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Identity for memory operators in classical kinetic theory*
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Kinetic equations for classical time-dependent correlation functions of arbitrary. phase-space variables are
discussed, An operator identity is obtained that relates two previously derived forms of the memory operator.
The Zwanzig-Mori projection-operator formalism expresses the memory operator in terms of projected
dynamics, while the Mazenko form contains only unprojected, or Hamiltonian dynamics. With the single-

particle correlation function as an example, the formal kinetic theory of Mazenko is simply derived and its
relationship to the results of Gross and Boley exhibited.

The use of projection operators in classical
kinetic. theory has been successful in systematizing
and generalizing linear kinetic equations for time-
dependent -correlation functions. ' Following the
procedure of Mori' and Zwanzig, 4 the full N-body'

dynamics is projected onto an appropriate sub-
space. A formally exact generalized Langevin
kinetic equation results with a mean field or
static term that may be calculated-from the equili-
brium properties of the system, and a time-de-
pendent memory operator. The memory operator
is typically expressed in terms of another corre-
lation function whose time dependence, however,
is generated by the projection of the, Hamiltonian
dynamics orthogonal to the chosen subspace. For
a properly chosen subspace, the mean-field term
incorporates long-lived collective excitations and
hence the memory operator will decay on a shorter
time scale than that of the original correlation
function, and is expected to be less sensitive to
approximation.

However, mathematical analysis of this modi-
fied dynamics is difficult and it may be advantage-
ous to have an alternate form for the memory
operator expressed entirely in terms of ordinary
time-correlation functions. The purpose of this
note is to present a general operator identity which
provides this latter form, independent of the parti-
cular subspace defining the projection operator.

The motivation for this analysis stems from
recent studies of formally exact linear kinetic
equations for the single-particle phase-space
density, ~5N, (1, f), defined by Eq. (15) below.
Akcasu and Duderstadt' project onto this subspace
and the memory function of their single-particle
kinetic equation depends on a two particle correla-
tion function with projected dynamics. Gross' and
Boley' apply projection operators to this two-par-
ticle correlation function. A formally exact two-
particle kinetic equation is derived, whose memory
function is characterized by a three-particle cor-

relation function with different projected dynamics.
Continuing this procedure, a hierarchy of non-
Markoffian kinetic equations results. At each
level, the time-propagation operators are modi;-.
fied and the memory function contains another
correlation function involving the dynamics of one
more particle.

Mazenko" has obtained what appears to be the
first two equations of a similar hierarchy. How-
ever, all time propagation in his theory is gen-
erated by unprojected, or Hamiltonian dynamics.
As the Mazenko form contains no reference to pro-
jection operators, it is reasonable to expect that
the Mazenko theory-may be derived without pro-
jectionn-operator

methods.
As an application of the above mentioned opera-

tor identity, this derivation will be carried out.
A hierarchy of kinetic equations for the correlation
functions of the memory operators is rederived.
At each level the memory operator will contain
another correlation function involving the dynamics
of one more particle and may. be expressed in
Gross and Boley's, or Mazenko's form. The de-
rivation of Mazenko's results is especially sim-
plified and extended to infinite order. Other ap-
plications of the general operator identity are im-
plicit in the literature. For example, the gener~
alized transport coefficients of linear hydrody-
namics' may be expressed in either projected or
unprojected forms.

It is notationally convenient to work in terms of
the Laplace transformed time development opera-
tor. In the notation of Gross, ' consider the equa-
tion for the resolvent operator, G=(s+L) ',

(s+L)G =JL„, Res/'0,

where s is a Laplace transform variable, Q the
symmetric, normalized identity operator in N
body space, and I the Liouville operator for an
N-particle system interacting with a continuous,
central, two-body potential, V,
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"
p s ~~ sv(lq —q~l)I — —— —

Z asq ~o pe
(2)

(s+PLP+M)PGP =P,
where PLP contains the static term and

M = -PLQ(s+ QLQ) 'QLP

(4)

(5)

is the memory operator.
Several methods have been applied to relate the

modified resolvent operator, (s+QLQ) ', to the
more common resolvent of (1). The expansion,

(8+LQ) '= (8+L) '+ (s+LQ) 'LP(s+L) ', (6)

with the identity

M(PGP) =PLQGP,

where the nth particle has the phase-space coordi-
nates (q, p ). An idempotent projection operator,
P, is defined through a phase function 8 as

P = IR&«R&-'«I =P'=x„-Q. (3)

Generalizations of 8 to vectors and continuous
parameters, with implied summation and integra-
tion in P, are readily made. The brackets indi-
cate the grand canonical ensemble average.

Operating on (1) by P and Q results, after some
rearrangement, in a kinetic equation for PGP,"
which is proportional to the correlation function,
«GR&,

M, substituting in (9) and using (3). Equation (13)
may also be written as

M = -PLQGLP,
(14)

Q =a„-P=Z„G IR&«GR&-'&R I,

where Q projects G onto the modified dynamics.
The equivalence of Eqs. (5) and (13) is the prin-

cipal result of this note. The correlation func-
tions associated with M (i.e. , (RIMIR)) may be
expressed in terms of G, or (s+QLQ) '. Because
of the optional insertion of Q in front of I, IR) in
(13), only the part of L IR) surviving when operated
on by Q need be retained. Since there is now no
reference to a projection operator in «IM IR),
the memory function will contain no equilibrium
correlation functions, only time-dependent ones.
These results are valid for arbitrary phase func-
tions,

I
R).

The formalism developed above will now be ap-
plied to the singlet distribution,

N

I», (1)&= Q 5(x, —q )5(p, —p )

Q il )x, - t),) ll $, -j,) ),
e=1

and shown to generate Mazenko's result.
Likewise, the n-body distribution is given by

implies

M =MD+M(PGQLP),

where M = PI,QGQIP-." Combining (7) and (8)
yields a formula due to Mori, '

M =Mo+M(PGP)M

(8)

Ix„(1.. .n)& =

6]P e2+ ~ ~ W e
5(x, -q. )5(p, -p ). . .

xii(@ t). )))(p„-p. )&,

The Mazenko form of (5) may be derived without
explicit reference to projection operators by con-
sidering

s&RGR) + (RLR) &RR) '(RGR)

+ «MR)&RR) '«GR) = &RR) (10)

as an ansatz for

A sequence of phase functions is recursively de-
fined as

IA (1)&=
I
» (»&

IA, (12)&=Q,
I
», (»)&,

s«GR)+ (RLGR) = (RR) .
IA„(l. . .n)& = Q„,. . .Q, I

5N„(l. . .n)&, (17)
From (10) and (11), this is equivalent to

(&RLR) + (RMR)) &RR) 's «GR) = s(RI GR) . (12)
in conjunction with a sequence of projection opera-
tors,

Substituting (11) for s(RGR) on the left of (12) and
«=i„—GI on the right, one finds,

«IM IR) = —&RLGLR&+&RI,GR)(RGR& '«LGR&.

(13)

It is also possible to derive (13) by solving (7) for

p„p = 5„p„,
where inverses are defined by

(18)
(19)

P.= IA. (~)&&A.(1)A, (2)&-'&A, (2) I,

P, = IA.(1 . r7)&(A.(1 ")A (1' rs )& '(A.)(1 . ."')I,
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(A„(l.. .n)A„(1".. .n")) '(A„(1".. .n")A„(l'. . .n'))

=„—,g'"'(S(1 —1'). . .S(n n'))

(2o)

Bars over variables indicate integration and Zz~
produces a sum of n t terms with permuted un-
primed var iables.

A hierarchy of Laplace transformed time-de-
pendent correlation functions is introduced,

C~(1. .. /, 1'. . .m') =(SN(l. . ./)GSN(l'. . .m')),

C„(1.. . /, 1'. . .m') =C„,(1.. ./, 1'. . .m') —C„,[1.. .l, 1".. . (n —1)"]C„'„,(1".. . (n —1)",I '. . . (n —1)")

x C„,(1'".. . (n —1)'",1'. . .m'), l, m ~ n ~ 2,
(n)

C-&(l. . .n, 1".. n ) C( 1». . . n, l'. . n') =.—, [5(1—1').. .S(n-n')].
nt p

(21)

(22)

An analogous chain exists for an equilibrium version setting 6 = 1, and will be denoted by C„. The square
C„(l. . .n, 1'. . .n')'s in both the equilibrium and nonequilibrium cases are cumulants since they vanish if
any one particle is statistically independent of all the others.

At this point, the kinetic theories may be simply derived Let P .=P, in (4). A kinetic equation for
C, (1, 2) = Jo dt e "(5N(l, t)5N(2, 0)) results in the form,

sC,(1,2) + g"~ (1, 3)C,(3, 2) + P "'(1,3)C, (3, 2) = C~ (1, 2),
l 1

(23)

where Q'~ is the static term, calculable in terms of the equilibrium pair correlation function, and Q is
the collisional memory function,

g"'(1,3)C, (3, 2) =(sN, (1)LsN, (2)),
1

Q"'(1»c (3»=-&'N. (»ILQ (~+0 LQi) 'QxL IsNg(2)&
1

=I I(11')I~(22')(5N2(ll')
I Q~(s+ Q~LQ~) Q~IsN2(22')),

where the external variable interaction operators are defined by

I.,(l. . .n) =-
"-' sV(lx,. -x„l)

ax, ep,
'

j-"1

Using (13), the expression for the memory kernel, (24), may be immediately rewritten as

(24)

(25)

Q"'(1,3)C, (3, 2) =L~(ll')L~(22')C2(11', 22'),
1

C,(11', 22') = C,(11',22') —C, (11', 3)C,~(3, 4)C,(4, 22'),
(as)

and C, is identical to Mazenko's G."
At the next level, (24) may be considered as the integral of another time-correlation function with the

identifications,

P = P „L-Q,IQ„G- (s + Q,I Q„) ' —= G, ,

and a kinetic equation,

(2'l)

(s+P,LP, +M, )P,G,P, =P, , M, = P2LQ,Q, (s+Q,Q~-LQ~Q, ) 'Q2Q~LP2 ~ (28)

In M» two applications of (12) remove the Q operators in the modified resolvent operator and yields
Mazenko's result for Z,"'.
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This series of steps may be repeated indefinitely. At the nth level of the chain a kinetic equation results

sC„(l.. .n, l'. . .n')+ g'"(l. . .n, 1 . . n.")C„(l ...n, 1'. ..n')+ P"»(1. . n., l . . .n')C„(l . . .n", 1'. . .n')
n n

=C„(l.. .n, 1'. . n'.),

g'*»(l. . .n, 1 .. .n")C„(1 . . .n", 1'. . .n')= (A„(l. .. .n)IA„(1'. . .n')),

lu nII)C (leg -n

=I&(l. ..n, n+1)L 1[1'.. .n', (n+1)'](A„„(l.. n+. 1) ~(s+Q„. . .Q I Q, . . .Q ) '(A„+,(1'.. . (1'. . .(n+1)')) .
The static term is the&-body additive or projection-operator theory of Gross' and Holey. ' The Liouville

operator, and the explicit dependence of Z„"» on the two-body force, may be eliminated by partial integra-
tion. By induction, it follows that

g"' (l. . .n, 1"...n")C„(l".. n", 1. '. . .n')
n

=I,,(l. . .n, n+1)I,(l'. . n', (.n+ 31')C„„(l.. .n, n+ 1, 1'. . n', (.n+1)'), (30)

providing the link between different levels of the
chain.

This technique appears to be the most transpar-
ent method of deriving Mazenko's results. A simi-
lar analysis also holds for the test-particle prob-
lem. v The method facilitates the comparison of
approximations, which are usually on equilibrium

correlation functions in the Gross and Holey
formalism, and on time-dependent correlation
functions for the Mazenko theory.
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