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Extensive new data on the even-parity, J = 0 and 2 bound states of Ca provide an excellent opportunity for
the application of multichannel quantum-defect theory (MQDT) to these spectra. A detailed description of the
experimental technique of multiphoton ionization spectroscopy is given, followed by an explicit application of
MQDT to the case where interacting Rydberg series go to three distinct limits. MQDT parameter sets are
obtained for each of the 'S, 'D,, and °D, series of Ca, permitting quantitative determination of the
configuration mixing in each bound state. Several previous assignments of members of the 'D, series are
changed by the analysis. It is found that the quantum defects of the bound energy levels of Ca are determined
almost entirely by configuration mixing, with no observable effects of recoupling. This is in contrast to the
situation in the rare gases, where angular momentum recoupling has the dominant effect on the quantum
defects, with configuration mixing a small additional effect.

I. INTRODUCTION

The primary aim of this paper is to analyze and
interpret the new data obtained' by multiphoton
jonization spectroscopy on the even-parity J=0,2
states of atomic Ca. The tool used in this analysis
is the multichannel quantum defect theory (MQDT)
due originally to Seaton and coworkers® with more
recent elaboration by Fano and coworkers.?

Within the range of its applicability, MQDT is
essentially an exact parametrization of the energy
levels and wave functions of interacting Rydberg
series. Since it treats each whole series as a
unit, it is often superior to conventional analysis
based on one-electron configurations supplemented
by the use of perturbation theory on a level by lev-
el basis. The MQDT is not a perturbation method.
Rather it is a theory based on the fact that a highly
excited electron sees a Coulomb potential during
most of its orbit and hence has an analytically
known wave function for that part of the orbit. The
wave function is a linear combination of regular
and irregular Coulomb wave functions. The the-
ory is parametrized in terms of a small number
of physically meaningful quantities, namely, the
eigenquantum defects u,, and the elements of a
unitary transformation matrix U;,. The eigende-
fects are closely related to the eigenvalues of the
scattering matrix which describes the electron-
electron part of the Hamiltonian. They are also
related to the logarithmic derivative of the radial
wave function of the system at a certain radius 7,.
The unitary matrix U;, specifies the transforma-
tion which diagonalizes the S matrix for the non-
Coulomb part of the scattering of the excited elec-
tron by the ion core.

Once the eigendefects and U matrix have been
found, it is simple to obtain the mixing coefficients
which describe the admixture of an appropriate set
of basis functions into the wave function for each
bound or autoionizing level observed. The number
of such basis functions is small and is equal to the
number of interacting channels M. This number
is often obtainable simply from experimental data
presented in a Lu-Fano plot of the quantum de-
fects.®

An extensive tabulation of the energy levels of
Ca is given by Risberg.® An earlier and less ac-
curate tabulation is contained in Moore’s tables.’
The even-parity 4snd 'D, states are listed by Ris-
berg up to n="7, and the 3D, states are given up to
n=11. The 3D, series is given to 4s17d in a report
to be published by P. Camus.® The 'S, series,
corresponding mainly to the configurations 4sus,
is listed up to =11 in Ref. 4.

Lu” gave Lu-Fano plots for the 'S, and 'D, states
of Ca using the data available in Ref. 5, but used
hand-drawn curves rather than theoretical fits.
Lu’s two-channel treatment of the 'S, states con-
tinues to apply to the newly measured, high-lying
1S, states. Reference 5 gave evidence for only
three interacting channels in the 'D, series,
whereas we now know that four channels are im-
portant. The evidence for the fourth channel
comes from the newly measured ‘high-lying Ryd-
berg states.

The extensive new data obtained by multiphoton
ionization spectroscopy have motivated us to ana-
lyze the Ca even-parity states in detail using
MQDT. However, before presenting the analysis
we give a detailed discussion of the experimental
technique of multiphoton ionization spectroscopy.
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IL. EXPERIMENTAL METHODS

A typical multiphoton ionization spectrum is
shown in Fig. 1. The experimental apparatus nec-
essary for obtaining the data presented herein is
relatively simple. An oven was used to produce
Ca vapor, a pulsed, tunable dye laser was used
to excite it, and a simple metal probe was used to
detect ions. Accurate calibration of the laser
wavelength was obtained by recording, simultan-
eously with the ionization signal, the absorption of
the second harmonic of the laser from the ground
state to the well-known odd-parity 'P; states of
Ca.b®

A. Laser and optical configuration

The experimental configuration is diagrammed
in Fig. 2. A Molectron uv-1000 nitrogen laser
with a pulse output power of 1 MW was used to
pump the dye laser. The laser was operated at
the repetition rate of 133 Hz by synchronizing to
every ninth half cycle of the 60-Hz line. This
mode of synchronization resulted both in a more
stable output power of the nitrogen laser and in
reduced noise from 60-Hz pickup by the ioniza-
tion probe. The 337.1-nm output of the nitrogen-
laser pumped dye solutions contained in two mag-
netically stirred cuvettes, arranged in an oscil-
lator/amplifier configuration.® The dye oscillator
followed Hinsch’s design.’® A beam expansion of
50 was obtained using a simple planoconcave -4
mm focal length (FL) lens and a 200 mm FL cemented
doubletlens. The majority of the newly identified
even-parity states of Ca were observed usinga dye
mixture of equal volumesofa 1.25%X1073 M 1, 4-bis
(2-methylstyryl) benzene (Pilot Chem. ) solutionand a
saturated solution of diphenyl stilbene (Sigma
Chem.), both in p-dioxane solvent (Eastman). This

wavelength range was scanned using the 13th order
of a 316 line/mm echelle grating (PTR Optics No.
TF-R2) blazed at 63.6°. The oscillator/amplifier
configuration resulted in better transverse mode
structure than an oscillator alone; and the line-
width was narrowed from ~0.5 ecm™ to ~0.3 cm™,
Output powers were typically 50 kW.

The laser wavelength was scanned by turning a
micrometer screw against a 3.5-in. lever arm at-
tached to the grating. The wavelength was cali-
brated by the method to be described below.

B. Oven and ionization probe

The oven used for obtaining Ca vapor consisted
of a 50-cm long pipe with clam-shell heating el-
ements surrounding the central 30 cm. A quartz
window was sealed to one end of the pipe via an O-
ring and flange. The oven was thermostatically
controlled via a chromel-alumel thermocouple
placed between the heating elements and the outer
wall of the pipe. The temperature, as derived .
from the thermocouple potential, was typically be-
tween 650 and 750 °C, corresponding to Ca vapor
pressures between 0.04 and 0.4 Torr. These tem-
peratures should be considered upper bounds,
since our observation of the melting point of Ca
indicated an inaccuracy of the thermocouple read-
ing. Calcium vapor was kept from depositing on
the window by cooling 5 cm of the end of the pipe
with circulating water and by the addition of at
least 5 Torr of buffer gas.

The ionization signal was detected by an ioniza-
tion probe inserted into the center of the pipe
from the end opposite the window. Two different
probe configurations were used in the experiments
with Ca. Initially the probe consisted simply of a
2 mm diameter tungsten wire extending axially
down the center of a 4 cm inside diameter nickel
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FIG. 2. Experimental configuration.

pipe. Although this served as an excellent ion
detector, the electric field near the probe was not
uniform. Since this left an uncertainty in the mag-
nitude of the applied field, a parallel plate con-
figuration was later adopted for the ionization
probe. In this case two 15-cm long stainless-steel
plates were held parallel to one another in the cen-
ter of a 5-cm inside diameter stainless-steel pipe
via 2-mm stainless rod extensions supported by
ceramic spacers placed outside of the hot zone.
The 1-cm wide, 0.2-cm thick plates were sep-
arated by 0.5 cm. Signals were detected by cou-
pling an oscilloscope and/or a Keithley 881 boxcar
integrator to one of the probes through a 0.01 uf
capacitor. This blocking capacitor allowed the
application of dc bias potentials to the both elec-
trodes.

Typical ionization signal pulses observed on the
oscilloscope with the parallel plate probe are
shown in Fig. 3. Note the compression of the sig-
nal in time as the applied field is increased or as
the laser beam is moved closer to the collecting
electrode. The ion collection efficiency was ob-
served to decrease whenever the potential differ-
ence between the two plates was less than 0.5 V or
greater than ~10 V. This was true for signals
from the continuum above the first ionization limit
(49306 cm™) as well as for signals from bound-
state resonances. If the voltage was increased
above ~10 V (depending on buffer gas pressure and
temperature), a glow discharge could be seen be-
tween the plates. Applied fields greater than ~10
V/cm also led to measurable Stark shifts and to
mixing of the high-lying Rydberg states. This will
be discussed below.

C. Wavelength calibration and determination of J

It is experimentally simple to distinguish be-
tween J=0 and J =2 states when, as in Ca, the ini-
tial state has J=0. In this case, two photon excita-
tion with a circularly polarized laser beam occurs

(a)

- (b)

(c)

FIG. 3. Typical ionization pulses obtained with parallel
plate electrodes and a 100 kQ load resistor. Vertical:
10 mV/div; horizontal: 0.1 msec/div. (a) Voltage be-
tween plates, V=0.4 V, beam focused midway between
the plates; (b) V=3.78 V, beam focused as in (a); (c) V
=0.4 V, beam focused closer to collecting (negative)
electrode.

to final states with |m|=2, ruling out all J=0
states. Experimentally, the laser was first linear-
ly polarized with a Glan-Taylor prism, and then
directed through a quarter-wave plate. Rotation of
the retardation plate switched the laser polariza-
tion between linear and circular. To determine
quickly which peaks were strongly affected, a
Fresnel rhomb was used for scans over wide wave-
length regions. For more accurate measurements
of polarization ratios, a Soleil-Babinet compensa-
tor was used. Such measurements showed the sig-
nals from 'S, states to be reduced by a factor 300
in circularly (as compared to linearly) polarized
light, whereas the D, states increased in intensity
by a factor 1.5, as predicted by angular momen-
tum selection rules.!*

To obtain accurate energies, E, and quantum de-
fects for the newly observed states, we calibrated
the laser wavelength for each spectrum scanned.
The uncertainty in the effective quantum number
n* increases with n* according to An* =n*3A(E
- I,)/2R. Thus accurate wavelength measurement
becomes more critical to the calculation of n*
as one nears the ionization limit I;. An ideal wave-
length calibration would minimize these errors by
providing a high density of points in this critical
region. Such a calibration source is readily avail-
able in the form of the well-known 4snp 'P? Ryd-
berg series, which converges on the same ioniza-
tion limit as the newly observed even-parity states.
The absorption wavelengths of this series have re-
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cently been measured® with an accuracy of 10
nm. These known one-photon absorption wave-
lengths were used to calibrate the tunable laser
as follows.

The dye laser was frequency doubled by focusing
it with a 15-cm FL lens into an ammonium dihy-
drogen phosphate (ADP) crystal cut and polished
perpendicular to the 110 direction. The laser,
polarized along 110, propagated along the 110 di-
rection generating second harmonic polarized
along 001. The 15-mm long ADP crystal was or-
ders of magnitude longer than the coherence length
at 415 nm. Although phase matching at these wave-
lengths could not be accomplished, second-har-
monic intensity was sufficient to produce 100 mV
signals when detected by an EMI G26G315 photo-
tube (Rb-Te photocathode) operating with a gain of
about 1000. After recollimation with a 15-cm FL
quartz achromat, the fundamental and second har-
monic were separated using a quartz prism. The
particular arrangement of prisms shown in Fig. 2
was used in order to minimize beam wander due
to the prism dispersion over the scanned wave-
lengths. Transmission of the second-harmonic
beam through a second oven containing Ca was
then monitored in order to record the *P] absorp-
tion series. This reference oven consisted of a
stainless-steel pipe heated over a 50-cm region,
with uv-grade quartz windows o-ring sealed on the
ends. The absorption signal was recorded on the
same chart as the ionization signal. The signals
were detected by matched boxcar integrators with
identical time constants to minimize systematic
errors. Since the absorption wavelengths of the
4snp 'P; series have been measured up to #="179,
each spectral scan could include as many as 50
well-defined calibration wavelengths.

The explicit calibration procedure used was to
measure the positions of the 'P? state absorptions
on a chart and to fit these measurements via stan-
dard least-squares fitting techniques'? to a func-
tion expected to describe reasonably accurately
the characteristics of the wavelength drive. In
most cases this function was a second-order poly-
nomial plus a sinusoidal term with period equiva-
lent to one rotation of the micrometer screw. The
precision of a particular scan was given by the
average rms deviations from the known wave-
lengths.? Wavelengths for resonances observed in
the ionization signal were obtained by applying this
calibration function to the measured positions of
these peaks on the chart. By averaging the results
of some ten scans, the relative errors were re-
duced for most of the newly observed peaks to less
than 0.1 cm™. The energies of the observed even-
parity states arrived at using this procedure are
presented in Tables I and II. These data are sub-

ject to systematic error (of the order of 0.05 cm™)
from two sources described below.

Stark shifts and mixing of the high-lying Rydberg
states were observed at applied fields greater than
~10 V/cm. With an applied field of 25 V/cm, 'D,
states near »n* =30 shifted by -0.3 cm™. At these
fields two new series of weak peaks appeared in
the spectrum for »* >20. One series coincided with
the 'P{ states being observed simultaneously via
single-photon absorption in the reference oven.

We have tentatively identified the other series as
'F?, although this series has not yet been identi-

TABLE I. Observed and calculated ® term values for
1S, states of calcium.

Approximate Experimental Calculated

configuration (cm™) (cm™h)2
4s4s 0.00 ve
4s5s 33317.26+0.10°¢ 33414.01°
4s6s 40690.44+0.10°¢ 40 690.44
4p? 41786.28+0.10° 41786.27
4sTs 44276.54+0.10° 44276.62
4s8s 45887.20+0.10° 45 886.95
4s9s 46835.05+0.10° 46 835.02
4s10s 47437.47+0.10°¢ 47 4317.59
4s1ls 47843.76+0.10°¢ 47 843.97
4s512s 48131.21+0.64 48130.88
4s13s 48 341.17 +0.64 48 340.94
4sl4s 48499.44 +0.23 48 499.33
4s15s 48 621.44+0.10 48 621.70
4s16s 48718.10+0.10 48718.20
4s17s 48795.50+0.10 481795.64
4518s 48858.72+0.11 48 858.72
4s19s 48910.74+0.08 48910.79
4s20s 48954.43+0.08 48 954.27
4s21s 48 990.88+0.08 48 990.95
45228 49022.13+0.08 49022.18
4523s 49048.99+0.08 49048.99
4s24s 49072.16+0.08 49072.,17
4s25s 49092.42+0.05 49 092.35
45268 49110.05+0.05 49110.02
4s27s 49125.64 +0.05 49125.59
4s28s 49139.40+0.05 49139.38
4529s 49151.59+0.05 49151.64
4s30s 49162.47+£0.07 49162.60
4831s 49172,43+0.08 49172.43
4s832s 49181.49+0.17 49181.28
4s33s 49189.28
4s34s 49196.54
4s35s 49203.14
4s36s 49209.16
4s37s 49214.66
4s38s 49219.,71
4s39s 49224.35
4s40s 49 228.63

2MQDT calculated term values using parameters of
Table III(b).

® This state not included in least-squares fit.

¢ Term values from Ref. 4. Errors listed were used to
weight the least-squares fit, and do not necessarily
reflect the actual accuracy of this data.
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TABLE II. Observed and calculated ® term values for !D, states of calcium.
Approximate Experimental Calculated Approximate Experimental Calculated
configuration (cm™) (cm™1)? configuration (cm™) (cm™) 2
4s3d 21849.61 () 4s 41d 49236.58+0.05 49236.58
4s4d 37298.31+1.0°¢ 37298.31 4s42d 49239.93+0.05 49239.93
4p? 40719.87+1.0° 40719.86 4s43d 49243.05+0.05 49243.05
4s5d 42919.07+1.0° 42919.17 4s44d 49245.95+0.05 49245.95
4s6d 44989.88+1.0° 44 989.17 4s45d 49248.67+0.05 49248.66
4s7d 46199.23+0.569 46199.73 4s46d 49251.22+0.05 49251.19
4s8d 46948.98+0.56 46948.37 4s47d 49253.56+0.05 49253.55
3d5s 47449.36+0.63° 47450.26 4s48d 49255.76+0.05 49255.77
4s9d* 47812.57+0.63 47811.76 4s49d 49257.81+0.05 49257.85
4s10d 48 083.42+0.63¢ 48 083.22 4s50d 49259.76+0.05 49259.80
4s11d 48291.01 +0.63 48290.89 4s51d 49261.62+0.05 49261.63
4s12d 48451.73+0.10 48451.82 4s52d 49263.30+0.05 49263.36
4s13d 48578.40+0.13 48578.24 4s53d 49264.91+0.05 49264.99
4s14d 48679.02+0.10 48 678.99 4s54d 49266.47 +0.06 49266.53
4s15d 48760.31+0.10 48760.43 4s55d 49268.06+0.08 49267.98
4s16d 48827.12+0.10 48827.16 4s56d 49269.42+0.09 49269.36
4s17d 48882.56+0.07 48 882.50 4s57d 49270.71+0.11 49270.66
4s18d 48 928.95+0C.09 48 928.92 4s58d 49271.92£0.11 49271.89
4s19d 48 968.22+0.07 48 968.22 4s59d 49273.12+0.11 49273.06
4s20d 49001.77+0.07 49001.79 4560d 49274.29+0.11 49274.17
4s21d 49030.67+0.09 49030.69 4s61d 49275.58+0.17 49275.23
4s22d 49 055.75+0.07 49 055.73 4s62d 49275.87+0.15 49276.23
4s23d 49077.55+0.07 49 077.56 4s63d 49277.19
4s24d 49096.77+0.04 49 096.70 4s64d 49278.10
4s25d 49113.57+0.04 49113.57 4s65d 49278.97
4s26d 49128.50+0.04 49128.51 4566d 49279.79
4s27d 49141.76+0.04 49141.80 4s67d 49280.58
4s28d 49153.57+0.04 49153.66 4s68d 49281.34
4s29d 49164.23+0.04 49164.30 4s69d 49282.06
4s30d 49173.92+0.06 49173.87 4s70d 49282.75
4s31d 49182.53+0,04 49182.52 4s71d 49283.41
4s32d 49190.37+0.05 49190.34 4s72d 49284.05
4s33d 49197.48+0.05 49197.46 4s73d 49284.66
4s34d 49204.01+0.05 49203.93 4s74d 49285.24
4s35d 49209.88+0.05 49209.85 4s75d 49285.80
4s36d 49215.27+0.05 49215.28 4s76d 49286.33
4s37d 49220.28+0.05 49220.25 4s77d 49286.85
4s38d 49224.89+0.05 49224.83 4s78d 49287.34
4s39d 49229.12+0.05 49229.06 4s79d 49 287.82
4s40d 49233.00+0.05 49232.96 4s80d 49288.28

2MQDT calculated term values using parameters of
Table IV(b).

P This state not included in least-squares fit.

¢ Term values from Ref. 4. Errors listed were used to
weight the least-squares fit, and do not necessarily
reflect the actual accuracy of this data.

dReference 4 assigns a state at 46 308.257 cm™! to this
configuration.

fied in the literature above the 4s12f state.* Thus,
for high-lying Rydberg states, fields as low as
~10 V/cm are effective in the experimental elimin-
ation of parity as a good quantum number, allowing
observable two-photon transitions from an “even”
initial state to “odd” final states via Stark mixing
of 'S, and 'D, states with the *P{ and 'F? states.

In order to reduce Stark effects, and also in or-

e Reference 4 assigns a state of 47449.083 cm™! to the
configuration 3d%. We have chosen the alternative assign-
ment of 3d5s for this state, which is the 1D2 state closest
to 3d5s 3D2, on the basis of mixing coefficients calculated
in Sec. III D2.

fSee text: Sec. III D2.

& Assigned in Ref. 4 as 3d5s 'D,, at 48083.383 cm™.

der to obtain the best signal to noise, most of the
data was taken with a 1 to 1.5 V potential between
the parallel plates. Since at low fields the Stark
effect is quadratic in the applied field, this eli-
minated the Stark effect as a measurable pertur-
bation on the observed energy levels.

There are also pressure shifts of atomic energy
levels due to the presence of foreign gases.'® As
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described in Ref. 1, shifts of —-0.8 cm™/100 Torr
were easily observed when Kr was used as a buffer
gas. Neon, however, is known to have a much
smaller pressure shift.!* At 500 Torr a pressure
shift of only 0.06 cm™ was observed in compari-
son with the signal from an oven containing 5 Torr
of Ne. Neon, at pressures near 10 Torr, was
thus used as the buffer gas during accurate wave-
length measurements.

Systematic errors due to pressure shifts were
minimized by maintaining equal pressures of buf-
fer gas in each oven. In order to obtain adequate
absorptiondepthfor the higher members (n* >30) of
the 'P{ series, the Ca pressure in the reference oven
hadtobe increased over that inthe signal oven. This
required that the temperature be raised from 700
to 800 C. No pressure shifts due to Ca could be
observed even for temperatures of 900 °C.

We believe that systematic errors inthe data pre-
sented in Tables I and II due to the above sources
are less than 0.05 cm™.

D. Mechanism of ionization

In order to elucidate the ionization mechanism,
measurements were made of the dependence of the
ionization signal on parameters such as laser in-
tensity I, buffer gas pressure P,, electric field
E, and Ca vapor pressure P.,, which was a func-
tion of the temperature 7'. One of the most im-
portant observations was that for all of the ob-
served two-photon resonances above 42000 cm™,
the ionization signal was proportional to IZ. This
behavior persisted over three orders of magnitude
in signal strength. At peak currents greater than
about 1 pA, space-charge and/or electron-ion re-
combination effects resulted in saturation, i.e., in
a less than quadratic dependence on I;. The laser
intensity required for saturation decreased as P,
increased. Typically, for P,,~0.1 Torr, satura-
tion of the signal from 4s18s'S, occurred with I,
=10° W/cm?. Quadratic intensity dependence was
also observed, as expected, when the energy of
two laser photons exceeded the ionization energy
of Ca.

The fact that both bound-state and continuum sig-
nals show the same intensity dependence implies
that either (a) the ionization mechanism for bound
states does not involve the absorption of a (third)
photon, or (b) if photoionization is occurring in a
measurable amount, it is totally saturated, i.e.,
it occurs with unit probability.

The relative signal strengths of bound-state res-
onances (above 48000 cm™) and the continuum
were found to be independent of the experimental
parameters I, Pq,, P,, and E. The inability to
enhance the intensity of the bound-state resonances
relative to the continuum signal leads us to con-

clude that whatever the ionization mechanism is,
it is already 100% efficient in this energy region.

For the lowest-energy state that we studied, the
4p*'D, state at 40 720 cm™, the intensity depen-
dence was found to increase towards a cubic de-
pendence for I; < 5 x10* W/cm?, indicating that
this state was being photoionized, i.e., that the
overall process was three-photon photoionization.
The ionization signal from the next-higher 'D,
state, at 42919 cm™, returned to the quadratic
intensity dependence observed at all higher excita-
tion energies.

Possible alternate mechanisms include Stark
ionization!* and collisional ionization (including
the possibility of chemi-ionization'®). Stark ioni-
zation appears unlikely in the fields (typically
<3 V/cm) used, even for the highest Rydberg lev-
els (u*~60) that we observed. Ionization by ther-
mal collisions appears feasible for Rydberg states
within an energy range 27 of the ionization thres-
hold. (States with n*>12 were within 27 of the
limit in our experiments.)

A “hot-wire” effect, in which the excited atom
ionizes after collision with the probe or the wall
of the oven, was eliminated by observing that the
ion current pulse shape behaved identically for
bound-state resonances and the continuum. This
would not be expected for a process requiring ex-
cited atoms to diffuse to a surface before being
ionized.

The long ion collection time (~1 msec) prevented
us from studying the detailed time behavior of the
ionization mechanism. Other experiments are
planned with which we hope to elucidate the ioni-
zation mechanism.

E. Measurement of relative intensities

If the ionization mechanism, and in particular
its energy dependence, were understood, then the
relative ionization signals observed could be con-
verted into relative two-photon excitation cross
sections.!® And since the experiments' make use
of essentially a single intermediate state, the two-
photon cross sections could be related to the oscil-
lator strengths of transitions from the intermedi-
ate state to the series of final two-photon states.

Although such determinations are not now pos-
sible, there are two features of the observed ioni-
zation signal strengths which probably can be re-
lated qualitatively to oscillator strengths at this
time. In each case there is an unexpected depen-
dence of signal strength on energy over a narrow
energy range. These energy ranges are so small
that it is unlikely that the ionization efficiency is
varying appreciably.

The first feature occurs in a roughly 200 cm™ in-
terval centered on 48578 cm™. Within this inter-
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FIG. 4. Multiphoton ionization spectrum of states in
the vicinity of the “4s13d” 'D, state at 48578 cm™!. Ex-
perimental conditions are those of Fig. 1. Note the ap-
pearance of the triplet states 3d2 3P0, 9, 4513d °D,, and
4s14d °D,.

val the 'D, ionization signal strength decreases by
about 100 times, and then recovers its “normal
value.” This is shown in Fig. 4, which also shows

no unusual behavior of the lS0 series at this energy.

A possible explanation for this strong variation is
that there is an interference between the transi-
tion moments of the various 'D, channels. This in-
terference will be further complicated by the fact
that this energy region is one in which the 'D, and
®D, series of 4snd cross. The bottom of the dip,
at “4s13d,” is also very close in energy to the °P,
state assigned to 3d? by Risberg.* Thus triplet
states from two configurations may be interfering
with, and borrowing oscillator strength from, the
'D, series at this point.

The second feature is the remarkably slow de-
crease in 'D, signal strength over the 100 cm™
just below the ionization limit. This is shown in
Fig. 1. By contrast, the strong decrease in the 'S,
series strength in this energy range has roughly
the (n*)™® dependence expected. In Sec. IIID2 we
will further discuss the D, strengths in terms of
the wave functions which will be deduced there.

III. MULTICHANNEL QUANTUM DEFECT THEORY
A. Basic formulas

For convenience in the analysis which follows
we summarize the working equations of MQDT,
using the notation of Lee and Lu.'”

The two most important attributes of a discrete
Rydberg spectrum (characterized by the rigorous
quantum numbers J and parity) are the number, M,
of interacting channels which contribute to the
spectrum, and the number, N, of different series
limits involved. The number of series limits is
less than or equal to the number of interacting
channels. We will explain later in this section
how the numbers M and N are to be determined
from experimental data.

First it will be useful to define two types of
channels used in MQDT. We paraphrase from
Ref. 3 Fano’s general definition of a “collision
channel.” A collision channel describes a set of
states that consists of an outer electron with ar-
bitrary energy and a core in a definite energy lev-
el. Specification of the angular momenta of the
outer electron and of the core, along with their
coupling, completes description of the channel.

The set of states forming a collision channel
does not diagonalize the electron-electron part of
the Hamiltonian. There is, however, an alternate
set of channels called “close-coupling” channels
which does diagonalize the noncentral part of the
electron-electron interaction. These close-cou-
pled channels, the o channels, are derived by a
unitary transformation from the collision chan-
nels. The two types of channels may or may not
have different angular momenta coupling schemes;
however, it is customary to ascribe LS coupling
to the a channels. .

In this paper we will be concerned primarily with
channels of even parity and J=0 or 2. For ex-
ample, a collision channel with J=0 and even par-
ity can be formed in the following ways, among
others: an excited s electron coupled to an s core;
an excited p electron coupled to a p core; or an
excited d electron coupled to a d core. Of the
many possible collision channels of the 'S,
type, experiment shows that only two have any ap-
preciable effect on the observed series of bound
excited 'S, levels in Ca.

The number N of series limits involved in the
multichannel interaction picture is, simply stated,
the number of distinct states of the core occurring
in the channels which interact to produce the ob-
served spectrum. For the J=0 even levels of Ca,
the number of series limits is two, corresponding
to collision channels 4sus and 4pnp. For the
J =2 even levels, the number of series limits is
three, because channels occur for which the core
is either & the 4s, or 4p, or 3d configuration.
The spin-orbit splittings of the 4p 2P and 3d 2Dion
levels can be ignored when discussing bound
states, since these splittings are very small com-
pared to the energy differences between the 4s,
3d, and 4p states.

Each observed energy level has as many effec-
tive, principal quantum numbers v; assigned to
it as there are series limits, N. The effective
quantum numbers for a level of energy E are de-
termined from the relations

E=I,—~R/v}, @)

where I; is the ith ionization limit, and where R is
the Rydberg constant. These N equations deter-
mine N -1 independent relations of the form
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IL,-R/vi=I,-R/v}, i#j. (2)

This set of N — 1 equations determines a “line,”
called £, in the N-dimensional space of the v;;
the line £ plays an important role in determining
the theoretical positions of the bound states, as
will be explained shortly.

The v, are nonintegers, (except for hydrogen)
and it is their nonintegral part which contains in-
formation about the mutual interactions between
Rydberg series caused by electron-electron ef-
fects. It is therefore a characteristic feature of
MQDT that the effective quantum numbers are,
for many purposes, considered modulo 1. With
this notation, the quantum defect, u, is given by
the fractional part of —-v, i.e., p=-v mod 1.

Beyond a radius 7,, the wave function of an ex-
cited state is represented as a superposition of
the wave functions of collision channels, or so-
called ¢ channels:

M
¥ =$;¢:<f(l/,-, 1;,7) ; U;ocos(mu,)A,

M
-8, lm’)z_: Ujo sin(miy) A, > .3

The functions ¢; are the wave functions of the core
along with the angular part of the wave function of
the excited electron in the ith collision channel.
The functions f and g are the regular and irregular
Coulomb wave functions for the ¢th channel. The
quantities u, are the eigenquantum defects of the
close-coupled channels. Again, the a channels
are derived from the collision, or dissociation,
channels by the unitary transformation U. A prin-
cipal aim of MQDT is to allow determination of
this matrix from experiment. The A, are deter-
mined from the boundary conditions which must be
imposed on the wave functions in the three physi-
cally distinct regions: bound state, autoionizing
state, or open continuum.,

For the discrete spectrum, the behavior of the
wave functions at » -« leads to the conditions

D AU sint(v+ 1) =0, i=1,.. ., M.
[+

(4a)

Note that although we use the same subscript, ¢,
in v; and in U,;,, there are only N distinct values
of v;, whereas there are M =N rows of U; see the
text following Eq. (12). The set of homogeneous
simultaneous equations (4a) for the A, only has
nontrivial solutions on the N - 1 dimensional sur-
face, 8, defined in v; space by

det |U,, sinm(v;+ 11,) |=0 . (4b)

The theovetical positions of the bound states ave
given by the intersection of the line £ and the sur-

face 8; that is, the v; of the bound states are ob-
tained as the simultaneous solutions of Egs. (2)
and (4b).

Expression (4b) defines a relation between the
v; with the pu, and the U,;, as parameters. It is
Eq. (4b) which must be fitted to experiment to de-
termine the values of the eigendefects and the
elements of the U matrix.

B. Analysis of the 'S, spectrum

The Ca spectra obtained using polarized laser
excitation experimentally distinguished the J=0
states from those with J=2. Since it serves as an
example of a simple two limit, two channel prob-
lem, the J=0 spectrum will be analyzed first.
This analysis also serves to test the absolute ac-
curacy of our measured term values by compar-
ison with term values extrapolated from a least-
squares fit of MQDT to previously measured 'S,
term values.*

The 'S, bound-state spectrum of Ca consists of
4sns excitations converging on the first (4s) limit,
I,=49305.99 cm™, with an interloper identified**
as the 4p? state. This interloper is the only bound
member of the series 4pnp 'S, converging on the
third 4p ionization limit, I,=74 609 cm™. Even
with the extensive new data reported in Ref. 1,
there is no evidence in the bound-state spectrum
for the presence of any other significant perturba-
tion of the 'S, series.

Since the relevant channels for the 'S, spectrum,
4sns and 4pnp, converge, respectively, on the 4s
and 4p ionization limits, the appropriate Lu-Fano
plot presents v, vs v,. Figure 5 is such a plot

O T T T T T T T
P -
2 L 4g20 ,, 4
K —— 4s5s\, 1

pro— — — — —— — —\T {,o—o—g

I 1 1 1 1 1 1 1 l!]

0 |

vp (mod 1)

FIG. 5. Lu-Fano plot of 'S, data. The symbols are
O for previously observed states (Ref. 4) and @ for the
new data (Table I). The broken line is based on MQDT
energy-independent parameters [ Table III(a)] determined
from a least-mean-squared fit to the data of Ref. 4. The
solid curve is based on the MQDT energy-dependent pa-
rameters of Table III(b).
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(see also Ref. 7), where open circles correspond
to the previously observed 'S, states,* and the
filled circles correspond to the new data (Table I).
Note that in addition to plotting v, and v, modulo 1,
we have followed the convention of inverting the
axis for the lower limit effective quantum number
so that the plot appears as —v,vs v,(modulo1). In
this plot an unperturbed 4sns Rydberg series
would appear as a horizontal line, i.e., would
have v (mod 1) =constant. This can be seen to be
the case for most of the points plotted in Fig. 5,
where the exceptions are the four lowest energy
states. The presence of the 4p? interloper causes
the major perturbation, near v,(mod 1)=0.8, and
penetration by the outer electron into the 4s ion
core causes the deviation of the lowest energy

(4s? and 4s5s) states from the simple Rydberg
formula.

The MQDT parameters needed to describe a two-
channel problem are two eigendefects and a third
parameter which defines the 2 X 2 unitary trans-
formation matrix U;,. Following Ref. 18, this
parametrization is accomplished by first sketching
a curve through states of successively higher en-
ergy. Ignoring the 4s? ground state, the curve is
drawn such as to increase monotonically from
lower left to upper right. The modulo 1 nature of
the plot requires that a curve which has run off
at one border must reappear at the opposite bor-
der. This sketched curve will be a first approxi-
mation to the curve, 8, defined by Eq. (4b). Once
this curve is drawn, approximate values for the
two eigendefects g and u, are obtained by finding
the intersections of S with the v =v, diagonal, as
in Ref. 19. These approximate values of the eigen-
defects are p, =0.37 and p,=0.17. Improvement
of the p, and initial determination of the U,, are
then carried out on a graphics computer terminal
by trial and error. Further refinement of the pa-
rameters by least-squares fitting requires that
theoretical term values be calculated for a given
set of u, and U,,.

The relation between v, and v, in Eq. (4b) can be
written'®

ve=v,— (1/mcot™ [UZ cotm(v,+ u,)
+ UG cotm(v,+ ,) | (5)

For this case of two limits, the surface § of Eq.
(4b) degenerates into the line of Eq. (5). The
eigenstates of the system are then determined by
simultaneously satisfying this relation and the con-
dition [Eq. (2)], which for the present case is

E=I,~-R/vi=I,-R/v} . (6)

This is the line £, and the eigenstates are found
at the intersections of the lines £ and § in the

WYNNE 15

Vs, V, Plot.

Approximate values of the intersections were
found by using an analytically linearized £ and a
numerically linearized 8. These linearizations
were carried out around the experimentally de-
termined values of v,. Since the calculated inter-
sections only give v,(modl), the integral part was
supplied by the experimental term values.

The above algorithm was incorporated into a
least-squares fitting program for refinement of
the MQDT parametrization of the 'S; spectrum.
The quantity minimized was the weighted sum of
the squares of the cm™ deviations between calcu-
lated and measured term values. The weighting
of the data was inversely proportional to the
square of the estimated probable error associated
with each data point. The nonlinear weighted
least-squares fitting program used Marquardt’s
algorithm for combining the method of lineariza-
tion of the fitting function with the method of a
steepest-descent parameter search.'? This pro-
gram and all others described herein were written
in APL and run interactively.

We applied this procedure to the 'S, data of Ref.
4 and 5, omitting the three lowest energy levels.
The energies of these are affected by polarization
of the ion core by the outer electron, and can only
be described by MQDT with energy-dependent pa-
rameters. For the term values of Ref. 5, the
rms deviation between measured and calculated
values is 1.2 cm™, The largest deviation is due
to the 4s12s state, where the measured value is
2.2 cm™ below the calculated value. By dropping
this state from the fit, the rms error is reduced
to 0.41 cm™. The more recently measured 'S,
term values (to 4s11s) of Ref. 4 are fit somewhat
better, with a rms error of 0.17 cm™. The broken
line curve in Fig. 5 is the graphical result of this
fit.

Using the parameters from the least-squares
fit of the Ref. 4 data, predicted term values were
obtained for the 'S, series up to 4s32s. Compari-
son of these predicted values and our measured
values (Table I) yields an average error (E .,

— E ¢ap0) 0of +0.09 cm™ and a rms error of 0.19
cm™. The average of the estimated experimental
errors which appear in Table I is 0.14 cm™. This
represents a clear verification of our wavelength
determinations and of our estimates of both the
systematic and relative errors in the data of Table
I.

Next, the least-squares fit was extended to in-
clude the new high-lying states of Table I. The
data were weighted in the least-squares fit by the
estimated errors given in Table I, using the some-
what arbitrary error estimate of 0.1 cm™ for the
data taken from Ref. 4. The weighted fit of the
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combined data has a rms error of 0.10 cm™, The
final MQDT parameters thus obtained are pre-
sented in Table II. The statistically estimated
errors'? in the last digit of each parameter are
shown in parentheses in this and subsequent tables.
The parameters given are, within the errors
shown, identical to those obtained in the fit of Ref.
4 data alone.

In order to treat properly the lower-energy 'S,
states, it is necessary to account for polarization
of the ion core by the use of energy-dependent pa-
rameters. In treating the Ar spectrum, Lee and
Lu'” found that the U,, matrix was essentially in-
dependent of energy; however, a linear energy de-
pendence of the u, eigendefects was required to
fit the lower-energy states. Following their lead,
a linear energy dependence was invoked for the pu,
eigendefect in an attempt to also fit the lower-en-
ergy states. Not surprisingly, a linear energy de-
pendence was insufficient to fit the 4s?® ground
state. Further, it could not fit the 4s5s state ac-
curately without upsetting the fit of higher-energy
members of the 'S, series. The result of a
weighted least-squares fit, which omitted these
two states, is shown as the solid curve in Fig. 5.
Clearly the linear energy dependence invoked for
i, reproduces the main trend of the low-energy
data. The MQDT parameters and statistical error
estimates are presented in Table III(b). Term
values calculated using these parameters are given
in the last column of Table I. The average error
between these values and the measured term val-
ues is —0.004 cm™, with a rms distribution of
0.10 cm™,

In retrospect, the excellent fit of the 'S, spec-
trum by a two-channel MQDT model is unexpected.
An additional channel that might be expected to
play a role here, but for which there is no evi-
dence within the bound-state spectrum, is the
3dnd 'S, channel. The lowest member of this
series, which converges on the second, I,, ioniza-
tionlimit, has the configuration 3d2. Since 3d? 3P,

J

TABLE III. MQDT parameters for ‘SO.

(a) Energv independent

a 1 2
P 0.3471(3) 2 0.171 756(7)
Uio 0.9810(3) —0.194(2)
(b) Energy dependent
a 1 2
ey 0.3486(2) 0.171 899(5)
duy/dE 0.073(2)® 0
Ui 0.972 63(6) —~0.2324(3)

2Estimated error in the last digit of each parameter
is given in parentheses.

P The energy E is normalized to the first ionization
limit, I.

and °P, terms have been identified*'® as bound states,
and since a 3d? channel is seen in the 'D, spectrum,’
the lack of evidence for a 3d” 'S, state is quite
surprising. Unless it interacts extremely weakly
with the 4smws series, and has essentially zero os-
cillator strength from 4s4p, this state does not

lie in the energy range from 4s12s to the first ion-
ization limit, which we have studied using multi-
photon ionization spectroscopy. We think it equally
unlikely that this state could lie lower in energy
than 4s12s and not have been observed in previous
studies of the Ca spectrum.*® We must thus con-
clude that the 3d? 'S, state is not bound, and that
it exists, instead, as an autoionizing resonance
somewhere above the first ionization limit.

C. Treatment of N limits

Since it is known from previous work® that the
4snd 'D, series, which has the 4s state of the
ionasitslimit, isperturbed by 4p%, 3d5s, and 3d?2,
that is, by series going to the 4p and 3d states of
the ion, it is clear that we must deal with a three-
limit version of MQDT in an attempt to analyze the
D, bound states of Ca. The procedures used in
Sec. III B must now be generalized, and we will
make that generalization to the case of N limits.

It is important to draw a distinction between dif-
ferent types of the N-limit problem based on
whether one, or more than one, v, varies rapidly
over the Rydberg series in question. This is equi-
valent to distinguishing between (a) cases where
the lowest limit is well below all others and (b)
cases where the lowest limit is not well removed
from all other relevant limits.

The 'D, even-parity bound states of Ca are an
example of case (a) where the three relevant limits
are widely spaced (49306, 62987, and 74 609 cm™,
respectively, for the 4s, 3d, and 4p states of the
ion). The two limits associated with the 2D state
of the ion are to be treated as one limit in dealing
with the bound states, since as long as E <I,, the
quantum numbers to the two 2D limits are effec-
tively identical. The same holds for the 2P state
of the ion; in each case we use the average of the
two limits. An example of case (b) is fur-
nished by the J=1, odd-parity levels of Ca con-
verging on the two 2D limits at 62 956.24 and
63016.93 cm™, as reported in Ref. 8.

The basic equations [Eq. (4)] apply, of course,
in all cases, but the practical details of the fitting
procedure are quite different in the two cases.

In what follows, we will describe the case where
the two lowest limits are well spaced; that is, the
case for which only one v; is rapidly varying. Un-
der these conditions the N-limit problem may be
viewed as a set of sN(N — 1) two-limit problems.
We have treated the case of closely spaced limits
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as well, and will describe that procedure in a pa-
per on the autoionizing spectra of Ca.

In applying the MQDT for N limits, the first
question is: Can approximate values of the eigen-
defects be obtained directly from experimental
data, as is done in Ref. 19 for two limits? To
answer this question, consider the basic equations
(4a). They have M sets of special solutions of the
form

Vi=n;— Hg, Aa =6aB )
where the #; are integers and where B is any one
of the set 1,2,...,M. The interpretation of these
special solutions is that for all v; =y, (mod 1), the
wave function (3) reduces to a single a-
channel, hence the term “eigendefect.” If
we plot all possible solutions of this type modulo 1
in an N-dimensional cube, all points will lie on the
body diagonal of the cube, i.e., on the line D.

VS V=V =0 0 =V, (7)
The intersections of this line D with the periodic
surface, 8, give the eigenquantum defects, L.
There are just M distinct eigendefects. How-
ever, since one does not know the surface 8
a priori, one cannot determine the p, from the
intersections of D and §.

This is the essential difficulty of the N-limit
problem for N>2. That is, the data only allow
one to construct a one dimensional curve in N
space. And although this curve lies in the surface
8, it alone does not permit construction of 8. Fig-
ure 6 is a stereo view of this line for the 'D, states
of Ca. The question is whether any projection of
this line on to the various (v;,v j) planes can be
used to find starting values of the ..

We start by making plots of the data on the var-

ious relevant unit squares, such as Figs. 7(a)-"T(c).

The number of such plots is 2N(N - 1), and each
is equivalent to viewing the entire data as if they
were part of a two-1limit problem. For N dimen-
sions the projection of the “body” diagonal D on
any one of these planes is the “face” diagonal of the
unit square on that plane. In the prescription of
Lu and Fano,'® for two limits it is the intersec-
tions of these face diagonals with lines connecting
the data points (in order of increasing energy)
which give rough values for the eigendefects, and,
of course, the number of channels M, as well. On
any one of the $N(N — 1) planes there will be up to
M intersections between the face diagonal and the
hand-drawn curves passing through the data points
(of each series) in order of decreasing energy
from the limit. Hence, there will be up to

%MN(N — 1) possible values of eigendefects deter-
mined by these crossings. The plane on which the
largest number of intersections is seen gives a
lower limit to the number of channels which is re-

FIG. 6. Stereo view of line connecting observed 'D,
states. The axes labeled S, D, and P correspond to
—Vs, V4, and v,, respectively, all plotted mod 1. If a
stereo viewer is not available, view the figure as fol-
lows: Hold the figure about a foot from your eyes and
place a piece of cardboard between your eyes so that
each eye can see only one image; then fuse the two
images.
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FIG. 7. Lu-Fano plots of D, states. The symbols
are O for previously observed states (Ref. 4) and @ for
the new data (Table I), with the exceptions that (1 is the
state labeled by 4s7d in Ref. 4 and B is the state that we
identify as 4s7d. The solid curves are MQDT fits based
on the parameters of Table IV(a).
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quired to describe the series under study.

For the commonly occurring case where each
perturbing series interacts with the main series
in a different energy range, the correct choice of
starting values for the eigendefects is as follows.
For convenience, we label a branch of the hand-
drawn curves by the perturbing level it contains,
even though states on the branch are in fact a mix-
ture of 7 and o channels. For example, the 4p°
branch is indicated in Figs. 7(a) and 7(b). The
eigendefect of this branch is to be found from the
intersection of the diagonal line and that branch on
the plot of —~v, vs v, in Fig. 7(b), i.e., from the
plot involving the limit of the sevies to which the
perturber belongs, and is about 0.21. The eigen-
defect of the 3dns branch, therefore, is to be read
from the plot of —v, vs v, in Fig. 7(a), and is seen
to be approximately 0.35. Similarly, we suppose
that the third vertical branch in Fig. 7(a) is due to
the configuration 3d2. If our assignment of the
channel core is correct, the eigendefect for that
branch is also to be found from Fig. 7(a) and is
approximately 0.18.

This method for sorting out the true set of eigen-
defects will not work if the assignments and en-
ergies of at least some of the perturbers are not
known in advance. This underscores the depen-
dence of the MQDT method on previous spectro-
scopic work.

There remains a fourth eigendefect to be deter-
mined for the D, states. It corresponds very
roughly to the defect of the unperturbed 4snd se-
ries. It has a value of about 0.9 if read from the
top-left-most branch in Fig. 7(a), and a value of
0.8 if read from the corresponding branch in Fig.
7(b). Since there are few data points correspond-
ing to bound states on this curve, and since the
states which do lie on it are so far from the ioni-
zation limit that the defect may be energy depen-
dent, we cannot expect to obtain a very good value
for this eigendefect.

Once approximate values of the p, are found,
one must determine the elements of the M XM
unitary matrix U;, that transforms the close-cou-
pled channels into the collision channels. This
matrix will have $M(M - 1) independent elements.
These are to be chosen so that the theoretical
surface, 8, in fact contains the line (Fig. 6)
through the experimental data. This will be done
by choosing 8 so that, when properly projected on
planes, it reproduces the curves of Fig. 7.

We now discuss how to obtain such theoretical
curves. Recall that Eq. (4b) defined the (N - 1)-
dimensional surface §. Moreover, from the N re-
lations (1) we saw that one can obtain (N - 1) inde-
pent relations (2), which determined the line £.
According to MQDT, the theoretical positions of

the bound states of the system are found from the
effective quantum numbers v;, which simultane-
ously satisfy Egs. (2) and (4b). That is, the
bound states occur at the intersections of the line
£ and the surface 8.

For the case N=3, as in Ca, the Egs. (2) are

ve=Gvy) ={- (L4~ L)/R]+ vZ }'/* , (8a)

v,=H(vy)={[(, - I,)/R]+v2 }*/2 . (8b)
We solve Eq. 7(4b) to obtain

ve=F(vy,v,) . 9
Now consider the function

v, =F(v,Hv,))=F(v,) . (10)

This determines a curve in the (v,,v,) plane. But
Eq. (8a) is also a curve in the (v, v,) plane. The
intersections of these curves give the coovdinates
of the simultaneous solutions to Eq. (8) and (9)
giving the positions of the bound states. Thus Eq.
(10) will be a suitable theoretical curve with which
to compare data in the (v,,v,) plane. It is impor-
tant to note that although 8 is strictly periodic in
N dimensions, the projections such as Eq. (10) are
not periodic. The analogous theoretical curve in
the (vg, v,) plane is

v,=F(H™(v,),v,) , (11)

where H™ is the inverse of the function defined in
Eq. (8b). All the above considerations and pro-
cedures are obviously generalizable to more than
three limits.

D. Analysis of the J =2, even bound states of Ca

We now apply the techniques of Sec. III C to anal-
ysis of the two bound Rydberg series of Ca which
have J=2 and even parity. These two series are
nominally “4snd.” We have already seen that there
are three limits involved, so N=3. The next job
is to enumerate the M channels and decide on the
labeling of collision and close-coupled channels.

The choice of labels should reflect the interac-
tions between channels. These interactions are
embodied in the U matrix and have two principal
causes. First, there is mixing due to the inter-
action of different configurations; second, there
is mixing, within a given configuration, due to the
recoupling of spin and orbital angular momenta.
In general both effects will be present.

However, in the cases of Ar and Xe,'”'? it was
found that recoupling played a predominant role,
with configuration mixing being a small perturba-
tion on the recoupling. Lee and Lu'” expressed
this physical situation by writing U;, =275 U;5V 54,
where U,; is the analytically known transforma-
tion from LS to jj coupling, with the o channels
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LS coupled and belonging to pure configurations.
The V3, matrix, representing the weak configura-
tion mixing, was nearly diagonal and transformed
between pure-configuration LS-coupled channels
(@) and mixed- configuration channels (a) for which
L and S were useful labels but not exact quantum
numbers.

We have found that Ca is at the other extreme
from Ar and Xe in that the channel mixing is due
essentially to configuration interactions, with no
observable recoupling effects on the energy levels.
That is, the already known and classified bound
states separate cleanly into singlets and triplets,
as do the many newly observed states reported in
Ref. 1. The curves through the experimental quan-
tum defects show no avoided crossings between
singlets and triplets. Therefore, as far as the
determination of energy levels is concerned, we
may take the collision channels (which have well
defined configurations of core and excited elec-
trons) to be LS coupled. The U matrix then de-
scribes the transformation between these LS-
coupled collision channels and a set of mixed-con-
figuration o channels for which L and S are still
suitable labels. The LS-jj recoupling matrices for
the configurations sd, ds, dd, and pp are not re-
quired for discussing the bound J=2 even spectrum
of Ca. The absence of recoupling effects in Ca is
because (a) the first ionization limit is an S state,
without spin-orbit splitting, and (b) the spin-orbit
splitting of the first excited states of the ion
2D, 5,5/ has the very small value of 60 cm™ rela-
tive to the 14000 cmi™ separation of the 25 and 2D
limits. (Recoupling will play a role in the auto-
ionizing spectra of Ca.) Recoupling effects will
also be present and increasingly important in the
spectra of Sr, Ba, and Ra.

The LS-coupled collision channels with J =2
from the configurations 4snd, 3dns, 3d? and 4p*
comprise (*D,, °D,), (*D,, °*D,), (*D,,3P,, °F,),
and (*D,, °P,). However, the channels 3P, and °F,
from 3d?, and the channel 3P, from 4p? are not
needed because there is no evidence that they per-
turb either Rydberg series. We consider both
singlet and triplet channels because in our experi-
ments there are energy regions where both series
are seen in the ionization signal, even though they
do not perturb each other.

Because singlets and triplets do not interact, the
U matrix will have many zero entries, and its
rows and columns may be labeled in such a way
that it is block diagonal. This results in a great
mathematical simplification. The determinant to
be worked out [Eq. (4b)] factors into two deter-
minants, one 4 X4, the other 2 X2, and we can
separately analyze the singlet and triplet spectra.
It may be that at a later stage of the analysis one

will have to account for the coupling between the
singlet and triplet channels in order to account for
fine details of the spectrum, particularly the oscil-
lator strengths of the ®D, lines.

We are now in a position to list all the channels
which are relevant to an analysis of the two ob-
served Rydberg series from “4snd.” The six col-
lision channels and their associated configurations
(with core electron listed first) are as follows:

i= 1 2 3 4 5 6
4snd 3dns 3dnd 4pnp 4snd 3dns
11)2 1132 J.D2 lDZ 3DZ 3D2

The a channels do not have definite configura-
tions associated with them. However, for Ca these
channels are approximately 4snd, 3dns, 3dnd,
4pnp, 4snd, and 3dns for a =1-6, respectively.
Channels a=1, 2, 3, 4 are 'D,, while channels
a=5, 6 are 3D,.

1. Singlets

We now apply the techniques outlined in Sec. III C
to analyze in detail the 4snd D, series of Ca.
We consider Eq. (4a) with M=4;

4
ZAQUM sinm(v;+ py) =0 | (12)
a=1

where the v; are labeled
VISV =V, VU =V3=Ve=V,, V=V, .
Following Lu!® we introduce the new variables

B,, B, such that

A, =[sinm(v,+ p )™ Z UlB; . (13)

Jj=1,4

Because of the orthogonality of different rows of
U, Egs. (12) with {=2,3 are satisfied identically,
and the above substitution reduces Eq. (12) to

d sinm(v + pg) ;4
2 BiZUmm Uas=0,

J=l,4 a=l
Z B~iU sinm(v,+ ) Ut.=0 . (14)
a4y e sinm(v+ )

Since

sinm(v;+ i)

- =sinm(v; -
sinm(v,+ pgy) wi=v)

X [cotm(v,+ 1,) + cotm(v; - v))] ,
(15)

we can expand the determinant of (14) and solve
for v, to obtain
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ve=F(v,,v,)

(2ol o Use COLT(Vy + 1) P
cotm(v, — v,)+Y,,U2, cotn(v,+ p,)

= ud+l cot™ <
T

_Z UZ, cotm(v,+ /ua)> , (16)

which defines the function F of Eq. (9).

The theoretical positions of the bound D, states
occur at the simultaneous solution of Eqgs. (8) and
(16), except that there is a lowest crossing below
whose energy further crossings do not correspond
to real states.

As described previously, to project the solution
of this combined system on the (v, v,) plane, or
on the (v, v,) plane, one plots v ,=F(v,,H(v,)) or
v,=F(H™(v,),v,), respectively.

The solid curves in Fig. 7 are F(v,,H(v,)) for
the values of eigendefect and U given in Table
v(a).

The numerical values in Table IV were obtained
by a combination of inspection and least-squares
fitting, similar to the 'S, analysis. We found that
the bound-state data could be fit accurately by set-
ting U,,=U,,=U,, =0 and adjusting the remaining
three parameters in U. Setting these elements of
U equal to zero might be thought to imply a lack of

mutual interaction between the perturbing channels.

Rather it reflects the fact that since there is only
one bound member of each perturbing series
(3d5s, 3d?, and 4p?), the data are insufficient to
determine their mutual interactions. One may say
that the choice of zeros in U defines the MQDT
model we are using. The interactions between per-
turbers will, of course, be obtainable from the
autoionization spectra.

Given the choice of zero elements, the magni-

tudes of the remaining elements of U;, are uniquely
determined by the fit to experiment. The signs of
the off-diagonal elements were determined follow-
ing the convention of Appendix B of Ref. 17, in
which an M XM unitary matrix is generated from
sM(M - 1) elementary rotations. Since M =4, there
are six independent rotation angles, but three are
zero by our choice of the zeros in U. The matrix
of Table IV(a) is generated by successive rotations
through angles of 0.4800, 0.343, and 0.135 radians,
respectively. If the relative signs of these angles
are changed, there are changes in sign of var-
ious elements of U, but no changes in magni-
tudes. We have verified that all combinations

of the signs of these three angles lead to iden-
tical channel curves, Fig. 7, as well as to
identical values of the squared mixing coefficients
to be discussed in Sec. IIID 2.

The fit is seen to be very good, except for the
single point marked with an open square and the
two lowest lying levels, which can be fitted by in-
voking a small energy dependence in the u,. How-
ever, the fit of the open square point cannot be
improved by any reasonable energy dependence of
the parameters. This point is given by the highest
D, term value (labeled 4s7d) resolved by Risberg
in Ref. 4. Our original work! did not cover the
energy range below 46 830 cm™, and so we did not
at first have an energy for the 4s7d state obtained
by multiphoton ionization spectroscopy. However,
we repeated our experiment in the lower-energy
range and obtained the result shown in Fig. 8.

The position marked with the arrow in Fig. 8 is
where Risberg’s 4s7d D, state should have ap-
peared. Instead we found a D, state at 46199.2
cm™ and it is our identification of the 4s7d state.
This state appears in Fig. 7(a) as a filled square

TABLE IV. MQDT parameters for 'D,.

(a) Energy-independent parameters

o 1 2 3 4

ey 0.818 (2)? 0.3367(2) 0.1843(1) 0.2050(3)

Ui i=1 0.8277(8) —0.4618(6) —-0.298 (2) -0.113 @)
2 0.4309(7) 0.8870(3) —0.1554(9) - 0.059 (2)
3 0.333 (2) 0 0.9417(6) —0.045 (2)
4 0.135 (4) 0 0 0.9909(6)

(b) Energy-dependent parameters

o 1 2 3 4

Moy 0.801 (1) 0.3375(2) 0.1840(1) 0.2130(1)

dp,/dE 0.439 (7)? 0 0 0

Ujo i=1 0.8096(5) —0.4590(4) —0.307 (1) —0.2000(7)
2 0.4183(5) 0.8884(2) —0.1583(7) —0.1033(4)
3 0.335 (1) 0 0.9386(5) —0.0827(4)
4 0.2398(8) 0 0 0.9708(2)

2 See notes to Table III.
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FIG. 8. Multiphoton ionization spectrum showing the
4s7d D, state at 46199 cm™!. The arrow marks the posi-
tion where this state should have appeared according to
Ref. 4. Some of the peaks correspond to transitions
from intermediate states populated by absorption in the
wings of the collision-broadened lines.

and is seen to be in very good agreement with the-
ory, as are all the other states except the two
lowest in energy.

2. Wave functions

Having obtained good values of the eigendefects
and transformation matrix, we are in a position to
calculate the expansion coefficients!” Z,; by means
of which the wave function ¥ of a given bound state
is expressed in terms of the collision channel
wave functions.

In Figs. 9(a)-9(c) we give the fractional admix-
ture of channels 7=2,3,4 in the bound states of the
nominally 4snd 'D, series. The calculation of these
coefficients follows closely Ref. 17, especially Eq.
(2.11) of that reference, which contains a misprint,
and should read instead

Zm=( l)li*1y3/22 Uio COSW(VL"'*' IJ.a)AL")
i - i N ’
n

(1)

where N, is a normalization factor defined in Eq.
(2.8) of Ref. 17, and where n labels the bound
states.

In Figs. 9(a)-9(c) the admixtures are plotted
versus v,. The parameters of Table IV(a) have
been used in obtaining the mixing coefficients for
all but the two lowest lying states of the series.

Figure 9(a) shows the admixture of the 4pnp con-
figuration into the D, series; it is very strongly
localized in the vicinity of the state A already
labeled 4p® in earlier work. However, as shown
in Fig. 9(b), the admixtures of the 3dns and 3dnd
configurations are by no means confined to a small
number of states. Curiously, the state at 47449
cm™ [B in Fig. 9(b)] labeled in Ref. 4 as 3d2 'D,,
is found in this analysis to have zero 3dnd char-
acter, and the state at 48083 cm™ [C in Fig. 9(b)]

[+
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labeled 3d5s in Ref. 4, is well off the peak of the
3dns admixture curve. If we were to assign the
label 3d5s to any state, it would be either to the
state at 47449 cm™ (B), as is done in Table II, or
to the next lower state at 46949 cm™, From Fig.
9(b) it is clear that although there are some 40
members of the 'D, series which have significant
admixtures of the 3dnd channel, there is no state
which has more than about 4% 3dnd. Thus, al-
though the 3d? configuration is seen to have appre-
ciable effects on the series as a whole, there is
no state which “deserves” the label 3d2 'D,. For

0.8

0.6

)2

(a)

(Zapap

0.4

0.2

00 L e eeh e e e e

o2 "f\  (Z3gsy)
!\ . (Z3d3d)
0.08 /
o~ | e
(b) & | / R
! 5“\
0.04 {
ot
| L."”\, ™
RV
0 20 40 60
Vs
lonization Limit
= 3d5s in 'D, ,\
® - 3d3d in 'D, i
S :
> !
§ I
]
(¢) = |
- !
< I
< ]|
o g ¢
N S/ h
e /
— // AA'//
42000 44000 46000 48000 50000

Energy (cm™)

FIG. 9. Fractional admixture of collision channels
(other than 4snd) in the bound !D, states. (a) Admixture
per state: the state labeled A contains most of the 4p?
configuration; (b) admixture per state: the state labeled
B is the state with the highest amount of 3d5s character,
whereas the state labeled C was called 3d5s in Ref. 4;
(c) admixture per unit energy (arbitrary units) of the
3d3d and 3d5s states into the bound-state region.
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the convenience of the user of Table II, the 'D,
states above 47449 cm™ are labeled 4snd with =
integral. Note that no state is labeled 3d2%. Our
labeling of the 3dnrs and 3dnrd channels will be dis-
cussed after we treat the D, spectrum in Sec. III
D3.

The sum of the (Z,,;,)? over the bound states is
1.02, thus accounting fully for this interloper;
however, the sum over bound states of (Z,,,)® is
only 0.63. If we express the mixing coefficients
per unit energy [as shown in Fig. 9(c)], we find
the “center of gravity” of the 3d5s and 3d? states
at about 48000 and 49150 cm™, respectively.
This shows that a substantial part of 3d2 'D, lies
in the autoionizing spectrum just above I,.

Furthermore, this admixture of 3dnd in 4snd
near I accounts qualitatively for the fact that the
signal strength of the bound 1D2 levels falls off
much less rapidly than (z*)™, as expected from
quantum defect theory and as seen approximately
for 4sns 'S, (see Fig. 1).

This completes the discussion of the D, series
insofar as the determination of mixing coefficients,
eigendefects, and the U matrix are concerned. We
next turn to the 3D, states.

3. Triplets

Only a few members of the ®D, spectrum were
seen by multiphoton ionization spectroscopy, since
the ground state of the two-photon transition is a
singlet, and LS coupling well describes Ca. How-
ever, in certain energy regions the 102 and 3D,
series come quite close together, and the Lu-Fano
plots show regions where the singlet and triplet
channels seem to cross. This is shown in Fig. 10.

Although the singlet and triplet channels do not
in fact cross, the bound states are not dense
enough to show the detail of the avoided crossings.
We have just seen that it is not necessary to take
the triplets into account to fit the bound-state 'D,
data to theoretical curves.

The solid curves through the triplet states in Fig.
10 were calculated from a formula similar to Eq.
(5) using the eigendefects and U matrix shown in
Table V.

A two-channel description of the 3D, 4snd series
is a very good one, at least in the absence of data
above 4s17d.

We can now discuss our labeling of the 3dns and
3dnd 'D, branches. There is no a priori reason to
assign 3dns and 3dnd to the branches with eigen-
defects 0.337 and 0.184, respectively, rather than
vice versa. However, in the triplet spectrum there
is no branch from 3d?, so the assignment of 0.339
to the 3dns branch of *D, is unambiguous. We note
that this is very near to the eigendefect of the

0 o T T 'c?v7

vg(mod 1)

v4(mod 1)

FIG. 10. Lu-Fano plotofall J=2states. The symbols are
O for previously observed 'D, states, ® for new 'D, states,
V for previously observed 3D2 states, (see Refs.4and 6),
and V¥ for 3D2 states observed in our spectra. The solid
curves are calculated from MQDTusing the parameters of
Table V for the triplets and Table IV(a) for the singlets.

branch we labeled 3dns in 'D,. Furthermore, we
have made a two-channel fit to the bound 3D, even
states* of Ca and find p,,,,=0.341. Since Lu
pointed out in Sec. VIII of Ref. 19 that the char-
acter of approximately LS-coupled a channels is
nearly independent of J, we have used the near
identity of the three eigendefects to assign 3dns in
D, to the branch with p =0.337.

For completeness, we note that the full set of
parameters for D, determined from the data of
Ref. 6 is u, =0.8691(3), du,/dE =0.183(3), u,
=0.34102(4), and U,, =-0.2765(3).

IV. DISCUSSION

We now discuss several questions which arise
when one tries to extend this MQDT treatment to
a wider energy range. First, how is the Pauli
exclusion principle to be applied to “3d?” 3D,
when, in MQDT, the two d electrons have differ-
ent noninteger principal quantum numbers and
hence different radial wave functions ?

We must have the answer to this question in or-
der to include 3dnd ®D, in the autoionizing region
without having it present as a false (unphysical)

TABLE V. MQDT (energy-dependent) parameters for
3
D,.

a 1 2
Mo 0.8696(6) 2 0.3390(1)
duy,/dE 0.176(5) 0
Uy 0.9640(1) —0.2660(5)

2See note to Table III.
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channel in the bound-state region, where it would
correspond to 3d? 3D,.

More generally, since the surface 8 is strictly
periodic, channels required for analysis of a
higher-energy region always appear at low energy
as well, even though there are no observed states
of these channels at low energy.

For example, if the curve plotted in Fig. 7 [de-
termined by Eq. (8b) and (16)] is extended below
4s4d into the region where v, lies between one and
two, there will be three additional states predicted
by the crossings with Eq. (8a). These would be
members of the 3dnd, 3dns, and 4snd series, in
order of decreasing energy. But in fact, there is
only one real 'D, state in this region, namely,
4s3d.

This difficulty is shown in Fig. 11. The function
given by Egs. (8b) and (16) was evaluated using the
energy-dependent parameters of Table IV(b). The
dotted lines are Eq. (8a), and the crossings give
the positions of the states. The 4s3d state is
closest in energy to Crossing A. Crossing B cor-
responds to the 4s4d state. But the crossings C
and D do not correspond to any real states, and
exemplify the difficulty being discussed.

By invoking a quadratic energy dependence of u,
and u, we are able to move these channels out of
the way, avoid unphysical crossings, and fit the
two lowest states. However, the precise quadratic
energy dependence is not well determined, and the
fit to the high-lying states is somewhat impaired.

Thus the energy dependence of eigendefects for
channels describing series going to higher limits

are not uniquely determined from bound-state data.

Only when the relevant autoionizing spectra are
known and analyzed can these energy dependences
be uniquely specified.

We have seen that the three-limit version of
MQDT gives a thorough description of the J=0 and

0

vglmod 1)

e

3

FIG. 11. Lu-Fano plot on an extended v, scale. The
solid curve results from Egs. (8b) and (16) plotted with
the parameters of Table IV(b). The dotted lines are
Eq. (8a). The 4s3d state is closest in energy to crossing
A. Crossing B corresponds to the 4s4d state. Crossings
C and D do not correspond to real states.

2 even-parity bound spectra of Ca, unifying the ex-
cellent data of Risberg®* obtained by emission spec-
troscopy with the new data obtained by multiphoton
ionization spectroscopy. Use of multiphoton ioni-
zation spectroscopy to study autoionization spectra
will make full use of the N-limit formulas given
here and will help resolve the questions about
MQDT discussed above. Work on the J=0 and 2
spectra of Sr and on the even-parity autoionizing
spectra of Ca is well under way and will be re-
ported shortly.
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FIG. 3. Typical ionization pulses obtained with parallel
plate electrodes and a 100 k@ load resistor. Vertical:
10 mV/div; horizontal: 0.1 msec/div. (a) Voltage be-
tween plates, V=0.4 V, beam focused midway between
the plates; (b) V=3.78 V, beam focused as in (a); (c) V
=0.4 V, beam focused closer to collecting (negative)
electrode.



