the n(r) and
m(r) calculated from the SDF method correspond
to the ground state with these values for 8, and
the corresponding values of S'.

In each case we have computed the self-consis-
tent spin-density ( )mwltrhln various apploxlma-

tions for E„,[n„n ]. At the nucleus the same
quantity has been evaluated using MBPT for most
of these atoms. In the absence of relativistic
corrections this quantity may be obtained from
hyperfine measurements. However, it has recent-
ly been shown by Andriessen et al."that relativis-
tic corrections are important ( 20%) for atoms
with relatively low atomic number (e.g. , Mn). At
present there is no equivalent experimental data
away from the nucleus. In Tables I and II we
present the results for m(0).

Before discussing our results in detail, we
wish to emphasize that due to the auxiliary nature
of the one-electron spin orbitals only the total
spin and number densities are meaningful quanti-
ties. In the presentation of our data the decomposi-
tion of the spin densities into contributions from
various atomic shells is for illustrative purposes
only, and should not be interpreted as assigning
any physical significance to them.

Solutions of (2.1) were obtained using an appro-
priate modification of the Wood-Boring self-con-
sistent-field program. '0 Equations (2.12) were
solved using a modified SUHF program based on
a multiconfiguration Hartree-Fock program due
to Froese Fischer. "
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TABLE II. Spin densities (a.u. ) at the nucleus for N, P, As, and Mn atoms.

is Total

N('S)
LSD-X
LSD-XC
"SUHF"~
"SUHF-C"
Slate r
MBPT ~

Experiment"

P('S)
LSD-X
LSD-XC
"SUHF"
"SUHF-C"
Slater
MBPT
Experiment d

As(48)
LSD-X
LSD-XC
"SUHF"
"SUm-C"
Slater
Fxperiment

Mn('S)
LSD-X
LSD-XC
"SUHF"
"SUHF-C"
Slater
MBPT
Experiment ~

—0.6668
—0.5734
-0.7432
-0.6633
—1.1350

-0.1818
-0.1751
-0.3548
-0.3504
—0.3145

-0.1184
-0.1186
-0.2681
-0.2697

0.2124

-0.0457
—0.0511
-0.0318
-0.0465
-0.0748

0.6149
0.5379
0.9307
0.8577
1.0692

-0.0466
—0.0145

0.2347
0.2737

-0.0952

0.0380
0.0320
0;0329
0.0289
0.0815

—1.8767
-1.6978
-2.6769
-2.5127
-3.1755

-0.0528
0.0225

-0.0193
0.0497
0.0328

-0.0965
-0.0581

0.2812
0.3594

-0.2051

0.6959
0.7838
1.3222
1.3879
1.4299

—0.8205
—0.4862
-0.6429
—0.3596
—1.1244

1.5178
1.0731
1.1486
0.8161
2.1602

-0.0519
—0.0355

0.1875
0.1944

—0.0658
0.0975
0.0971

—0,2812
—0.1671
—0.1394
-0.0270
—0.3769

0.0826
, 0.0913

-0.9974
—0.6309
-0.5969
—0.2410
—1.4604
-0.2595

0.2913
0.1080

—0.2379
-0.3552

0.3398
-0.412
—0.3285

Reference 5.
Reference 37.

'Reference 8.
"References 34 and 38.

References 38 and 39.
Reference 10.

IReference 39.

Each of the a1kali metals Li, Na, and K has a
single valence s electron outside closed shells
which polarizes the core electrons via a spin-de-
pendent potential. From Table I we see that the
local spin-density approximation with and without
correlation (denoted by LSD-XC and LSD-X re-
spectively) yields about 90% accuracy for the con-
tact spin density. Inclusion of correlation gives
improvement for Li and K but not for Na. Ne also
observe that the dominant contribution (about 95%)
comes from the unpaired s electron. Using
"SUHF-C" we obtained pronounced improvement
over "SUHF" for Na and K, in particular "$UHF-C"
gives 99'%%uo and 91% of the experimenta, l values in
comparison to 86% and I1% for "SUHF", respec-
tively. If the relativistic corrections on SUHF
found by Desclaux" (1% and 5'% increases for Na
and K respectively) are assumed to apply here

then the agreement with experiment would be
further improved. The excellent agreement be-
tween "SUHF-C" and MBPT for Li and Na at r =0
where the absolute error in m(r) due to the LSD
approximation for E,[n„n ] is largest because of
the cusp" in the s-state wave functions suggests
that "SVHF-C" gives very reliable values for
m(r) (r&0) for Li, Na, and K (Figs. 1, 2, and 8).
Hence the "SUHF-C" and LSD-XC spin densities
differ most in the region near the nucleus. Beyond
the outermost minimum the agreement is quite
good.

Also shown are the results of using the local
density approximation for exchange and correlation
(LD-XC) in which one assumes E„,[n„n ]=E„,[n],
and the results for the Slater approximation which
is LSD-X with the U„of (2.9) multiplied by 2. In
their overall ability to reproduce the "SUHF-C"
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FIG. 2. Na-atom spin densities.
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FIG. i. Li-atom spin densities.

spin densities the LD-XC and LSD-XC approxima-
tions are comparable. A notable difference, how-
ever, is the inability of LD-XC to reproduce the
negative minima which are characteristic of the
"SUHF", "SUHF-C," and LSD curves. The Slater
approximation is significantly worse than the
others.

N, P, and As are examples of atoms which have
an imbalance of spin due to three parallel-spin p
electrons in the same open shell outside a closed-
shell core. The Mn atom has an open M shell
containing five parallel-spin electrons. Table II
summarizes the results obtained for m(0) for
these cases. In both LSD and "SUHF" treatments
the addition of correlation improves the resultant
values of m(0) considerably except for N where
the already poor SUHF result is made slightly
worse. P is especially noteworthy in that it was
the first case where SUHF failed to give the cor-
rect sign of m(0). We note that the inclusion of
correlation by the LSD approximation is nearly
sufficient to reverse the sign of m(0) given by
"SUHF." For Mn and As the "SURF-C" values are
in close agreement with the experimental values
and the theoretical value in Mn. ' These results

1,

4— SURF-C
0 ~ ~ ~ l ~ ~ LSD XC

LO-XC
SLATER

a
CN

CV

I

I'

I:.

I

l:.

I:
I:.

I:
l:I:::II: ~ I
l i- I

2

l

I

I

I

I I"

,
l

,

'I
'l

t

, t

——.1

l ~ I I i ( i l

.3 .4 1 2 3

r(a.u.)

FIG. 3. K-atom spin densities.

suggest that a small improvement over the lo~al
approximation (possibly the next term in a gradient
expansion) for E,[n„n ] should be sufficient to
calculate m(r) accurately for atoms and molecules
where relativistic effects are small. Generally
the results from the local approximations differ
considerably from the true values, suggesting
that where "core polarization" is the sole contri-
bution to m(0) the LSD approximation is inadequate.

As an example of m(r) away from the nucleus
for such systems, we have plotted it for Mn in
Fig. 4. The difficulty in calculating m(r) in the
vicinity of the nucleus can be appreciated by an
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FIG. 4. Mn-atom spin densities.

—1.0

—.8

As mentioned previously, only. the total spin
densities have physical meaning. This fact is well
illustrated in the tables where we note that, al-
though individual "shell" contributions vary widely
according to the approximation used for E„,[n„n ],
the totals are in relatively close agreement.

We conclude that for regions not too close to the
nucleus the LSD-XC and "SUHF-C" approximations
of the density functional theory yield magnetic
moment distributions which agree quite well with
one another. Taking the "SUHF-C" as a standard,
this implies that the LSD-XC is a good procedure
for calculating mar over most of the volume for
all systems. Thus, LSD-XC should give good re-
sults for the magnetic form factor. At the nucleus
an accuracy of better than 90% should be expected
from the LSD-XC for atoms having unpaired s
electrons and relatively small core polarization
effects. If the accuracies obtained here for m(0)
reflect how well one can expect to do in metallic
systems where there is a large direct contribution,
then the relative simplicity of the LSD approach
makes meaningful calculations in such cases quite
practical. In atomic and molecular systems where
core-polarization dominates, our results suggest
that the "SUHF-C" method presents a practical al-
ternative to complicated MBPT calculations, al-
though, an improvement in the LSD approximation
for E,[n„n ] will be necessary if one insists on
errors of less than +0.1 a.u.

examination of this figure. For i"~ 0.05 a.u. the
LSD-XC parallels the "SUHF-C" results. How-
ever, for smaller values of r the "SUHF-C" re-
sult continues to be negative with a strong cusp '

behavior while the LSD-XC curve reverses direc-
tion and becomes positive as x approaches zero.
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