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Correlated wave functions for three-particle systems with Coulomb interaction:
The muonic helium atom*

K.-N. Huang~
Degnrtm«nt of Physics, University of Oregon, Eugene, Oregon 97403

(Received 1 October 1976)

A computational procedure for calculating correlated wave functions is proposed for ground and excited states
of three-particle systems with Coulomb interaction. Calculations are performed for the muonic helium atom as
an example, Hylleraas-type trial functions multiplied by appropriate angular factors are used as the basis of
the correlated wave functions. The expansion coeAicients and two nonlinear parameters are obtained
variationally. Results for the states (1s),(1s)„"S,(1s),(2p) "P, (1s)„(3d)„"D,(1.s),(4f)„"F,and
(1s),(5g)„"6are listed.

I. INTRODUCTION

Interest in highly ionized atoms has increased
in recent years, partly as a result of the observa-
tion of x-ray spectra from the solar corona and
other astrophysical plasmas. ' ' Furthermore,
ion- atom collision and beam- foil techniques"
make it possible to produce highly ionized atoms
in the laboratory and study their spectra. In add-
ition, the study of exotic atoms has opened up a
fertile territory extending over atomic, nuclear,
and elementary particle physics. " During the
deexcitation cascade of an exotic atom, it becomes
highly ionized through Auger transitions. The cor-
relation between the remaining particles in highly
ionized atoms is important, especially in the cal-
culation of cascade processes.

In the present work a computational procedure
for calculating correlated 'wave functions is pro-
posed for three-particle systems interacting
through Coulomb forces. The calculations, how-
ever, are carried out only for the muonic helium
atom as an example. The results can be readily
extended to electronic atoms, with proper allow-
ance for exchange. Further works in this respect
will be reported.

The recently observed muonic helium atom" "
is one of the simplest exotic atoms, in which one
of the two electrons in a normal helium atom is
replaced by a negative muon. It provides an in-
teresting and potentially useful system for the
study of a very different type of atomic structure,
and also for the study of the p. -e interaction and
for the precise determination of the magnetic mo-
ment and mass of the negative muon as a test of
CPT invariance.

Correlated wave functions for the muonic helium
atom are required in the calculation of its hyper- .

fine structure""'"' and the muon. capture and cas-
cade processes. """In this work, variational
wave functions which explicitly contain inter-

particle coordinates are presented for the ground
and excited states; this has been proved to be
the most effective way of handling the correlation
in three-particle systems. ""

II. REDUCTION OF THE TOTAL HAMILTONIAN

Consider a system of (n+ 1) particles with co-
ordinates (R„R„.. . , R„)whose total nonrela-
tivistic Hamiltonian is, in atomic units,

i=0

V,.2 +V,
PB i

where i labels the ith particle, and V is the total
potential energy depending only on relative co-
ordinates. By introducing the coordinates of the
center of mass and the relative coordinates,

R.= P m,. n,./Pm, ,

r,. =R; —Ro, i=1,2, . . . , n

(2)

H=H„+H

where
tl

H„=-P ' +v,
2m'

where H„is the Hamiltonian for the ease of in-
finite nuclear mass, and H is the mass correction
term, including reduced and correlated mass cor-
rections. Now the &, 's in (4) and (5) are gradients
of the relative coordinates r, . The Schrodinger
equation for a muonic atom with one electron and
one muon hence reads

we can separate the Hamiltonain of this system into
two parts, K= H«+ H." The first part H«de-
scribes the motion of the center of mass, and the
second part H pertains to the relative motion:
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Hg=(H„+H )P=Eg;

H„=-(1/2M„)(V,+V,)2.

Here, 1 and 2 stand for the electron and muon,
respectively, ~„denotes the distance between
them, and M„is the mass of the nucleus.

S~„(r)=r~Y~„(Q). (7)

III. VARIATIONAL WAVE FUNCTIONS AND MATRIX
ELEMENTS

The ground-state wave function can be obtairied
by an expansion in the standard Hylleraas basis. '
The calculation of excited-state wave functions is
rendered more difficult, compared to that of the
ground state, by the appearance of the subsidiary
condition that the eigenfunction of every excited
state must be orthogonal to the eigenfunctioris of
all lower states. The eigenfunctions belonging to
two states of an atom are, howeve~, automaticaQy
orthogonal to each other if either the total orbital
angular momentum L or the total spin 9 (or both)
have different values for the two states. The vari-
ational-method calculation of the lowest state be-
longing to a given L, an.d 8 can therefore be treated
without additional complications as long as those
functions which have the appropriate symmetry and
angular dependence are adopted as trial func-
tions. "

The general Hylleraas-type trial functions used
in this work are introduced by making use of the
"solid harmonics. " The normalized harmonic
pol.ynomial, or solid harmonic, .is defined as'~

For the case in which the electron is in the ls
state, we use trial functions of the form"

UN 1 (1 . 2) HAJJ (1)p (2) e-n g flr2 rl rtnr

where N and I. are the principal and orbital-angu-
lar-momentum quantum numbers, respectively, of
the muon, and 'go, (1) =—+00(r,), etc. ' The variational
wave function is taken to be the expansion

l+m+n ~v

g„~(r„r,) = Q C,„„U",~„(l,2),
$) 8g) Pfso

where the parameters a and P and the coefficients
C, „areto be determined variationally. Here
will be chosen later to have certain selected val.-
ues. It is seen that the variational wave function
(9) has the appropriate symmetry of the state with
total. angular momentum I., and reduces to the
correct hydrogenic form when correlation is neg-
lected.

The variational calculation can be carried out
more easily by using a new set of coordinates

tj 't2 ' an'cl t3 defined by'

(10)

where the unit vector r,. defines the orientation of
the position vector r, . He're f, and f, are certain
suitable functions which make up the last two in-
dependent variables. %e do not have to know
their exact forms because they depend only on the
orientation of the whole system and do not appear
in the trial functions. ' The Hamiltonian for the
case of infinite nuclear mass is"

re —r~ —rq2 8 Lt2 92 Lfq Q~q(1) 8 Z Z 1

and the matrix element ean be written. '

( Uf~,„,~ H„~U~~„)= --', (a'+ b'/m, )A(i+ 2,j+2, k+2)+ [~a(m+ 1+ ~ l ) —Z]A(i+ 2j +1,k+ 2)

+ [(b/2m~) (n + 1+I, + z l ) —Z] A( i + 2,j + 2, k+ 1) —~ m (m + l + l)A( i+ 2j,k+ 2)

—(1/2m, )n(n+ l+ 1+2L)A(i+ 2,j + 2, k) +A(i+ 1,j + 2, k+ 2)

—,
' l [(l + m + 1)+ (l + n + 1+2L) (1/m, )]A( i,j + 2, k+ 2)

+ 4 al [A( i,j+ 3, k+ 2) -A(i,j + 1,k+ 4)] + (b/4m2) l [A( i,j + 2, k+ 3) —A (i,j + 4, k+ 1)]
+ —,lm A(i,j,k+ 4) + (ln/2m, )A( i,j + 4, k)+ (lL/m, )A,(i,j + 2, k+ 2), (12)

where a=2n, b=2p/N, andi =l'+l, j=m'+m, k=n'+n+2L . . Here, A(i+2, j+2, k+2) and A, (i+2,j+2k+2)
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are defined by the integrals

A(i+2, j+2,k+2) = +r2 -ar nr-i j a

4m 4n
e»r r'r'12 1 2 (13)

(i+ 2 j+ 2 k+ 2) 1 2 e arl -br2r-s r1rk-2L 4v $11', &g (2)Q (2)
d'r d'r , . ~ . 1» 4~ 4~ 12 1 2 p (2) LL IL

The calculation of these integrals is described in Appendix A.
The mass correction term H, expressed in the new coordinates, is"

1 1 8" 1 8' r', + r', r'„9' 2l &, 9' 2L, t, f 'JJ„(1) 9'

(14)

its matrix element is"

(UNL )

( 4 (a '+ b')A(i+ 2,j + 2, k+ 2) —& a(2m+ n+ 2)A(i+ 2,j + 1,k+ 2)2M„

-~ b(2n+ m+ 2+ 2L)A(i+ 2j + 2, k+ 1)+m(m+ n+ l)A(i+ 2j,k+ 2)+n(m+n+ 1+2K)A(i+2,j + 2, k)

-& ab[A. (i+4,j+ l, k+ 1)-A(i+2,j+. l, k+3)-A(i+2, j+3,k+1)]
—2 an[A(i+2,j +3,k) -A(i+4,j + l, k)] ——,

' bm[A(i+2,j,k+ 3) —A(i+4,j,k+ 1)]

mnA(i+ 4j, k) + 2I [mA, (i+ 2j,k+ 2) & aA, (i+ 2,j + 1,k + 2)]] .

The normalization matrix element is

(U",,'„,„,
~
U„„')=A(i+2, j+2,k+2). (17)

IV. VARIATIONAL CALCULATION

g= g C,. U,
i,=1

The variational-principle equivalent to the Schro-
dinger equation (6) is

(18)

b(y~(II Z) ~q)=O.

The variational wave function (9) has the general
form

1, 2, 3, and 4; the number of terms in the ex-
pansion is .I. , 4, 10, 20, and 35, respectively.
There is excellent convergence of the energy as
the number of terms in the wave function is in-
creased. The energies and wave function are listed
in Tables I and II, respectively. For excited states,
we only quote the energies obtained for 1- and
35-term wave functions in Table IH. We find that

TABLE I. Ground-state energy (in atomic units) of the
muonic helium atom computed from 1-, 4-, 10-, 20-,
and 35-term wave functions. '

Approximating the wave function g in (19) by an ex-
pansion of the form (18), we find

Q P c,. c,. [H, ,—err, , ]I=0, (20)

where H, J=(U, ~H
~
U, )and U;& -—(U.; ~U;). Varia-

tion with respect to the coefficients C, leads to the
matrix eigenvalue problem"

I

%ave
function

1-term
4-term

10-term
20-term
35-term

Z b

1.000 036 8
0.994
1.054
1.138
1.270

1.999 999 94
2.000 0
1,999 8
1.999 8
1.999 2

—402.641 012 67
-402.641 013 95
-402.641 014 05
-402.641 014 18
-402.641 01436

g I,II, F.U, ,]C, = O. (21)
j=1

The nonlinear parameters n and P in the variation-
al wave function are also varied to obtain the low-
est eigenvalue and corresponding eigenvector.

V. RESULTS AND DISCUSSION

For the ground state (ls),(ls)„'~S,the varia-
tional wave function (9) is computed for (u = 0,

The fundamental physical constants used here are
the electron mass me= 0.5110034 MeV, the muon mass
~&= 105.65948 MeV, the mass of the 0. particle m~
=4.002 603 amu, and the atomic mass unit 1 amu
= 931.501 6 MeV.

Ze ——&I Me, where Me s the reduc, .d mass of the
electron with respect to the nucleus, and G is the varia-
tional parameter in Eq. {8).

'Z„=P/M~, where M~ is the reduced ma, ss of the
muon with respect to the nucleus, and P is the variational
parameter in Eq. (8).
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TABLE II. Ground-state wave functions of the muonic helium atom. The format A (n) means A x10".

l nz. n 4-term 10-term 20-term 35-term

0 0 0 3.225164571598934 (4)
0 0 1 2.134502 452 206 636
0 1 0 5.271784185417956 (2)
1 0 0 -7.201 670 953 392 672 (2)

002
011
020
1 0

110
200
008
012
021
030
102
111
120
201
210
800
004
018
022
031
040
103
112
121
130
202
211
220
301
810
400

8.225 550 156 522 934 (4)
-1.289 217 948 947 425 {3)

2.162 634 247 490 955 (8)
-4.810730 587 184210 (2)

4.271747 146 912845 (2)
-1.844 234 609 423 314 (4)
-1.017 837 423 728 196 (2)

1.836 3244S4 078 106 (4)

6.152 671782 104 603 (2)
—4.609 799 684 710 024 (2)

3.225 125 867 937 781 (4)
-1.298 404 204 984 705 (3)

4.405 222 628 879461 (3)
5.225494845 594 197 (1)

7.454 109271 511015 (2)
-6.369 487 120 078 833 (4)

4.991938 099 955 998 (2)
6.352 109947 753 359 (4)

8.097 211117492863 (2)
-1.018736828 419 658 (3)
-6.293 371923185 622 (3)

3.67 5 090 508 043 885 (4)

2.615 385 046 630 319 (4)
2.121292 565 892 837 (1)

-3.691589 067 790 872 (4)
—2.104 594 029 611347 (4)

-1.851134146 358 710 (2)
—6.123 938 050 679 311 (3)

1.078 805 917 967 000 (2)
7.488 549 387 578 903 (1)

3.225 900 254 889 307 (4)
-5.167 245 794 062 952 (3)

7.776 026 629 013713 (3)
8.949 298 538 865 987 (2)

1.255 055 621 112182 (3)
-1.549 151236 937 622 (5)

8.111022 291 831306 (3)
1.534495787 567 413 (5)

—1.345357 049623 521 (2)
—1.749 110249 921 565 (3)
-3.169879 510759 632 (4)

2.846 449 846 018 038 (5)

1.342 564 901871 183 (6)
-2.945587 356780464 (2)
-2.846826826 248 252 (5)
-1.023 200 688 260 874 (6)

-1.230 131480052 125 (3)
-3.206874288 180736 (4)

1.797 962711294499 {3)
-1.978 686 066875 219 (2)

7.246 695 514300 020 (4)
-3.660 726 026 649 146~(5)
—2.041 229 668 970 605 {5)

2.665 674 999 640 809 (5)

-3.846 575378 158 283 (1)
3.829 437 680 301983 (5)
2.349 988 256160153 (5)

-8.689753 639916517 (5)

8.856047 059290417 (1)
-8.088 691495864763 (4)

8.894 357 794 671 428 (5)
6.511685 956 400 499 (2)

-2.920 615 508 406 978 (5)
-1.084572 554787 665 (3)

3.972313142 604773 (2)

TABLE III. Excited-state energies of the muonic helium atom computed from 1- and 35-
term wave functions.

{1s),{2P)~ ' P

(1 ),(M)„"D

(1s),(4f) "r
(ls),{5g) ' G

1-term
35-term

1-term
35-term

1-term
35-term

1-term
36-term

Z R
e

1.000 362 7
1.412

1.001494 4
1.422

1.004 174 2
1.386

1.009 335 7
1.417

Zp

1.9S9 997 60
1.998 8

1.999 977 80
1.997 6

1.999 889 85
1.9817

1.999 61478
1.993 6

-101.035 320 27
-101.035 345 15

-45.182 775 76
-45.182 982 68

-25.635 162 14
-25.635 968 26

-16.588 756 27.
-16.590 963 87

For definitions of Ze and Z~, see footnotes b and c to Table I.
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for 1-term wave functions, i.e. , simple product
wave functions, the variational calculation can be
carried out explicitly by differentiation with re-
spect to &I and p. This is demonstrated in Ap-
pendix 8, and the results for 1-term wave func-

- tions in Tables I-III were obtained by this method.
All the energies are minimized to the last quoted
digit. W'e have not attempted to find extrapolated
energies, ' as this procedure appears to be rather
heuristic.

The flexibility in the choice of the exponential
parameters n and P significantly reduces the num-
ber of terms required to achieve a given accuracy.
All the nonlinear parameters are also optimized in
this work to the last quoted digit. As can be seen
from the variation of &I and p, the effective charges
cannot be defined unambiguously by the variational
procedure because their optimum values with re-
spect to the energy depend on the number of terms
and the choice of basis functions in the variational
expansion.

The merit of the present approach lies in its
simplicity and its well-defined expansion sequence.
With high-speed computers, it is possible to focus
on the asymptotic behavior of wave functions with
a large number of terms, rather than on the ques-
tion of optimizing results with a given number of

terms. Furthermore, the exact nonrelativistic
Hamiltonian, including the mass correction, is
used in the variational calculation. Accurate non-
relativistic wave functions obtained in this way can
serve as a starting point in the calculation of rela-
tivistic, radiative, and nuclear-size corrections.
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APPENDIX A: EVALUATION OF INTEGRALS

A(l + 2&Hl + 2&fl + 2) &Ild Ay (I + 2bfll'+ 2&tl + 2)

We describe briefly the evaluation" of the in-
tegrals needed for the calculation of the matrix
elements (12), (16), and (17). All the matrix ele-
ments of the operators are expressed in terms of
the integrals

A(l+2, m+2, n+ 2)

d f 2 e ar1 br2 rl-rea-r" (Al)
4m 4w

A, (l + 2, m + 2, n+ 2) = 2 e arl- br2 rl rara 2I, 4
'

l -1 ) eJJ* (2) elf (2)12 1 2 v
e (2) II LL
gll

(A2)

By the generalized Laplace's expansion to ar-
bitrary powers of the interelectronic distance,
we have

(As)

where the Pb(cose») are Legendre ploynomials.
The radial functions R»(r„r2)are defined in terms
of a hypergeometric function,

1'(-2l+)'2)l"(—,'), r&
lb( 1y 2) fx( I l) fx(y I

)
)

x2p, (k —,'l, 2 —,'l;k+ —,', r'&/r&).

(A4)

The angular integrations in (Al) and (A2) can then
be carried out easily with the results

A(l+ 2, m+ 2, n+ 2)

m-o, (m+n)& 1.
The recurrence relations are"

A, (i) = (i/a)A, (i 1), i ~—1;

(A8)

(A9)

V„(m,n) = (1/b)[nV„(m,n —1)+A(„b)(m+n)],
m~0, (m+n) ~0. (A10)

A, (l+2, m+2, n+2)
00

0

The integrals (A5) and (A6) are evaluated by means
of the auxiliary functions

A, (i) = e '"x'Ch, (A7)
0

r.e(m, x) f ax f ay e =:"x.y"'*'"

and

dr dr e arlbrarya+2 r +2R (r r )l 2 l 2 $0 lS 2
0 ' 0

(A6)

APPENDIX 8: VARIATIONAL CALCULATION OF THE

TOTAL ENERGY OF THREE-PARTICLE SYSTEMS WITH

SIMPLE PRODUCT WAVE FUNCTIONS

We consider only states with the muon angular
momentum quantum number / =n —1. The simple
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product wave function is

q(r„r,) = y, (r,)q, (r,);
g, (r, ) = (n'/m)'/'e ~"'

'4(r2) = ff.. (.-i)(&.)1'&.-i& (~.)

»+&
(y. ) +-(g/n)r2 +n-|

n, (n-i) 2 (2 ) ~ 2

(Bl)

(B2)

x'""(x+2n+ 2)
1 (x+ 1)2n+2 (B7)

2M, Z 1
x'"[x'+ (2n+2)x+(2n+ l)(n+1)]

n (x+ 1)'"+'

(B8)

and effect a further reduction to an equation of'

degree (2n+ 2):
1

The exact nonrelativistic Hami'1tonian for uncor-
related wave functions is

where M, and M, are the reduced masses with
respect to the nucleus. By using wave function
(Bl) we can show that the energy expectation val-
ue is

a2 b2 Z b 1 b b2"[(~+ 1)a+ b]

F(x) = [xZ —k(Z —1)](x+1)'""

—x'"[x'+ (2n+ 2+ k)x'

+ (2n + 2)kx+ (2n+ l)(n+ 1)k]I=0,
(B9)

where k=M, /(nM, ). To find the desired root of
(B9), we can employ the Newton process. Let x,
be close to the desired root B, and

x„=x, —F{x,)/F'(x, ), (B10)

where a = 2n and b = 2 p/n. Variation of the param-
eters a and b leads to the minimizing condition. s

then x„-R,as n ~. For the muonic helium
atom, the desired root 8 -M, /M, » 1; so we
choose x, to be the root of the approximated equa-
tion

BE a Z b2"+'[2(~ y 1)a+b]
ea 4M, 2 (q+ b)'"'2

BE
Bb 4M2 2n

(B5) F(x) =x'"'(x+ 2n+ 2)(Zx- x- Zk) =0,
and get

xo = kZ/(Z —1) . (Bll)

2n(a+ b)'"" ( )a6
b'"[b~ (2+n+ 2)ab+ (2n+ l)(n+ 1)a']

By introducing a new variable x= b/a, we can re-
duce (B5) and (B8) to

Alternatively, we can obtain the desired root from
(B7) and (B8) by an iterative process, which auto-
matically eliminates any local maximum of E.
The root R obtained from either of the above
methods may be checked by verifying that
(8'E/ea') „„&0 and (8'E/sb') „&0.
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