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Comment on the relationship between an exact two-photon solution
and a two-photon vector model
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The exact pulse solution of Brewer and Hahn for optical two-photon transitions is shown to reduce in the
adiabatic limit to the two-photon vector model used by Grischkowsky, Loy, and Liao. The connection
between the two approaches is explained and the complementary relationship between the two papers is
discussed.

I. INTRODUCTION

The field of coherent two-photon spectroscopy
has experienced vigorous growth in the last few
years, and several theoretical studies of the
optical two-photon resonance problem have ap-
peared. Because of the computational complexity,
even informed readers might find the relation be-
tween various papers obscure. Furthermore,
there is a profusion of notation.

This Comment addresses this problem by com-
paring the exact pulse solution of Brewer and
Hahn (BH)' for the two-photon resonance of the
three-level atom with the adiabatic two-photon
vector model used by Grischkowsky, Loy, and
Liao (GLL).' It will be noticed that the BH paper
stresses the case where light pulses, of fre-
quency 0, and Q„are applied suddenly (non-
adiabatically) with respect to the frequency offset
4 of the intermediate atomic state (see Fig. 1).
On the other hand, the GLL approach considers
the light to be applied slomly or adiabatically with
respect to 4. This difference accounts for the
presence of high-frequency ringing terms which
appear in the BH solution that are not present in
the GLL result. We mill show that the BH result
can also yield adiabatic solutions (without ringing)
as 4 is arbitrarily increased, and therefore can
be compared directly with the GLL calculation.
In fact, both adiabatic solutions in the appropriate
limit are found to be identical. In order to keep
this Comment to a reasonable length, the treat-
ment relies heavily on the details given in the
BH and GLL papers. Assuming that the reader
has these papers at hand, we do not define all of
the notation and quantities introduced.

(«)
(lb)

(1c)

V+ 4U+ qW=O,

TV- &V=O,

when the two-photon resonance condition

is satisfied and when the appliedfieldsare constant,
l.e. )

The quantities U, V, and W are linear combina-

I2&

case where the two-photon resonant pulses are ap-
plied adiabatically with respect to the intermediate
state. In the notation of BH, the system under con-
sideration is the three-level atom of Fig. i. The
atom is irradiated by counter-propagating light
pulses with field strengths E, and E, and fre-
quencies 0, and 0,. The BH paper shows that the
set of coupled equations describing this physical
situation is equivalent to the reduced set of Bloch
equations:

U- &V=O,

II. THE

BREEZIER

AND HAHN SOLUTION

In this section we first reviem the exact pulse
solution of BH. Then, we extend it to cover the

I I & tdi

FIG. 1. Energy-level diagram for the two-photon
transition of the three-level atom in the BH notation.
(Note that levels 1 and 2 are interchanged in Fig. 3.)
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tions of the density matrix elements p, , (i,j= 1,2,3)
associated with the three atomic states of Fig. 1.
Equation (1) can also be written as

dB
Y

W(t) = W(0)(1+ sin'P [cos(yt) —1]j,
with

sing = e/y,

cosQ = —&/y.

(3c)

(3d)

(3e)

y(+2+f2)1 /2

where the two-photon Rabi frequency

2(~2+ P2)1/2

is a function of the one-photon Rabi terms

Q = pi~Ei/25, p= i/2~E2/25.

(2b)

(2c)

(2d)

For the purpose of this discussion, the detuning
parameter 4 is defined

4 = 0, —u31 = CO» —02, (2e)

appropriate to atoms with zero Doppler shift,
kv, = 0, where we assume ~ to be negative, con-
sistent with Fig. 1.

For the case where the initial conditions at t = 0
are appropriate for the two-photon resonant light
having been applied nonadiabatically with respect
to the intermediate state, Eq. (1) has the solution

U(t) = —W(G) sing 'cos P [cos(yt) —1],
V(t) = —W(0) sing sin(yt),

(3a)

(3b)

which represents the precessional motion (Fig. 2)
of a two-photon Bloch vector I3(U, V, W) about an
effective field

In Eqs. (3), we have introduced the angle Q be-
tween the axis of the "rotating frame" and the pre-
cession axis of the two-photon Bloch vector B
= (I/, V, W). The precessional motion of B is shown
in Fig. 2(a), where U is the projection of B on the
1' axis, V is the projection on the 2' axis, and 8"
is the projection on the 3' axis. Figure 2(a) de-
scribes the situation where initially 8 is pointing
along the+3' axis. Then, at 1=0 the two-photon
resonant pulses are suddenly applied and B pre-
cesses about the precession axis y/y with angular
frequency y. This motion leads to the nonadiabatic
solutions of BH for the following quantities:

u„(t) = (cosyt —1)—,, so„(0)
SnPK o.P a'- P'

cos(5 —n./2)t —1 cos(5+ &/2)t —1
5 —6/2 5+ ti/2

(4a)

ngtu»(0) sin(6 —6/2)t sin(5+ &/2)t
~ —n/2 |'+ n./2

(4b)

2n'p": cos(6 —n/2)t —1 cos(&+ &/2)t —1 Ke(o."—p')-()= -(o) 5(n. +p.) -(') (5 ~/2)
'

(6+n/2) ~ (n+~) (-' '-') (4c)

with

(+2+ p2+ g2/4)1/2 (4d)

SUDDEN APPLICATION

3'~
I

ADIABATIC APPLICATION

3'I
I

In terms of the density matrix elements of the
initial and final states, levels 1 and 2 of the two-
photon process, these quantities are defined as

12 ~12 ~21 &

12 —~12 —~21 ~

12 PX1 ~22 '

(4e)

(4f)

(4g)

For negative 4, we see that high-frequency ringing
terms appear at frequencies y and 5 —n, /2 due to
the sudden application of the driving fields.

Notice that the nonadiabatic case can be repre-
sented by a reduced three-level Bloch vector mod-
el through Eq. (2a), but not through Eqs. (4a)-(4c)
which have no simple geometrical interpretation.
We will now show that Eqs. (4a)-(4c) reduce in the

FIG. 2. BH vector model. (a) Precession of the Bloch
vector B when the two-photon resonant fields are applied
suddenly with respect to the intermediate state. (b)
Position of the Bloch vector Bwhen the two-photon re-
sonant fields are applied adiabatically with respect to
the intermediate state. For the purpose of discussion,
we assume Q &0.
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adiabatic limit to the two-photon vector model of
GLL. In effect, this becomes a two-level Bloch
vector, involving only levels 1 and 2, and applies
when the frequency offset ~ of the intermediate
level is sufficiently large. For this case, the rise
time of the two-photon resonant pulses must be
long compared to the period of the frequency off-
set 4. For this purpose, we obtain the time-in-
dependent adiabatic solution of Eq. (1):

8

II» t 0

In&, Qn

U(t) = W(0) sing,

v(t) =o,
w(t) = w(o) cosy,

(5a)

(5b)

(5c)

which is illustrated in Fig. 2(b). Here, the Bloch
vector remains aligned along the precession axis.
Using Eq. (5) above and Eqs. (9) and (14) of BH,
we obtain

l2&

FIG. 3. Energy-level diagram for the two-photon
transition of the three-level atom in the GLL notation.

&P &'- p'
0 cos(6+ t1/2)t 1

~2+ p2 12 6+ tI/2 1

c2P —sin(6+ t1/2)t
(5 t/2) (6b)

III. THE TWO-PHOTON VECTOR MODEL OF

GRISCHKOWSKY, LOY, AND LIAO

The vector model of GLL will now be reviewed.
This model always assumes that the two-photon
pulses are applied adiabatically with respect to
the frequency offset of the intermediate state, but
the model makes no assumption whether the pulses
are applied adiabatically or nonadiabatically with
respect to the two-photon resonance. The notation
of GLL is illustrated in Fig. 3 and will be used ex-
clusively in this section. As described in GLL,
the precession of the two-photon r vector about
the y vector is given by

2 ~2p2 cos(5+ &/2)t —1
12(t) 12( ) + 5(~2+ p2) 12( ) 5+ g/2

(6c)

The absence of the high-frequency terms in Eq.
(6) is now evident. Only slowly varying oscilla-
tions aper for this adiabatic case, and these are
precisely the same terms contained in Eq. (4).
Later, we will compare Eq. (6) with the corre-
sponding quantities of the two-photon vector mod-
el of GLL.

It tt
~1 = ~12+ ~21 y

r, =2(P,", P,",),
tt tl

3 ~11 I 22

and the components of y are equal to

y, -- ~$,$2,

y, =O,

y, = 5+ (~z, —~z,)/a,
with

6 = 012 —((01+(d2),

1 1
PJn~n2 g + gn2 1 n2 2

~z, =
i p,„h, i'/[4a(n, „~,)I,

~z, =
] p, „h, ['/[4a(~, n„,)j.

We adapt to the adiabatic BH calculation of the

(oPI+ cuP)
YI

(8a)

(8b)

(8c)

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)

(9g)

Br—=yxr
et (7)

and is shown in Fig. 4. The components of r are
given in terms of the density matrix as

FIG. 4. GLL two-photon vector model. Precession
of the r vector about the y vector when the two-photon
resonant pulses are applied adiabatically with respect
to the intermediate state, but suddenly with respect to
the two-photon resonance.
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previous section, where at t = 0 the two pul. ses are
applied adiabatically with respect to the inter-
mediate state, but nonadiabatically with respect
to the two-photon resonance, i.e. , 6=0 corre-
sponding to the two-photon resonance condition.
To conform to the BH solution, we require that
each radiation field (&u, for example) interacts
with only one transition (0,„) and not the other
(0„,). Furthermore, only one intermediate level
is assumed, and it is labeled n=3. The solution
for the motion of r then becomes

r, = —sin8 cos8 (cosl"t —l),
x, = —sin8 sinl t,

1 —sin'8 (cosI't —1),
with

(y2 + y2 + y2) 1l 2

sin8= —y, /I, cos8= y, /I'.

(10a)

(10b)

(10c)

(10d)

(10e)

IV. RELATIONSHIP BETWEEN THE RESULTS BH.AND GLL

S,=E, ,

S,=E, ,

Pn2= W3z ~

Pan= W23

(d2 —Q„2= h.

(lla)

(11b)

(11c)

(1ld)

(lie)

Using Eq. (10d) with (9) and (11), we can express
the GLL precession frequency I' in the BH nota-
tion as

F =( "P')/I~I
Since GLL assume that

z'«jaf,

(12)

(13a)

we may expand Eq. (4d) of BH

6=
(
~(/2+ (n2+P2)/I ~(+ ~ ~ ~,

which implies that the frequency 6+ n/2 of BH is
given to a good approximation in the adiabatic
limit by

(13b)

(13c)

and that

6= /n. [/2. (13d)

Furthermore, the sin8 and cos8 of GLL can be
expressed in the BH notation as

The connection betw'een the quantities u», vy2,

and I» of BH and the components x„x„and x,
of GLL can now be made. The c'orrespondence be-
tween the notation of GLL (on the left) and that of
BH is

sin 8 = 2mP/(n'+ P') .

cos8= (n' —P')/(n'+ P') .

(14a)

(14b)

Using Eqs. (13) and (14), we can rewrite Eq. (6)
to a very good approximation as

u»(t) = —sin8 cos8 (cosI't —1),
v»(t) =- sin8sinl't,

m»(t) = 1+ sin'8 (cosI't —1),
(15b)

(15c)

where we have assumed at t = 0 all of the atoms
were in the ground state, i.e. , w»(0) = 1. Thus,
we can now join together the two approaches by
the simple relationship

u„(t) =r, (t),

v„(t)=r, (t),

cv„(t) = —r, (t) .

(16a)

(16b)

(16c)

The difference in sign in (16c) is due to the fact
that levels 1 and 2 of Fig. 1 (BH) are reversed in

Fig. 3 (GLL).
Thus, we have achieved our goal by making the

simple connection of Eq. (16) between the BH and

GLL results. This correspondence is consistent
with the definitions of these quantities in terms of
the density matrices defined above, Eqs. (4e)-(4g)
of BH and Eqs. (Ba)- (8c) of GLL. It follows in the
limit of very little mixing of the intermediate
state, the adiabatic states (the primed states) of
GLL, are almost equivalent to the original basis
states used by BH. Then, the double-primed den-
sity matrix of GLL is approximately the same as
the slowly varying density matrix used by BH.

From the preceding discussion the complemen-
tary relationship between the two papers is now
clear. The exact pulse solution of BH applies to
the case of a three-level atom subject to two
counter-propagating pulses such that the two-
photon resonance condition &„=0,+ 0, is satis-
fied. The pulses, which are of constant amplitude,
may be applied adiabatically (large &) or non-
adiabatically (small &) with respect to the fre-
quency offset 4 of the intermediate state. Fre-
quency switching the laser or Stark switching the
resonance line will satisfy the constant amplitude
requirement of the BH solution. An excellent ex-
perimental demonstration of the utility of this
technique and of the validity of the above solution
has been the observation of Raman beats by Shoe-
maker and Brewer. ' On the other hand, the two-
photon vector model of GLL can handle an arbi-
trary number of intermediate states and does not
require the two-photon resonance condition to be
satisfied, i.e. , thetwo-photon frequency offset
5 = 0»- &, —co, does not have to equal zero. Fur-
thermore, the GLL model can handle shapes that
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vary in time and thus is well adapted to the study
of propagation problems and pulse reshaping ef-
fects. However, the GLL model is an approxima-
tion which requires that near-resonant pulses be
applied adiabatically with respect to the inter-
mediate states. The recent observation of two-
photon optical nutation and free-induction decay
by Loy' has verified in quantitative detail the GLL
model. In summary, in their region of overlap,
the results of BH and GLL are equivalent, but

each approach can handle situations not describ-
able by the other.
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