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Qualitative arguments based on the physics of vortex stretching indicate that Kolmogorov s mean-field theory
of strong turbulence must be unstable and tend to a state in which fluctuations become increasingly singular
at short distances, as proposed by Kolmogorov and Oboukhov in 1962. The number of coupled degrees of
freedom in the Navier-Stokes equations is then greatly reduced by a wave-packet analysis, and the essence of
the vortex stretching picture is recovered. Numerical integration of the reduced equations confirms the
qualitative arguments for intermittency and gives exponents and probability distributions in crude agreement .

with experiment and the log-normality hypothesis.

I. INTRODUCTION

Paul Martin noted some time ago that in a num-
ber of respects the difficulties that stand in the
way of a quantitative understanding of fully devel-
oped turbulence are already present in the theory
of second-order phase transitions. ' ' Both prob-
lems involve many coupled degrees of freedom and
exhibit nontrivial universal scaling behavior.
While our approach was motivated in a general way
by Wilson's highly successful theory of second-
order phase transitions, we do not make use of
analogies. Instead, we attempt a semiquantitative
solution of the fluid equations which seems to il-
lustrate many of the phenomena seen experimental-
ly. We base our approximations, insofar as pos-
sible, on the physics of turbulent flow.

A fundamental problem in turbulence theory, be-
yond the nonlinearity of the equations, is the
necessity of dealing with a system that is not in
thermal equilibrium. It is generally believed pos-
sible to establish a stationary turbulent state by
continuously driving the system; but there is no
simple way to determine the corresponding proba-
bility distribution. We will assume that the Nav-
ier-Stokes equations of fluid mechanics are an ade-
quate description of a simple incompressible tur-
bulent fluid. ' Although they are first order in
time, their laminar solutions for parameters ap-
propriate to a strongly turbulent system are gen-
erally unstable and give rise to the chaotic non-
deterministic motions characteristic of turbu-
lence. ' It is the statistical mechanics of these
motions we wish to study.

A phenomenological theory proposed by Kolmo-
gorov and others 35 years ago still constitutes the
basis of our understanding of homogeneous fully
developed turbulence. ' It utilizes only the conser-
vation properties of the Navier-Stokes equations
agd some qualitative aspects of the mechanism of

energy degradation in three dimensions. Kolmo-
gorov proposed that there exists a stationary tur-
bulent state in which energy is transferred at a
constant rate from large distances, characteristic
of the driving force, to shorter distances where it
is dissipated. An essential feature of this process
in three dimensions is its locality in Fourier
space. This means that on a logarithmic scale, the
energy entering a given decade or shell of wave
numbers comes predominately from the preceding
decade. The fractional contribution from the ear-
lier decades decreases exponentially. The Kolmo-
gorov theory is summarized in Sec. II. Section
III contains a simplified model of the energy trans-
fer process and a demonstration that the so called
cascade is local. It also makes plausible the di-
rection of energy transfer in three dimensions.

Kolmogorov's theory works quite well for the
energy spectrum but fails badly when applied to
the fluctuations in the local dissipation rate. 4 '
Experiments suggest, but do not measure directly,
that the energy transfer from shell to shell is not
steady but intermittent; exhibiting strong short
bursts with longer periods of quiescence. A num-
ber of phenomenologieal pictures of intermittency
exist, although none makes any detailed use of the
Navier-Stokes equations. ' ' '

A dynamical mechanism for intermittency is
proposed in this paper and tested on an approxi-
mation to the Navier-Stokes equations. Physical
arguments are given for why small fluctuations
about Kolmogorov's stationary state amplify —be-
come greater in magnitude but sharper in time-
as they cascade to shorter distances. The locality
of the energy transfer process in effect permits
one to build up rather singular behavior by a se-
quence of more or less regular steps.

Our calculation is done on a set of equations that
span a range of 2' in wave number and include four
cascade steps. Energy was added at small k and
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removed at large k in a self-consistent fashion.
The equations are derived by a wave-packet de-
composition of the Navier-Stokes equations. The
wave packets are a compromise between Fourier
space and real space. They manifest the locality
in wave number of the energy cascade as well as
some degree of locality in real space, which es-
sentially means that distant eddies of the same
characteristic size don't interact. After various
approximations, the number of modes we have to
retain increases only as the logarithm of the wave-
number range spanned rather than the cube as in

a direct simulation. The equations for the time
dependence of the amplitudes of the wave packets
are nonlinear and have the same conservation
laws and symmetries as the Navier-Stokes equa-
tions.

When our equations are integrated numerically,
they are stable in spite of large fluctuations and
correlation functions approximately scale with
wave number. Several exponents that measure the
intermittency corrections to Kolmogorov's theory
are in semiquantitative accord with experiment.
Our results do not constitute a systematic theory
of strong turbulence since our approximations are
only physically plausible rather than being an ex-

pansion in some small parameter.
Section IV contains the wave-packet analysis of

the Navier-Stokes equations and See. V our numer-
ical results. In the conclusion we summarize
those of our results which are new, consider their
limitations, and relate them to earlier work.

II. MEAN-FIELD THEORY

Kolmogorov's phenomenological theory of strong
turbulence is commonly presented as an applica-
tion of naive dimensional reasoning. ' The energy
spectrum he found has abundant experimental sup-
port, ' and the concept of an energy cascade is cen-
tral to what follows. In short, Kolmogorov's
theory stands in the same relation to fully devel-
oped turbulence that mean-field theory does to a
second-order phase transition. This section con-
tains the equations for a simple fluid and a dem-
onstration that Kolmogorov's theory is a solution
to them that neglects fluctuations. A number of
additional assumptions will become apparent and
a number of useful concepts and notations intro-
duced.

The Fourier transformed Navier-Stokes equa-
tions for an incompressible fluid may be written
Rs

3—y (k, t ) +i+ (6 ~ —k k 8/k') V$ —q, t ) q V (q, t ) -
—, +—V"(k, t ) = 0, k V(k t ) =0. (2.1)

The density is taken as unity, and the pressure
has been eliminated by subtracting out the longi-
tudinal component of the convection term, V- VV.
It will be a consequence of Kolmogorov's theory,
that neither the boundary conditions nor the shape
of the container implicit in a Fourier transform
matter for the local properties of fully developed
turbulence. The units of length and time are I,
the dimension of the container transverse to the
direction of maximum shear, and I./u where u is
the variation of the velocity over distances -I,.
The only fluid-dependent number in Eq. (2.1) is
the kinematic viscosity v, that multiplied the last
term, and was replaced by the dimensionless
Reynolds number, R =uI./v. Fully developed tur-
bulence is the limiting behavior of Eq. (2.1) as
g ~oo,

One might expect that the dissipative term would
be negligible if 9 is large and the wave number is
less than a cutoff A~. In the inertial range,
1«k «A~, the equations are strongly nonlinear
although the energy, —,

'
f,
"

V» - V» d'k/(2m)3, is con-
served. Beyond A~, the convective term is a per-
turbation on a basically linear dissipative equation.
Imagine a shearing motion that adds energy to the
system at A -1. Then, due to the nonlinear term,

there will be a tendency toward equipartition as
the energy spreads to higher wave numbers. ' The
energy cascade operates until k -A~.

VAth these concepts, Kolmogorov's assumptions
for isotropic turbulence can be stated: (i) Neglect
fluctuations, i.e. , replace the velocity by its root
mean square. (ii) The cascade is local in wave
number. (iii) Energy is transferred from large
spatial scales to small ones.

Averages may be taken term by term, according
to (i), and therefore there exists a single charac-
teristic length and time. The second and third as-
sumptions imply that eddies tend to break in half
or that the energy contained in scales -A. is passed
to eddies of size -A./2 and then to -X/4, etc. The
cascade occurs by a series of statistically similar
steps governed by the convective coupling. Clear-
ly, the probability that q-p+k is the same as
bq-bP+bk provided all wave numbers are in the
inertial range.

To estimate orders of magnitude, the inertial
range is usefully partitioned into wave number
shells labeled by an integer n between 1 and
-in~A~. The nth shell contains all wave numbers
between b" and b"+' where b is a parameter -2.
The energy in a shell is
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or
~a/s b-an /s (2.2)

Equation (2.2) represents the energy contained in
eddies of size -b "; its derivative gives Kolmo-
gorov's "-,' law" for the energy/wave number. The
ratio of e and E„ is the rate of energy turnover in
a shell or eddy damping,

~&/s batl/s
'0n —&

The small eddies act kinematically like an aug-
mented viscosity, q„/k', on the larger eddies, al-
though the energy transfer in the inertial range is
conservative. Within mean-field theory, q, is the
characteristic frequency for any process on a
scale -b ".

Equations (2.2) and (2.3) have several important
consequences. They state that most of the energy
in the fluid is contained in large scales while the
small scales equilibrate most rapidly. One ex-
pects there to exist a universal quasistationary
distribution for the small scales even if the sys-
tem is not continuously driven. The small scales
will turn over many times before the large scales
have lost much energy. Details of the energy-
containing modes enter only through e. The cutoff
A~ is the wave number at which the eddy damping
equals the viscous loss rate k'/R;

(2.4)

An inertial range should exist for sufficiently
large B.

III. SIMPLE MODEL OF ENERGY TRANSFER,

The Kolmogorov theory is generally derived with
only passing reference to the three-dimensional
Navier-Stokes equations, but is known not to hold
in lower (integer) dimensionality. " In the previous
section, we attempted to make explicit the non-
trivial assumptions about high Reynolds number
solutions to the Navier-Stokes equations on which
the Kolmogorov theory depends. The locality and

++I 31 d-pZ„=2 ~ VP V P(2 )g

If a stationary cascade can be realized, energy
enters the nth shell at the same rate it leaves it,
neglecting fluctuations. The energy lost by n is
passed to n+I, (locality), and a parameter e, in-
dependent of wave number, may be defined as the
energy input to any inertial range shell. The dis-
sipation rate c is determined locally and can be
estimated by rewriting Eq. (2.1) for E„. Neglect-
ing numerical factors,

b tt gs/a
n

direction of the energy cascade may both to a
large extent be understood by an analytical calcu-
lation on a linear but three-dimensional model.
The model illustrates the mechanism of energy
transport in three dimensions, vortex stretching,
which appears essential for any realistic treat-
ment of the energy cascade. ' ' The necessity of
working in locally comoving or partially Lagran-
gian coordinates will become apparent.

Consider a large-scale -Q ' (small wave num-
ber), static irrotational flow V(x) at high Reynolds
number. If at t = 0 a small amplitude disturbance
is created having wave numbers k with Ar»k» Q
and confined to a region 0 of characteristic size
A„, much smaller than Q ', what will be its sub-
sequent behaviors It is convenient to rewrite the
Navier-Stokes equations for the vorticity ao of the
disturbance. The correlation functions of v and ~
are simply related If .~&5)«@[V'(Q ')- V(0)], one
can linearize in ~;

(3.1)

By assumption, V(x) is slowly varying over 0 and
may be expanded in a Taylor series about the cen-
ter of Q.

V(x)=V(0)+X x+ ~ ~ ~ . (3.2)

Higher-order terms are a factor @An smaller
than those retained. Since Coriolis forces were
neglected (VxV=0), the matrix A, is symmetric
and traceless (V ~ V = 0). In a coordinate system
that diagonalizes A.,

V"(x)= V~(0}+X~x". (3.3)

The temporal development of the region 0 in which
~t0 is easily visualized because the shearing
force acts like a volume-preserving (trX =0) scale
transformation. If A.„,A., & 0 and A.,&0, Q be-
comes pencil shaped while if A., & 0 and A,„A,„&0,
Q becomes pancake shaped.

The temporal behavior of the energy depends on
the initial conditions and X~ in a detailed way.

The first term in Eq. (3.3}is eliminated from Eq.
(3.1) by the substitution x-x —V(0)t. It is only
the shear, X, that is responsible for the growth
or decay of v. Equation (3.1) assumes the form
of a differential scale transformation and may be
solved in terms of the initial value of &u", (n, P
=1, 2, 3);

(o (xe, t)=e"~'&o,"(e ~8'x, )

The energy is most easily calculated from
(vt ' v I) = (&a ' ~- )/" '-:

aX -~/a
E(t) = — e'"~' d'x((o~(o~)(x) Qx'e'"&'

g 0 0 8
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(y3 ] )1/2 ln((y 2 ])1)2+y2)2)

x, &0
E(f) =-,'E(0)(y 2+ 2y-1) (

.) i. sin '((1-y')")
A.,&0.

'The energy increases as y lny for X, & 0 and as
~-'~' for X,&0.

From these examples, we expect that the energy
of any sufficiently isotropic distribution will in-
crease monotonically and eventually exponentially
when sheared by larger scales. Recall, however,
that the equations of motion are time reversal in-
variant. If the initial distribution of vorticity is
pencil shaped and symmetric about the z axis, and
A.,&0, A.„,X„&0, the energy will decrease until the
distribution is spherical and only then increase.

Our simple model of vortex stretching contains
two important implications for high Reynolds num-
ber flows: the energy cascade is local, provided
the distribution of shell energies, E„ is "close"
to Kolmogorov's, and e &0. The former was an-
ticipated when a transformation was made to co-
moving coordinates in order to remove the con-
stant term in V, Eq. (3.3). To exploit Galilean
invariance, the velocity is written as a short-
wavelength part v (shells & n) and a long-wave-
length piece V (shells &n). In analogy to Eq. (3.1),
the Euler equations become

8v
+V ~ Vv+v ~ VV+v ~ V'v+V ~ VV = o.

dt
(3.4)

A transverse projection operator multiplying the
nonlinear terms is understood. The wave vector
of V ~ VV will only fall into shell n if both factors
are in shell n —1; so it is already local. The first
and third terms contribute to the energy current
for v while the second and fourth are volume

Only several limiting cases have been investigated,
but they seem to give a consistent picture of the
physics. If the vorticity is initially nonzero in all
three directions, let X be largest A. and E the
corresponding energy. There is a trivial lower
bound:

g(f) we "m2g (0)

At sufficiently long times, the energy will exceed
its initial value. For t('Q„X2„)'~2«1, and an in-
itially Iisotropic vorticity distribution, the energy
becomes

z2) =z(o) 1+—P x*) t'+ ~ ~ .8
15

If Pu is initially isotropic, X„=A,„, X, =-2X„, and
we define y =e "»'

sources or sinks of energy.
The uniform part of V has no effect on the second

term and may again be removed by a coordinate
transformation from the first term. The meaning
of "uniform" is no longer clearcut since there is
now a continuum of wave numbers rather than two
distant bands. The concept stQ1 applies approxi-
mately, and it remains true that only the gradient
of V affects the intrinsic or internal dynamics of
V.

It is now possible to give a simple estimate of
the degree of locality of the energy cascade. " The
contribution to the logarithmic derivative of the
energy, ',fv—2, from a shell 212&n is -6" rms (V )
or - f)2 ~2 if the Kolmogorov value of E - V ', (2.2), is
used. The largest shear and the most important
source of energy occurs when m =n —1. Shells
m «n act primarily as a coordinate transforma-
tion.

By intrinsic or internal dynamics is meant what
is measured in locally comoving coordinates.
These coordinates are a compromise between
Lagrangian coordinates which track the velocity
at a given fluid point and Eulerian coordinates
fixed in space. The former greatly complicate the
viscous terms and require a knowledge of the vel-
ocity for all wave numbers simultaneously. Eu-
lerian coordinates are the most convenient des-
cription in the dissipative region but suffer from
spurious convection effects. The Eulerian re-
sponse function is dominated by the passive con-
vection of the test perturbation past the point of
observation. A mixed representation corresponds
to the description of scales - A. from a neutraQy
buoyant platform also of size -A.. It combines an
Eulerian description of much smaller scales with
the larger scales affecting primarily the origin
of coordinates. The characteristic time in the
nth shell is only -b'" ' in comoving coordinates.
The necessity of "mixed" coordinates was rec-
ognized by the Russian school and further devel-
oped by Kraichnan. '~

The direction of ener gy transf er implied by
~ & 0 is a central tenet of isotropic turbulence theo-
ries in three dimensions. Our linear model, as it
stands, is time reversal invariant and could give
energy transfer in either direction. It becomes
relevant to turbulence when a nonlinear intrashell
coupling is included [Eq. (3.4), third term] even
though it is no longer exactly solvable. Because
small scales turn over more frequently than the
scales that drive them, they equilibrate to an iso-
tropic distribution more rapidly than the large
scales can vary. %hen e is isotropic in our ex-
ample, its energy increased. The comparatively
rapid equilibration among modes in the. same shell
is responsible for the irreversibility of the energy
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transfer between large and small scales.
One reason for undertaking numerical calcula-

tions mas to verify these qualitative conclusions.
Such calculations are discussed below and include
several terms in the Taylor series, Eg. (3.2),
Coriolis forces, and the correct nonlinear terms.
We find numerically that the energy transfer is al-
most always positive in spite of fluctuations many
times larger than its mean,

IV. %AVE-PACKET ANALYSIS
OF THE NAVIER-STOKES EQUATIONS

A wave-number shell / was defined in the pre-
vious section to include all wave numbers k satis-
fying b' ~P &b'+'. In mean-field theory, the shells
were simply a shorthand to facilitate estimating
orders of magnitude, though Kolmogorov's theory
might be viewed as a decomposition of the Navier-
Stokes equations that left only two "modes" per
shell„ the energy and eddy damping. In this sec-
tion, the Fourier modes k are reexpressed as ef-
fective eddies or wave packets, and the energy cas-
cade is represented by only a fixed number of bas-
is functions in each shell. ' In these coordinates,
the Navier-Stokes equations are approximately
"diagonal. ".

It mill emerge that our intershell coupling is only
exact for well-separated shells, and one would
question its application to equations having a local
cascade. This property alone would not disqualify
our approximation if b were permitted to increase.
With larger shells, most modes are interior ones
coupled prinarily to others in the same shell, and
more degr ees of freedom permit a better repre-
sentation of the intrashell coupling. A larger shell
also picks up the tails in the energy transfer pro-
cess. A fixed long-wavelength mode q contributes
q' ' to the characteristic frequency of energy
Quctuations of all the ~odes in a shell. There is
no contradiction to our earlier estimates because
the characteristic frequency increases as k' ' and
q' ' becomes a smaller percentage of the former
as k increases. What invalidates a large b theory,
even if it were tractable numerically, is the dis-
tribution of energy within the shell. A 5IPo error
for modes between b' and 2b' is more serious than
an equivalent error for all modes between 2b' and
O'". In addition, there is no guarantee that even
small errors do not propagate when integrated
over long times.

Although numerical calculations were done with
5 =2, it is helpful to retain a general 0 in the
bounds that follow. The wave-packet modes are
most accurately defined mhen 5 is large. Because
we are able to give a fairly precise meaning to the
basis functions even when b = 2, there are no free

parameters in our equations. In a sense our ex-
pansion parameter is 2 ' ', so the final measure
of success or failure must be the reasonableness
and consistency of the final output.

The subsequent analysis is rather lengthy and
one should not lose sight of its heuristic motiva-
tion. There are both kinematic and dynamic rea-
sons why the Navier-Stokes equations are diffi-
cult to diagonalize. The incompressibility con-
straint becomes k ~ V(k, f ) =0 in momentum space,
or the condition that the velocity flux out of any
closed surface in real space is zero. Thus for a
highly convoluted surface of average dimension

, the incompressibility condition will mix the
velocity in shell / with higher shells. The extent
of mixing depends on the minimum spatial scale
of the irregularities, but for a given surface de-
creases with b '. Large-scale coherent but very
thin or fine structures occupy only a small portion
of phase space, that hopefully restricts their dy-
namicaj. signif icance. "

The Navier-Stokes equations themselves contain
a convective term local in space and a pressure
term, local in wave number, that enforces in-
compressibility. The pressure couples locally
defined basis functions, and the convective term
mixes Fourier modes. The basis adopted is a
compromise in which each mode occupies a limi-
ted region or "box" (-0 "for shell /) but includes
a discrete wave-number index that runs from b'

to b'" in magnitude so as to keep the total number
of degrees of freedom within a shell unchanged.
If b is large, surface effects can be neglected by
making the discrete set of Fourier modes periodic
in the box. The incompressibility condition (e.g. ,
the pressure) is partially satisfied by the Fourier
modes, while the convective term does not couple
distant boxes.

More physically, a box contains a number of
eddies of some characteristic size. There is in-
teraction between eddies of different character-
istic sizes occupying the same region of space,
but not with eddies of the same size in distant re-
gions. The l th box sits within boxes representing
the l —1, l —2, . . . , shells and contains a multi-
plicity of boxes from shells l+1, l+2, . . . . If in-
trashell interactions do not significantly couple
different boxes then all the O' L+1 boxes in each l
box are statistically equivalent and independent.
They are all driven by the same large eddy though
perhaps mith different phases. For a fixed con-
figuration in a given l box, we assume that an
average over the 6' 3+1 boxes it contains is equi-
valent to a time average computed for any /+1 box
with the constraint that the l box be in the given
configuration. Making similar assumptions with L

replaced by l —1, etc.„ implies a time average
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over any box in shell l is equal to an average over
all the l boxes present at an instant of time. This
conclusion we believe to be correct even when
intrashell interactions are present, although we
will argue in this section that retaining only one
box per shell is a reasonable first approximation.

The reaction of the boxes in shell /+ 1 back on
shell l can be kinematically represented by an
eddy viscosity which is then chosen to conserve
energy. At each instant of time the eddy viscosity
should be. determined by the energy entering all
the O' I +1 boxes. Instead, we will retain only one
box per shell and use it alone to fix the eddy vis-
cosity. Qualitative arguments for why this last
approximation could either decrease or increase
the intermittency are left for the conclusion since
they relate to the connection of our model to Man-
delbrot's geometric description of intermittency. '

Our "boxes" represent a convenient decomposi-
tion of the degrees of freedom within a shell at an
instant of time but should not be taken too literally.
If a region in the fluid were marked off initially,
its surface would immediately be rippled by the
small- scales, and eventually it would be pulled
and stretched into a highly convoluted surface by
the larger scales. It was argued at the end of the
last section that a comparatively rapid equilibra-
tion takes place among the modes in a shell, that
renders them isotropic and is responsible for the
unidirectional energy cascade. The size of b de-
termines the maximum degree of asymmetry or
disequilibration that can be tolerated within our
enumeration of the degrees of freedom. If a blob
is pulled into a long thin sheet, it can no longer be
described by the modes of a single box.

The decomposition of the Navier-Stokes equa-
tions into a wave-packet basis breaks up into sev-
eral parts. The velocity is written as a sum of the
new basis functions with time-dependent ampli-
tudes. This representation is substituted into the
Navier-Stokes equations and the various intrashell
and intershell couplings identified and compared.
Our intention in this section is to demonstrate why
it is reasonable to consider only one box per shell
and neglect its interaction with its neighbors in
the same shell; in effect thinning the degrees of
freedom. The limitations of our model are dis-
cussed in Sec. V and the conclusion. The actual
form of the interaction between the modes in a
given box and their coupling to the preceding shell
for b =2 are reserved for Sec. V.

It has been implicitly assumed until. now that the
entire fluid is contained in a cube of volume (2v)'
and that consequently wave numbers run from one
to infinity. The remainder of this section focuses
on a particular shell lIand its immediate neighbors

in the inertial range. It is convenient to use new
units in which the fluid occupies a cube 2mb' on a
side and the kth shell contains wave numbers be-
tween I and b.

The following notation is used consistently:
H, G, F label the discrete Fourier modes in the

boxes for shells l —1, l, l+1 (when several shells
figure in the same expression, H corresponds to
l —1, etc. ). Their components take on all integer
values subject to the constraint on their magnitudes
1 ~H, C, E&b;

k and q are continuous wave numbers between 0
(actually b ') and infinity in magnitude;

R„runs over a lattice of points 2m(n', n~, ns),
where n' are integers, the boxes representing
shell l —1, (l+ 1), are centeredon alattice R„with
spacing 2mb, (2wb '};

P(r) is a smooth positive function localized in a
box 2w on a side and normalized according to
fg'(r)d'r = (2w}', $(k} is its Fourier transform.

The s4w (bs- 1}b"Fourier modes for each com-
ponent of the velocity in shell / may be reexpres-
sed by means of an equal number of complex am-
plitudes A ~~ „(t)= X' ~ „(t)*according to

The sum extends over --,' ~b' vectors G and b"
boxes with centers at R„. The analogous expres-
sions for shells 1+1 follow by scaling the wave
vector and Q(r) to restrict the amplitudes to a box
of appropriate size.

V», (r, t) =g Ao'„'exp)lb "G (r —R )]$(b''(r —R„)).
C, m

(4.1b)

The new basis functions are clearly complete
since they are equal in number to the Fourier
modes in the appropriate shell. To the extent that
Q(r) is not exactly zero outside of the box centered
at the origin, wave functions in adjacent boxes
are not precisely orthogonal. Similarly the varia-
tion in Q within a box means that the oscillatory
functions assigned to the same box are not ortho-
gonal. The effects of nonorthogonality decrease
with b ' and do not affect the rather crude esti-
mates that follow.

The average mean-square amplitude,
—,'Q~ Aa „~ A '~ „, is the same in all boxes. For
simplicity, we pick a unit of time that makes the
energy/volume in a shell m equal b ~" '~ ' in
mean-field theory. (The dissipation rate e is now

a pure number. ) Computing the energy/volume
from Eq. (4.1) fixes the mean amplitude in an ar
bitrary box:
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I=-Q fX'g „[',
(4.2)

consequence of Eq. (4.4) is a restatement of in-
compressibility:

G-Xg „=().

c

The Fourier transforms of Eq. (4.1) are

V, (k, f) =Q A ~ „(t)e '" ' R~ P (k —Q ),
c, n

(4.3a)

(k f) g Aii1 ill ' R+ t+3 g (hulk G} (4
C, m

In Eq. (4.3a), P(k —Q) restricts% to within one
unit of Q. The momentum constraint on k, 1 «k
&b, is automatically satisfied except for G=1.
In the equation for V, „$(b%—G) restricts k to a
distance b-I from ~-xQ The approximation

kp(% —G) = Qif)(k —G), (4.4}

and its analogs for shells l ~ 1 are used extensive-
ly. For most values of Q the error is -b ' if 5 is
large. Obviously for G=1, the distinction be-
tween shells is blurred, and our numerical ap-
pr oximations are only semiquantitative. The first

The Navier-Stokes equations are decomposed by
writing the velocity as a sum over shells and mul-
tiplying out the nonlinear term. An expression for
dV, /dt is developed from all terms whose total
wave number places them in the lth shell:

dA'
dt ' ' „c dt

~V (f . f) Q c.n -i' ' Rg y(k Q)

(4.5)

-=g [V .VV ]"
f„j

(The time dependence of R„was ignored because it
cancels against the uniform part of V, when the
Qalilean transform is made. The boxes of shell l
are comoving with respect to m& L) The shorthand
expressions [V; ~ VV, &]" and [V, &

~ VV,]"denote
the two possible terms (including the pressure)
that arise from shells l —j and i.

The intrashell coupling, [V, VV, ], after some
rearrangement and approximation is (a, I3= 1, 2, 3):

G G
[V, &Vi]"= —i Me '"' ~6(k —-G) 5"~ — -- O' ~ Ac ~

~~

A i, 5 ei 6' ' (R„-R~~) f y( gt)e!(R„-Rg) (4- o')
(2m)'n'

(4.6)

The summations on n and n' are unrestricted, but
1 &

I G —G'
)

& b. The (I integral is not just
Q(R„-R„)= 5„„because its domain of integra-
tion. is restricted to the intersection of

1 if &b and 1 ~k —q(&b.

Let D be the distance from G' to the nearest boun-
dary. By shifting q, the domain of integration be-
comes a sphere of radius D plus an irregular piece.
The integral over the former is

I =&«-R") IR„-R.
I

0 j,(p) itIRg-R„&)
D 2s

If the second term is integrated by parts,

Dp(D) cosDiR„—R„.I
8 n n

'

2&2(R R

x [1+o(1/IR„- R„. I) ] . (4.7)

In the remaining region of integration p ~D. It
is still possible to integrate over the direction of
p and do an asymptotic expansion in IR„-R„.I.
The result will be the same order of magnitude as

the second term in Eq. (4.V). The bracketed term
in Eq. (4.6) becomes

ii ()+Ai ~ ii y(IRR ~ I)

where y is an oscillatory function of order unity.
The summation on n' is long ranged and repre-
sents some fluctuating velocity amplitude C~, „
that is uncorrelated with A i~ „. (The long-ranged
interaction helps in this respect. ) The relative im-
portance of Cc, „, as measured by its average and
variance,

&c, „)=() (Ic, , .I')=[De(D)]'& IAa, . I'&

depends on G'through D.
To estimate the effect of neglecting Cc, „on the

integration of Eq. (4.6), define a boundary to con-
sist of all G' with D«b' and 5&1. A fraction of
5' ' of the wave numbers 5' fall into the boundary.
Within the boundary ( I

C I') is potentially as large
as ( IA I'), but elsewhere ( I C I',) /(IA I

') decreases
with b ' as some power of b ~ depending on the ex-
act shape of P. [Recall that fP(q) d'q/(2i()'-1 and
~))(r) has a characteristic size -1.] With these
estimates have to be folded the relative magnitudes
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of ~A 2o ~, that may be taken from mean-field theo-.
ry. In Eq. (4.6), Ao ~. is largest when G-G'. lf
G- b, G'-1 may be neglected. The mean square
of the remaining factor in Eq. (4.6), O'Ao, , is
distributed according to G' '~' dG'. The im-
portance of the boundaries is reduced by b ' rela-
tive to the interior, e.g. ,

- j', ,6/ J '„ the neglect
of (~C]') introduces a similar error. If G-l, both
neglecting (~ C ~'() and using Eq. (4.4) can introduce
appreciable errors Th. e contribution to Eq. (4.5)
from Eq. (4.6) finally reads,

67A 'I
(:~ ~ — z(6~~ C~G((/C2)

dt

xQ (G' A', „A o'~„)+ ~ ~ ~,
let

subject to 1& ~G-G' ~&b.
The most important terms coupling the lth shell

to preceding ones are [V, ~ VV, ,], [V, , ~ VV, ], and

[V, , VV, ,]. Interactions with V, m~2 are a
factor b'"~' smaller (Sec. III). Equations (2.1) and
(4.3) imply

[V ~ VV,]"=—~(6' b"b'/—u ) g e-' "y(k —b-'H-5')b-'H-X'
a, %n

53d 3
x gA'-'»Be" "' P, -R~& e«((-( 'H) ~ (%, -R~& ~( b H)

(4.8)

The fi integral is restricted to& ' &
~ q ~

& I and
1 & (k —q [ & b with k in shell l. Its value again depends
on the position ofh '8 relative to the boundaries of the
domain of integration.

The locality of the cascade, i.e. , the factor b 'JI,
allows consideration in Eq. (4.8) of only H-b for
b large. From this set, separate out a layer con-
sisting of all 8's within a distance. b' ' of a, boun-

dary. This layer contributes a small fraction,
b ff gl/2 H ' 'dH, of the mean-square shear or

vorticity present in box m. The remaining vectors
H are at least 5' ' from any boundary; and by scal-
ing out the factor of b, the q integral, I, may be
done in analogy to the calculation for [V, ~ VV, ].
The spherically symmetric piece of I is

I =$(b 'R„-b 'R ) — e'P (R~ "m}' $ ( )s, m ~
(2 )g

The /- 1 boxes are spaced by 2mb, and 5 'Q is
the same order as R„.was in Eq. (4.'I), and
D ~b' '. The second term in I„as well as a sim-
ilar one from the irregularly shaped piece of the
domain of integration, are negligible. The first
term in I, is approximately constant for the-6'
boxes A„contained within a given B . Alternately,
the summation on m reduces to the single box A
that contains a given box n.

Equation (4.8) is still not of the form of Eq. (4.5).
The function P restricts k to within a range -1 of
5 'H+ G'I. - It is apparent that the contribution to
d X'~ „/dt will come predominantly from G'-G with

. essentially equal weight from all values of H; i.e.,
b 'H never exceeds the width of P. To be more
precise, we expand e" " ' ' in a series of e'G

(((» —5 'H —G')—=fd'»((r)e" ' ~"

g y(Q Gt Gtt)( 1)l+ E~G

$»

sin(vH~b ')
(4 9)

~ » ~(Qlls b 1H8)

The contribution to Eq. (4.8) is finally

dg l, .a

dt
" = —i(5~8 —G Gs/G2) Ai ~ v, (-1)i+G-G"„n

G

« I~
y-&H'j'g &-&, 8 ib H ' (Rn-R~)

a, m e
H

sin(vH b ')
" w(G"'-b-'H') '

6=y
(4.10)

The sum on G" is restricted to 1- ~G- G"
~
&b.

Some additional approximations for b =2 are made
on Eq. (4.10) in Sec. V.

The estimate for [V, , ~ VV, ] is similar to [V, . VV, ,].
The gradient now acts on V, insteadof V~, and the fac-
torb 'H in Eq. (4.8) is replacedbyG or G'. Itmightap-
year that smallH dominate the sum. This is, of course,
not true since the box at R„has to be transformed
to comoving coordinates by subtracting from V, ,
its integral over this box. After the Fourier ex-
pansion [Eq. (4.9)] is done, V, , is no longer ex-
actly incompressible, and it is necessary to re-
move its longitudinal part if [V, , ~ VV, ] is to con-
tribute only to the energy current. The exact form
of [V, y VV, ] is given in the next section for b =2.

The last coupling term [V, , ~ VV, ,], only falls
within the l th shell when k &2. If b = 2 this is the
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entire shell, while if b is large [V, , ~ &V, ,] affects
only a small percentage of the wave vectors G.
Unfortunately, they contain most of the energy in
the shell. This term is discussed in the following
section after our model equations are written out.

To complete the equations for the lth shell re-
quires an energy sink to represent the energy
transferred to higher wave numbers. The domi-
nant term, [V)„„~VV)„,], stands in the same re-
lation to [V„, ~ VV]+[V, VV„,] (that will be rie-
glected) as did [V, ~ VV, ,]+[V, , VV, ] to
[V, , &V),]. The former is able kinematically to
connect all wave numbers in shell 1+1 to all those
in shell I; [V,+, VV, ]+[V, ~ VV„,] couples only
large wave numbers in shell / to small ones in
l+I, although as before the smallest wave num-
bers in any shell contain most of the energy. The
analogy with the two energy source terms is re-
inforced by calculating the energy balance. The
energy transferred to the I th shell by [V„, - VV)]

+[V, &V)„,] is minus that transferred to shell
I+ 1 by [V, ~ VV, ].

There are -5' boxes, 8, from shell l+1 that
fall within each box of shell /. It is the correla-
tions among the b' little boxes induced by their
membership in a single large box that react back
to produce an eddy damping. " The eddy damping
is not calculated but fixed by energy conservation
and approximately accounts for all damping pro-

cessess.

It is easiest to estimate [V„,~ VV„,) in position
space and anticipate that the pressure will make
it transverse. The precise factors affect the eddy

damping numerically but not its functional form.
If Eq. (4.1b) is substituted into [V„, VV„,], and
Eq. (4.5) inverted to find A~ „:
BAl, aa. n f d s) ~ iG-~ (r-Rn)y(r R )Bt

~ A'" 'A"'F', m E, m
F, F', m

xP'(b(r —R„))+ ~ ~ ~ .

The sum over F and F' is restricted to F = —F'
+b 'G+O(l) by Q'(br) If .G/F«b, F= —F'. The
r integral is trivial and restricts R to lie within
box n:

A l, a

8t
h -3

G 8 Q iG ' -(R~-R„)

xA""A"' "+ ~ ~ - (4 11)t

If we ignore any correlation among A~" the av-
erage and variance of Eq. (4.11) are O(b ') be-
cause the sum over e '~' m contributes only at the
boundaries. (Remember that R„runs over b' lat-
tice points spaced by 2m/b. )

The correlations that generate the eddy viscosity
are found by applying Eq. (4.10) and its analogue
for [V, , VV, ] to the boxes A„ in shell I+1. We
assume G/E«b [if H«bG" in the notation of
Eq. (4.10), the sum on G" is restricted to the
neighborhood of the origin], and include an eddy
viscosity.

gA l+j.peg

Bt
+ q &'""= ~(&" ZZ'/r') -e'n" &" -~ )(G' A'" A" +F A' A'"» ~ ~

J+Z Z m F, m G', n yl+ G', n E m y2~+
Gt

(4.12)

The y's are wave-number-dependent functions. Equation (4.12) may be solved for A'" implicitly by in-
verting the linear terms and remembering that A' responds more slowly than A'":

pl+4 u(f) z(gn8 Fny()/F2) g ei5 ' (Ii~ + )
f m

x dh' exp— l+& G 'Apm t Ap' n ~ yx+F'At"' ntAz m t'y2 +'''.
(4. 13)

No double counting occurs if Eq. (4. 1.3) is sub-
stituted for one of the factors of A"' in Eq. (4.11)
since correlations are not relevant to the driving
of smal. l scales by large. Only the average of
A'"A'" (independent of m) contributes to the eddy

damping because P'" fluctuates more rapidly
than V'. The sum over m in Eq. (4.11) picks out

0 = C&' from Eq. (4.13) and cancels I) ' The right-.
hand side of Eq. (4.11) after substitution of (4.13)

becomes a number of order 1, the eddy damping
g„ times A~ „. It was necessary to assume
6 «bE, and approximate certain double sums by
their diagonal term, because the eddy damping
concept is only strictly valid when the damping
modes are much smaller (and therefore faster)
than the damped modes. The eddy damping is pos-
itive when energy is being transferred to pro-
gressively smaller scales.
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V. RESULTS OF A LOCAL CASCADE MODEL IN
EDDY COORDINATES

A simple linear model for the energy transfer
process was the subject of Sec. III. In Sec. IV its
essential features were recovered by a wave-
packet decomposition of the Navier-Stokes equa-
tions. It is only when coupling distant bands of
wave numbers that the idealized vortex- stretching
mechanism and eddy- damping approximation apply—
quantitatively. The wave-packet variables are
kinematically unambiguous only for b» 2; but the
defects of the vortex-stretching idea, when applied
to contiguous bands of wave numbers, are only
partially remedied in this limit. Although it was
only feasible computationally to work with b = 2,
we continue to use the eddy-damping-vortex-
stretching model even though several omitted
terms are approximately the same magnitude as
those retained. Their effects may be understood
qualitatively as a perturbation of the existing mo-
del which appears to incorporate the essential
physics. Only one box per sheD is retained with
all the boxes having the same center and orienta-
tion. The interaction among equivalent boxes was
treated in the previous section.

Subsection A contains the wave-packet basis
for b = 2, the equations for a general shell, and
estimates of the order of magnitude of certain
neglected terms. Their possible effects on the
dynamics of the energy cascade conclude the sec-
tion on fluctuations. The actual numerical in-
tegration was done on just four consecutive shells
which require an energy source and sink if a
stationary distribution is to result. Subsection 8
continues with a detailed discussion of the stability
of the energy cascade, the dynamical behavior of
fluctuations, and the origin of intermittency, il-
lustrated by the time dependence of the energy and
dissipation obtained numerically. It is then pos-
sible to assess the consistency of several energy
sinks that could terminate a finite set of shells.
Details of the numerical analysis, histograms, and
a table of exponents comprise subsection C.

A. Equations for wave-packet amplitudes, b = 2

The smallest value of b for which a wave-packet
analysis retains any meaning is b = 2. Equation
(4.1) involved a function P that localized the rep-
resentation in position space yet approximately
decoupled the Fourier modes in different boxes
within the same shell. Surface effects, or the
continuity of the velocity from box to box, are
neglected by using periodic boundary conditions.
Within a given box, Q varies less rapidly than the
Fourier modes, and the numerical calculations

are greatly simplified if we assume Q is either one
or zero. For a box (2ii)2 '" on a side, we chose
the 26 Fourier modes e"' '~' for 6 = 0, +1 with
wave numbers k= 2' '5 between 2' ' and 2'.
Twenty-six is reasonably close to the number of
modes required to preserve the density in phase
space, 28ii/3. The velocity V, (r, f) is determined
by 78 complex amplitudes, A ~(t), subject to the
constraints that Vr be incompressible and real;
6 A~i=0, A~*=X'o. The energy is

where f, denotes the integral over the lth box of
volume ~, = (4w2 ')'.

The equations for an arbitrary shell are

Bt +V»-~' &V»+Vr ' &V»-&+V» &V

~ VP+ (q, + 2»/ft)V, = 0 (5.1a)

2g »E» = sr+a (5.1b)

eiH i'/2 P eis 'Pg(N H) (5.2)

The sum extends up to twice the maximum wave
number in shell 1, because in the product
V, , ~ &V„ there wi11. be terms like e""e '" that
again fall into shell 1. The momentum constraints
on shell 0 have not been violated. One could

The second equation determines gr from the rate
energy is acquired by the following shell when
the cascade is nearest neighbor.

Our reasons for omitting the V, , ~V», term in
(5.la) as a first approximation are given later in
this section and again when considering inter-
mittency. The reader should also note that this
term was retained in a number of computer runs
with little change in the final results. "

Equation (5.1) is not complete as written be-
cause Vr, has twice the period of Vr and con-
sequently the conservation properties of the first
nonlinear term are not the same as in the com-
plete Navier-Stokes equations. The intrashell
coupling contributes just & & V, V»' to the di-
vergence of the energy current, and the integral
over box / reduces to sUrface terms that cancel
pairwise. For V, , ~ &V„ the analogous term is
& ~ Vr, V» and its integral does not vanish be-
cause Vr, is not periodic in box /. To remedy
this problem and extract an equation for d AGi/dt
from Eq. (5.1), a second Fourier expansion of
V, , is required [see Eq. (4.9)j. For l= 1, (general
f found by rescaling), V, contains wave numbers
k= 2 H, B =0, +1, while V, is a sum of e' ' . To
close Eq. (5.1), expand
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equally well multip1, y out V, , &V, and then ex-
pand each term. The procedure employed is
algebraically equivalent and simpler to implement
numerically.

Equation (5.2) is accurate to about 10% with the
largest errors occuring near the boundaries. A
function such as sin& x becomes periodic in
[-v, n)if e'xpanded in e™x.After Eq. (5.2) is ap-
plied to Vp, if is no longer incompressible. We
project out its longitudinal part and at the same
time drop its zero wave number component to ef-
fect the Galilean transformation. It was found
numerically that the energy decreased by 10/o
after this operation, while the energy/vol [after
applying Eq. (5.2)] varies from 0.5 to 1.1 times
its original value. The latter variation is believed
to depend upon the spatial distribution of energy
within box 0. The greatest reduction mould occur
when the velocity is largest near the boundaries.
The contribution of V, ~ &V, (= & V,V,) to the di-
vergence of the energy current is still Q+ VpPj,
but now reduces to surface terms that cancel

pairwise when integrated over box 1. Errors in
this term are not serious because it acts like
V, V'V, to redistribute the energy among the mo-
des in box 1.

The term Vg +Vp is the only one to transfer en-
ergy from box 0 to 1. It is necessary to dif-
ferentiate V, before expanding because Eq. (5.2)
is not absolutely convergent; f, V, is automatically
eliminated. During the numerical integration, the
vorticity and the eigenvalues of 0," = V Vp + V'

V~
were computed at the origin both from V, directly
and after expanding the derivative with Eq. (5.2).
The difference was 10/o. We did not explicitly
make & VG traneverse in p because tro, ~ was
zero to within 1% at the origin [try= 0 in Eq. (3.2)].
Equation (5.2) is not so good away from zero.
If we had made & Vp=0 over the entire box, the
shear at the origin would change by 10% which is
negligible in comparison with our other errors.

The equations that were integrated numerically
result from Eq. (5.1) by expanding the first two
nonlinear terms in the manner described.

gA le+ '2' '(5 —& G /~ )
Bt

x Q C,""(G—O', H)A„' ' "G"A'P + Q A ',"C"(G G', H)A„"~+ Q A' ",O' "A '8)
Hs C~ g Qt G'

+ (q, +2 '/R)A~ =0, (5.3a)

~l l ~ l+j.

-C 6' 2 ~ H
=f2' ' Ar"' Ai' '"C (G G' H)A

where

(5.3b)

8t
' = El —2qlEl (5.4)

(5 '~ —N N /N')C(N, H), N40
C, '~ (N, H) =

C (N, H) = —H C(N, H) .
The nonlinear terms (containing the pressure in the

Q GN/G2 factor) are in the same order as Eq.
(5.1a). Equation (5.2) defines C(N, H). The first
two sums over 6' in Eq. (5.3a) are unrestricted
while the third is limited to 6 —G' that are among
the arguments of 4';G, H =0,+1 and% =0,
+1,+2. All dependence on the physical wave vec-
tor or the box size is contained in 2' '. The equa-
tion for q, is real, except for roundoff errors, be-
cause C (—N, —H)= —C (N, H). The first and third
terms conserve the energy. It will prove useful
to have explicitly the equation for E„ that Eq.
(5.3) implies (R=~):

I

The rate energy enters shell l from / —1 is de-
noted by e,. The analytical definitions of g, and
E, wouM become somewhat ambiguous had we in-
cludednextnearestshell couplings or terms such
as V, j.

' &Vl
If it were possible to integrate a realistic num-

ber of shells (- 20) simultaneously, energy could
be added to the system at a constant rate a, or
the first shell could evolve undamped (q, = 0,
E, = const) and supply a random shearing to the
second shell. Alternately, instead of setting up
a stationary distribution, the first shell could
be started with a fixed amount of energy that
would decay slowly to zero. The succeeding shells
should equilibrate to some locally defined &. For
a prescribed Reynolds's number, 2"/R will
eventually dominate q, and terminate the cascade.

Because we were limited to four shells, assumed
to be in the inertial range (R= ~), the choice of
a source and sink of energy requires care. It
appeared rather difficult to extract, from only
four shells, a universal distribution if they were
not stationary; so the first of the stationary mo-
dels was used. Feeding energy into the first shell
at a constant rate provides more useful informa-
tion from a limited number of shells than using the
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first shell at constant energy to generate a ran-
dom shear. Equation (5.3) becomes for I = I:
eglse Qlg e Q OgB0 —g G +z god-

et 2E,

and

The single number c replaces the 78 modes that
would normally drive any shell in the inertial
range. The function t4(t) determines the energy
sink in the fourth shell. Without knowing e„we
parametrize g4 in terms of known quantities:

tl (f) = 2"'(&tb&+ rb1, (f - 6) —&tb&]) (5.6)

The scale factor y, the average of q„&q,&, and the
time lag 6 are determined self-consistently. The
choice of an energy sink is more delicate than
picking an energy source. The reasons favoring
Eq. (5.6) are given in the following subsection.
The actual parameters and the accuracy of the
self-consistency are contained in subsection C.
This completely the specification of the model
equations that were integrated numerically. Note
that (5.3), (5.5), and (5.6) are deterministic;
there are no stochastic forces. The eddy viscosity
is determined to conserve energy during the
transfer between shells but the energy source in
shell 1 need not balance the sink in shell 4 at
every instant.

It is possible to qualitatively estimate how sev-
eral omitted terms wouM affect the efficiency of
the energy cascade (or equivalently (E,)) repre
sented by Eq. (5.3). Their effect on the fluctua-
tions is included in the section on intermittency.
When b =2, phase-space constraints no longer
apprecia, bly diminish either V, , ~ &V, , or
V, VV...+V... VV, in dV, /dt. They may be con-
sidered together, since to the extent that
V,„, VV, , changes E„V, , ~ VV, + V, VV, , (omit-
ted from dV' '/dt) causes the opposite change on
E, , If V, , ~ &V, , is multiplied out and Eq. (5.2)
used where necessary to convert into the basis of
shell l, simply counting terms with their Fourier
coefficients indicates V,„, &V, , is one half of the
first two terms in Eq. (5.3a) when E, ,/E, = 2'~'.

Qur approach depends on the locality of the cas-
cade and the existence of a characteristic time
that decreases with/, i.e. , g„,»q, ; even though
for 5 =2 the percentage corrections to either ap-
proximation are -2 ' . From this viewpoint, the
contribution of f, V, V, , ~ VV), to dE, /dt is small,
of variable sign, and leads on average to algebraic

rather than exponential growth in time. " For rea-
sons of consistency it is awkward to include

&V, , because the companion term
+ V, &V, „ in shell l —1 does not act like an eddy
damping. This is easiest to see diagrammatically
since an eddy damping follows only when both in-
termediate states belong to higher shells. The
mean-field exponents are not affected by
Vr-i'&V) ~.

The second major omission was to neglect any
coupling between next nearest shells. The magni-
tude of this coupling was estimated by numerically
computing the eigenvalues of ~, ~i=+ V~i, + VV

a, ~, =V' V~„,+&~V, „and 0', ,+o', ~, at the origin of
box E. The model of Sec. III implies that these
eigenvalues are a good measure of the rate of en-
ergy transfer. The two contributions to the shear
applied to box l depend on the energy and spatial
distribution of velocity in boxes l —1 and 1 —2.
(One must also include a contribution to tt, from
shell l+ 2.) Typically the shear from I —2 is
slightly larger than the general estimate o, ,
ably because the expansion for e" ' '~ in e" ' ~

analogous to Eq. (5.2) is somewhat better conver-
gent. Of course, if E, ,/E, ,«2 '~', the shear of
shell l —2 will dominate. The eigenvalues of
of~, +o', ~, for E, ,/E, , -2'~' are on the average
only 30% larger than those of o, ~, rather than the
40%-60% one might have thought by comparing
o, ~, with 0, , This is expected, since when adding
two random uncorrelated matrices the variances
of the elements add rather than the elements
themselves.

~ = &~,&
= 2&tt,zg& . (5.7)

8 Stability and intermittency

Although only a subset of Eq. (5.3) is actually
integrated, it is useful to have a general under-
standing of the complete hierarchy. A very quali-
tative but global analysis of the stability of Eq.
(5.3) eliminates a number of parametrizations of
tl, that might appear as satisfactory as Eq. (5.6).
The numerical results on four shells are then used
to illustrate a qualitative explanation of intermit-
tency.

When Eq. (5.3) is integrated forward in time,
"observables" such as E, and E, will fluctuate
along with the velocity amplitudes. Qf course, if
one applies mean-field assumptions, Kolomogo-
rov's results are recovered. If the much weaker
assumption of stationarity is made, Eq. (5.4) can
'be averaged by integrating over some long time
and normalizing. The average value of E, is the
same in all shells'.
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Equation (5.7) does not imply, as it does in mean-
field theory, that (q,) and (E,) ' scale with the
same exponent since they may be anticorrelated.

A qualitative analysis of why Kq. (5.3) is stable
in spite of potentially large fluctuations is related
to the arguments that led to the equations them-
selves. It reinforces our contention that the terms
retained contain the essential physics. The key
result (confirmed numerically) is that the vortex-
stretching term always transfers energy to higher
wave numbers even in the presence of large fluc-
tuations, e.g. , e, (t)&0. Numerically, a strictly
nearest neighbor cascade is quite inadequate
when E, ,/E, ,«2"', but nevertheless is stable.
%'hen only a potential divergence is at issue, the
order of magnitude of e, can be estimated from
E, , and E, . Equation (5.4) becomes (restoring
the Reynolds's number)

2E (E )"' ——E4
(5.8)

BE 22)
l lz 1+&

l 2/E (E )1/2 2l+ 1E (E )1/2 E I )]

m-1 2m-1E (E )1/2 2mE (E )1/2m-1 m-2 m m- j.

m 2m(E )1/2 Em-1 m

Initially E„,will be undamped and increasing,
the precise manner depending on the preceding

The signs of the various terms are dictated by
energy conservation and the direction of energy
transfer. The wave vector appears through the
factor 2'.

We do not wish to imply that (5.8) constitutes a
sensible model of the cascade. When the equations
are integrated numerically, the energy of some
intermediate shell collapses to zero. The total
energy in the preceding shells then grows as &t,
neglecting viscosity, while the total energy in the
succeeding shells decays to zero When (5. .3) is
integrated, it is very unlikely that all 78 velocity
modes would ever by simultaneously zero and a
collapse has never been observed. Also when a
term V, ,~ VV, , is included in (5.la) E, would
grow algebraically in time if it were ever nearly
zero. " We will use (5.8) only to show that large
fluctuations relax back towards equilibrium. Only
in this respect is (5.8) an adequate representation
of (5.3). In the following section we discuss why
(5.3) is a reasonable model of intermittency even
though its mean-field version, (5.8), collapses. "

To return to the possibility of a runaway in
(5.8) when all energies are positive, assume
E +, &Em«E, and Em, is slowly varying:

energies. However, E, varies, E increases
as exp( J 2"(E„,)'/') until by the same argument
E„„-(E„E„,)'/', and the damping of E„by E„„
becomes important. In other words, E tends to
catch up with E

A more complex example occurs if E „-E
and E «E, . Initially, E will decrease alge-
braically because the damping -(E„)'/' while the
driving -E„. [This suggests that in certain cases
Eq. (5.8) or (5.3) will amplify fluctuations. ] Simul-
taneously, however, E, will increase and E „
decrease (provided all other energies are near
their average values). It is possible that E„will
reach zero and remain there until E „has de-
clined to zero. In the presence of a small amount
of noise, we again have the configuration E +,
& E «E,. The point E = 0 is a singular point
of Eq. (5.8). If E„were to become slightly nega-
tive, it would go to -~. Only the positive solution
is physical.

To do a numerical calculation with only four
shells, whatever ansatz is used to find q, must
not only fit the computed data when applied to q,
or g, but incorporate the stabilizing features of
the complete hierarchy of equations. The first
requirement does not insure the second. Equa-
tion (5.3b) suggests an alternative to Eq. (5.6);
estimate e, from e, and use q, = e,/2E~ Althoug. h
the equation,

e„,(t) = (I+ y)e, (t —5) —ye, (t —5'), (5.9)

fit the computed data for /= 2 and 3 at least as
well as Eq. (5.6), the cascade collapsed. The
parameters 5 and 5' are the two discrete time
intervals that best match the lag of ~&+, behind
e, (see Fig. 1). Clearly, Eq. (5.9) implies the
correct mean for e&+„and y is used to adjust

(el„&/&el)

(Angular brackets denote connected correlation
functions. )

When Eq. (5.9) was applied, E, became and
remained much larger than E,. In reality, e,
should become much larger than Eq. (5.9) implies,
rather than being of order e4 which is depressed
by E„and E, would then decrease as J (e, —e,).
As long as E, remained smaQ, E, grew as the
expense of E, because ~,«e, . The integration
was continued until E, was unreasonably large
although E, remained less than E,.

Equation (5.6) is not susceptibile to this instabil-
ity. If E,«E, and e,-e„as permitted by Kq.
(5.9), g, »q, . Switching to Eq. (5.6) would make

g4 g3 E5 64, and E4 would decrease. In the
opposite limit E,«E„e,» e„and the cascade
would again reequilibrate.
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FIG. 1. Numerical data
for y= 1.2 Eq. (5.6) show-
ing E) and E' ), t E g:27)484
see Eq . (5.6)l, at

corresp-

ondingg times . The aver-
ges «Z, an« =

& ~r& are
1.23, 0.74, 0.40, 0.22, and
0.88 respectively; (E1) Slid
q dete rmine the unit of
time . The origin of time
was shifted to zero.
All dependence on the ini-
tial conditions has disap-
peared.

The origin of intermittency in turbulent flows
has been the subject of considerable debate since
the original papers of Kolmogorov and Oboukhov. '
The viewpoint generally adopted, though with
many variations, assumes a stepwis e cascade and

intermittency corrections that build up multipli-
cativ ely .' One works directly with a probability
distribution that contains al 1 of the equal time cor-
relation functions and most of the physically
intere sting inf or mation. Unfortunately, without
making some nontrivial use of the Navier-Stokes
equations, there are a multitude of equally viable
models. '

Wo rking with equations of motion has led to a
dynamical explanation of intermittency that makes
essential use of the Navier-Stokes equations. The
simplicity of a probability di st ribution has been
lost and can only be recovered by preparing a
histogram from our time series. It is more
reliable to compute correlation functions directly
as time averages, but there is no obvious relation
among all their exponents.

Operationally, intermittency is the amplification
of fluctuations in successive shells as the energy
cascades to shorter distances. The buildup of
intermittency in Eq. (5.3) (and we believe also in
the Navier-Stokes equations) for states "near"
Kolmogorov' s follows from several simple proper-
ties listed below. When the fluctuations become
large, however, we have to rely on the numerical
integration and general stability arguments.

(i) Intrinsic intrashell fluctuations induce vari
ations into the stress tensor that drives the suc-
ceeding shell.

(ii) The energy decreases exponentially with
shell number (i.e. , algebraically in wave number)
and the characteristic frequency increases expon-
ential ly .

(iii) The cascade is local, and the direction of
energy transfer is to shorter distances.
According to (i), s, and therefore E, vary in
time. Because ~, depends primarily on the shear,

in the prec eding she 11 rather than its energy,

I

there will be additional variability to the extent
0, , is not a function of E, , Models with very
few degrees of freedom per shell tend to either
have no intrinsic fluctuations or collapse. If
fluctuations did not amplify down the cascade, the
mean-field exponents would probably still apply.

The development of intermittency can be most
easily understood in reference to Fig. 1. At point
C (D), E, (E,) attains its mean and continues to
grow at a rate determined by s, (e,) because
e (s ) is small. Not only does shell l+ 1 respond3 4
faster than shell l (successive peaks are sharper
and more closely spaced), but a given amount of
energy causes a bigger percentage fluctuation in

E„,than E, Energy .passes through shell l+ 1
faster than shell I so that successive energy
maxima may decrease but not by 2"'. Locality
is important because any excess energy in / h as
to pass through l + 1 before being dissipated. The
time lag between energy maxima in successive
shells causes each to overshoot its mean. As
lang as E& +, is sufficiently small, E, mil 1 grow
at the expense of E, ,

The shell energies after the pulse of energy in
shell 1 has passed down the cascade depend
sensitively on the relative energies at point C .
If E, were initially larger, it would have caught
up sooner with E„which would not have grown
as much as it did at the expense of E,. The fact
that E, groms secularly immediately after E, is
reduc ed to half its maximum is an artifact of the
first shell into which energy is fed at a constant
rate, Eq. (5.5). More typical is E, which continues
to decrease even after E, and E4 have peaked be-
cause E, was reduced to below its mean.

It is instructive to compare the first series of
peaks with those beginning at C . Both E, and E,
have rather gentle maxima, but when E, reached
its mean at point A, E4 was nine times smaller
than it was when E, was again at its mean at
point D. (A log plot would make this easier to
see. ) It then took twice as long (after point A)
for E, to reach its mean (point B) than it did after



1744 ERIC D. SIGGIA 15

point D, and consequently E„relative to Ey and
E„has a larger and sharper peak in the former
case. From point B, until it began to increase
again, E, was smaller than E, and E4. Shells 3
and 4 respond rather slowly until point C because
q, -2'(E, )'~' or 2' '(E, ,)'~'. The energy in the
second shell will continue to decline along with e,
until E,&E,. Simultaneously, the first shell will
grow monotonieally but only as et rather than ex-
ponentially. The length of time E, remains small
determines how large a reservoir of energy builds
up in shell 1. Large peaks in e& are always pre-
eeeded by a period during which some E, , is
very smaLL. Note that E, remains larger than E3
and E, after the second set of peaks, and there are
no further prominent features for an interval 2—,

'
times the length of Fig. l. The cascade amplifies
the normalized energy Quctuations; only correla-
tion functions of E,/(E, ) are guaranteed to have a
positive exponent.

The maxima of e typically fall between those
of E„,and E, e.g. , when E, is falling and E
increasing. There is an alternative version of
our intermittency argument for e, that is more
reminiscent of mean-field theory. If e fluctuates,
succeeding shells respond more rapidly and
equilibrate to a local value of e. Fluctuations of

ride on those of e .
The curve labeled e, in Fig. 1 is actually just

twice E, times q» in Eq. (5.6). There is no param-
eter in (5.6) to control the width of peaks in c,
which are wider than scaling would predict. The
phase lag 6 as well as y&0 make the variance of
e, larger than (e'»). If a large q, signals a large
energy loss to shell 4 (e.g. , E,- (E,), e»» e), q»
will not respond for a time 5, modeling the
growth time of E, and e„and allowing E4 to grow
more than it would if 5=0. Similarly, if a large
g, occurs because E, is small and e, -e, energy
will continue to flow from 3 to 4 for a time 5
further depressing E,. %hen q4 begins to in-
crease, g, will have already gotten somewhat
larger (E, smaller and E» larger) than would
otherwise have happened. After a delay of 5, c,
will have a peak. The phase lag has a similar
effect when g, is small.

To predict from a few initial correlation func-
tions if a given energy will grow or decay is only
possible in extreme cases and over short periods
of time. It seems reasonable intuitively and from
the numerical data that the larger fluctuations
require a more special conf luenee of parameters
at some instant in the cascade. The larger the
fluctuation, the longer the time interval between
them. There appears to be no limit on how large
a fluctuation might occur in a sufficiently long
interval. This circumstance need not affect the

low-order moments, but higher-order correlation
functions will depend increasingly on these rare
fluctuations.

By understanding why the cascade fluctuates, it
is possible to qualitatively predict the effects of
several neglected terms. - %hen E, «Ef
( V, , VV, , j» ( V, VV, , + V, , &V, ( so including
the former term will lessen the periods during
which E, is unusually small, i.e., &10 'E, ,
Although variances and higher connected cumu-
lants are expected to decrease, small fluctuations
about the mean-field energies should still be
ampli. fied i6

Next nearest neighbor energy transfer ean act
in two ways on c&. If E& «E& „E&,will not grow
as rapidly as in our model when there is some
direct energy transfer to @„.Similarly, e„,
receives contributions from shells l and l —1 that
tend to average out the fluctuations in either shell.
On the other hand, direct transfer between l —1
and l+ 1 might accentuate the percentage fluctua-
tions in l+ 1, since by an earlier argument, shell
l+ 1 is both faster and contains less energy rela-
tive to l —1 than shell l. If E, «E, +, &E, » direct
transfer between E, , and Ey+] would maintain the
latter which would then continue to depress E, .

C. Numerical results for four shells

In principle, it would not be necessary to inte-
grate a realistic number of shells (-20) simul-
taneously to study the inertial range, if a self-
consistent calculation could be done on several
shells. This would require an energy source that
coupled realistically to shell 1 and responded to
fluctuations in E, in addition to being random it-
self. Instead, energy was fed into the first shell
at a constant rate [Eq. (5.5)], and consequently
the fluctuations of E, differ from E, -E„Fig. 1.
The Quctuations of the other shells are qualita-
tively similar in shape but become increasingly
singular. To anticipate, Table I shows that cor-
relation functions can be scaled from shell to
shell with the same exponents and, we presume,
continue to scale if more shells were added.
The internal consistency of our data is the best
evidence that it actually relates to the inertial
range.

There are two free constants in any numerical
calculation that determine the length and time
scales. The former was fixed to make the mini-
mum wave number in the first shell one and the
latter by setting e = 0.38 in Eq. (5.5). The average
energy within mean-field theory is now a univer-
sal constant. The Kolmogorov constant C~ is
conventionally defined by an equation for the
energy spectrum,
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TABLE I. Exponents from four-shell model. The parameter y in (5.6) was varied to
achieve self-consistency. The three determinations of each exponent come from the ratio
of correlation functions, averaged over Et 150, in successive shells. The range of values
in parentheses are the minimum and maximum exponents found for 10 subintervals with
At-75. The tabulated exponents all vanish in mean-field theory.

Def inition Quantity
of exponents tabulated 7=1 2 y= 1.3

~E ) 2-(2/3+ g)l

2 (2/3-6) l

(E')-2 "
(g2) ~ 2P~

(qs) - 2g3r

4+2'

0.0
0.2
0.2
0.4
0.3
0.0
0.8

-0.1

0.9
0.4
1.0
0.4
0.2
2.5
0.7

( o.5, o.1)
(0.2, O.3)
(o.i, o.2)
(o.4, o.v)
(o.o, o.4)
(o.o, o.o)
(-0.3, 1.0)
(-0.4, 0.4)
{0.6, 1.2)
(o.i, 1.2)
(o.6, 1.2)
(o.4, 2.o)
(0.0, 2.6)
(1.3, 2.6)
(o.v, 1.2)

O. i (O.O, O.5)
0.2 (0.0, 0.3}
0.2 (0.2, 0.2)
0.1 (-0.1, 0.2)
0.1 (0.0, 0.3)
o.i (o.o, o.i)
1.1 (0.7, 1.6)
0.3 ( O. i, O. 6)
o.s (o.v, o.9)
0.9 (0.8, 1.2)
O.S (O.6, O.9)
0.6 (0.6, 0.6)
2.2 (i.v, 2.8)
1.7 (1.4, 1.7)
1.1 (1.0, 1.1)

-0.1

0.2
0.3
0.1
0.2
0.1

0.9
1.1
0.5
1.0
1.1
0.7
2.1

2.6
1.3

(-0.2, 0.0)
(o.i, 0.3)
(o.2, o.4)
(-0.1, 0.5)
(o.o, o.4)
(O. i, 0.2)
{0.6, 1.0)
(0.6, 1.3)
(o.i, o.9)
(0.4, 1.2)
(0.9, 1.2)
(0.6, 0.7)
(O.2, 2.2)
(2.0, 3.1)
(1.2, 1.3)

(5.10)

Had our calculation been done by using the first
shell, undamped and at constant energy, to pro-
duce a random shear on the second shell, E,
would fix the time scale and e becomes the
derived universal quantity. Equation (5.10) re-
quires modification if mean-field theory does not
hold for E(k), but the deviations are small and,

Cr -2, is determined by fitting Eq. (5.10) to the
experimental data. " If a fit is made to

E,=, E(k) dk

for /=2, 3, then C~-3.5. The Kolmogorov constant
measures the efficiency of the cascade. A more
efficient cascade will have lower energies if e is
the same, or if the same energies prevail, dissi-
pate more energy/time. The terms we have ne-
glected, intuitively, should decrease C~."

The numerical integration was begun by generat-
ing a random set of initial-velocity amplitudes
scaled to agree with mean-field theory. The in-
tegration routine was an. IBM coded version of
Hamming's fourth-order predictor-corrector
method. The program had the capability of
subdividing the initial step size h until the esti-
mated truncation error mas less than a prede-
termined bound. An initial. step size of h = 0.12
was optimal, in that when energies were near
their mean-field values, the program used the
full step, but during large fluctuations made as
many as three successive bisections of the original
increment (h,' = 0.015). To integrate four shells

forward 100 time units required 1150 steps on the
average and 35 min of C.P.U. time on an IBM
370/168 or 200 min on an IBM 360/65. Approxi-
mately 60%%uo of total C.P.U. time was spent com-
puting the expansion of V, , with Eq. (5.2) and an
additional 25/0 assembling the right-hand side of

Eq. (5.3a). There is no reason to make the ac-
cumulated truncation error less than 10-20'%%uo of
the average energies over the time (-2-3) for a
pulse of energy to pass from shell 1 to shell 4
(see Fig. 1). Noise of this magnitude might rep-
resent the presence of other boxes in the same
shell, and if it had any effect on exponents mould
be grounds for questioning the model. More can
be learned from a given amount of computer time
by making a moderate truncation error but accum-
ulating as much data as possible to improve the
statistics. Each run in Table I represents ™170
time units. Times less than -15 were excluded
from the averages.

Table I gives data for three different values of
y in Eq. (5.6). The uncertainties quoted reflect
only the statistical error. This was computed by
breaking up the complete time record into ten
approximately independent segments each half as
long. Within each segment, averages and varian-
ces were determined separately and from their
ratios the exponents. The principal entries in
the table are the exponents determined from the
entire interval and in no sense represent an
average of those of the subintervals. The data
for y=1.1 are poorer than the rest because of
an unusually large fluctuation. Equation (5.6)
requires a self-consistent value of (q,). In prac-
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tice we used (q,) = 0.45 in all three runs. The
computed averages (and uncertainties) were 0.41
(0.38-0.42), 0.43 (0.39-0.47), and 0.43 (0.42-0.46)
for y=1.1, 1.2, and 1.3, respectively. The fluc-
tuations in g, averaged over d t-15-20, several
correlation times of E, or Z„would be twice
those reported. The difference between 0.41 and

0.45 for y=1.1 is immaterial.
The variance of e& clearly increases with y,

although (e,') does not increase relative to (v~2) as
was hoped. [~, = 2u,E-„see Eq. (5.6).] The sec-
ond and third determinations of p. in Table I are
within the uncertainties of an individual run, but
the trend for the three runs is probably real.
Higher moments of c, are also low. Note that
(q,) & 2'~'(q, ) as expected from Eq. (5.6). This
resulted from a, bias in selecting the most appro-
priate value of q, (t —5) from a discrete set of
times. It was not corrected since the biased
value was in better agreement with the other data, .
The variance of E, appears high relative to 8,.
This is probably a shortcoming of the approxima-
tion e, -=e, Eq. (5.5). The "best" value of y is
1.2 for which the three sets of exponents for
(E,), (q), and (e') are in good agreement, implying
self -consistency.

The most striking qualitative features of Table
I is that p. deviates far more from its mean-field
value, 0, than do the exponents for (q, ) and (E,).
The exponent of (E,) is greater than 0.67 and in-
creases from y= 1.1 to 1.3 with either p. or (e',)
itself. About all that ean be concluded from our
data is & & 0, and even this statement may be an
artifact of our model. " The vorticity exponents
agree with those for the energy to about 5%%uo. The
exponent for (q, ) appears less than 0.6V, but the
same caveats apply. Table II contains our best
estimate of the various exponents and the predic-
tions of the log-normality model for comparison.

The exponent commonly called p that relates to the
fluctuations in the averaged dissipation is approx-
imately 0.5 experimentally. One in principle mea-
sures the fluctuations of the dissipation rate e„av-
eraged over a small volume v„and extracts g from
a graph of ( f e„J' e„) vs u„. Alternatively one can
plot the correlation function of the dissipation rate

at two nearby points as a function of their separa-
tion. The average dissipation rate is not an in-
ertial range quantity while the energy transfer, e„
from shell to shell is. ' In our notation, e„ is the
arithmetic average of 2'" realizations of e, ,„all
contained in the box 3 that best approximates v„,
with n+ /-ln, A~. The fluctuations of the e, ,„are
uncorrelated for times «g, ' but averaged over
times -g, ' reflect the fluctuations of z, . Unfortu-
nately as R a.nd n- ~, / fixed, the central limit
theorem does not generally imply that

11P bOX l

and the exponents of &, and e„may not be the same
as we have assumed.

The predictions of the log-normal theory about
the relation of e, to e„are ambiguous. ' Frisch,
Sulem, and Nelkin have also proposed that p. be
identified with the fluctuations in the energy trans-
fer rate.

The connected third-order moment (e', ) (Table 1)
is a measure of deviations from a Gaussian dis-
tribution. It suggests that the distribution of c, be-
comes more skewed toward positive values as
$ increases. Furthermore, g, & —,'p, implies that the
fluctuations of higher correlation functions become
singular more rapidly at short distances.

Figures 2(a)-2(c) plot distributions of e„ inc„
and lnE~ for y= 1.2 redrawn from histograms of our
time series data. The trend in e, inferred from p,,
is apparent. Increasing fluctuations lead to a build-
up of probability near the origin, because e, &0,
and a longer tail, (e, ) = e. The first inequality,
e, &0, is slightly violated for 2.5% or our data when

E, ,/E, s10 ', and a reverse cascade is not un-
reasonable. After only a few cascade steps, the
distribution of inc, is more nearly symmetric but
contains a tail to -~. The log-normal assumption
would give a reasonable representation for high
moments of e, for which the weight near zero is
unimportant. The data for E, shows the same trends
but they are not as pronounced. Note also that the
distributions of inc, and lnE, are similar in accord-
ance with Kolmogorov's assumption, E,- (e„x)'~'.'

TABLE II. Comparison with log-normality predictions.

Exponent 4+2/

O. i +O. i
"Best" value

of Table I
Log-normality

prediction (Ref. 4) p/9

O. i +O. i 0.7 +0.3 0.8 +0.2 i.7 +0.5

3p
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FIG. 2(a—c). Probability distributions prepared from
histograms of data for y=1.2. The total probability
from all data that fell beyond the range of the abscissa
is represented by a single rectangle drawn to scale with
the minimum and maximum of the data it represents
indicated. The area under the two curves and their
respective rectangles in each figure are the same. Only
the algebraic scales are in units of the average of the
quantity plotted.

VI. CONCLUSION

An analysis of the Navier-Stokes equations, sup-
ported by numerical calculations, has revealed a
number of generally accepted semiquantitative
properties of isotropic turbulence that lacked theo-
retical support. Our equations p.re inherently three
dimensional and simplified to the point of containing
only the vortex-stretching terms and an eddy vis-

cosity. These terms alone have led to a local cas-
cade that is stable in spite of large fluctuations.
Vortex-stretching physics is essential to the ener-
gy transfer process and renormalized versions of
Taylor's model were not found useful. Mean-field
theory is invalid not simply because there are
fluctuations, but because for a local cascade (and
for small fluctuations the cascade is local) they
amplify. If the fluctuations become large, energy
transfer between next-nearest shells exceeds the
nearest-neighbor transfer part of the time. The
nearest-neighbor model clearly overestimates the
fluctuations, but even when energies differ by a
factor of 100 from their mean, ~, &0. The irrever-
sibility of the cascade is due to the comparatively
rapid equilibration of small scales while they are
simultaneously sheared by the larger eddies (Sec.
III). Because c, is almost always positive, its
mean is independent of I and its fluctuations in-
crease with l; a log-normal distribution is not a
bad approxi mation.

Viewed in time, or in space at a fixed time, the
spectrum of e, (and presumably the dissipation)
consists of a series of bursts. Note that the ex-
ponent p, measures how fluctuations are amplified
as they cascade to shorter distances. The quies-
cent periods are necessary to satisfy the con-
straint (e, ) = e but have comparatively little effect
on the second and higher moments of the e, dis-
tribution. By examining the record in time, one
sees qualitatively that a fluctuation can reduce a
shell energy to near zero and how then a reservoir
of energy builds up in the preceding shell until the
first shell recovers and releases it explosively.
The corrections tothe mean-field exponents come
in two sizes: g and 5-0.1 and p, between 0.5 and
1.0. This distinction is well established experi-
mentally but the only previous theoretical work we
know of has only tenuous connections to the Navier-
Stokes equations. ""

There is a geometric description of intermittency,
primarily developed by Mandelbrot, that has in-
tuitive appeal but makes no quantitative use of the
Navier-Stokes equations. ' As reinterpreted by
Frisch and co-workers, one imagines the fluctua-
tions in a passive scalar or the local dissipation
rate itself becoming less space filling as their scale
decreases. In other words, interaction with a tur-
bulent velocity field not only degrades the scalar
fluctuations but at each cascade step causes some
spatial segregation into quiescent and active re-
gions.

We are unable to say directly how the fluid would
look at any instant of time because we have re-
tained only one box per shell but the above picture
is not at variance with our expectations. Assume
that in shell l+1 we retained the eight boxes con-
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tained in the preceding l box. When the energy in
I. begins to grow all eight realizations of box l+1
will respond but not necessarily in phase. Their
response is more rapid than shell / and depends
on the local shear and initial conditions which will
vary. The geometric picture predicts a fraction
1 —2 "of the l+1 boxes will be quiescent at any
instant given that the l box they occupy is excited.

A calculation that retained eight realizations of
box (I+I) would be able to treat the intrashell cou-
plings quite accurately and could very well lead to
greater intermittency than we have found. Because
the eddy damping is determined by the energy en-
tering all eight boxes, rather than eight times the
energy entering one )+1 box as assumed until now,
a few of the 3+1 boxes could grow enormously be-
fore appreciably damping the l box driving them.
Phase locking among equivalent boxes, i.e., strong
intrashell coupling, would reduce the intermittency.
Our numerical calculations effectively treat the re-
action of shell l+1 back on shell l as if the intra-
shell coupling were strong, but neglect it while fol-
lowing the evolution of the one box retained in shell
$+1. In a mean-field approximation one could mod-
el this effect by coupling an energy reservoir to
each box. This should decrease the intermittency
from what we have found. Thus treating intrashell
effects exactly has two principal effects on the in-
termittency that are not contained in our approxi-
mation; but they tend to cancel.

Our decomposition of the Navier-Stokes equations
rests on an unusual choice of coordinates. At each
step of the cascade, we go to a new coordinate
frame that eliminates the part of the larger scales
that is uniform over the box in question. Only the
residual shear affects the small scales. These co-
ordinates are trivial to construct numerically.
Seventy-eight modes per shell are adequate to de-
scribe a local group of eddies of the same ehar-
aeteristic size, although more economical descrip-
tions of the vortex-stretching process appear pos-'
sible. If the basis functions are known explicitly,
there are no free parameters in the equations for
the amplitudes.

It has become possible in the last few years to
directly solve the Navier-Stokes equations for the
larger scales with up to 10' modes in a realistic
geometry. ' ' The coupling to the small scales re-
mains a problem. Equations similar to ours should
permit one to simulate the smaller scales and close
the equations even when the large scales are aniso-
tropic.

There is a vast literature on analytic theories of
turbulencethatcanonly be alluded to. A mode cou-
pling theory in Eulerian coordinates that does not
take account of Galilean invariance will not repro-
duce mean-field theory. " When appropriate modi-

fieations are made, a "-,' law" is found, but we
do not regard this as any more compelling or rig-
orous than power counting graphs which is equiva-
lent to Kolmogorov's original arguments. " Kraieh-
nan has developed a number of approximations that
appear more complicated than simple mode cou-
pling. '4 None to our knowledge have exhibited in-
termittency.

A number of important physical questions are not
easily answered by a self-consistent calculation
based on only four shells. It is known experimen-
tally that E(k) decreases more rapidly than k '~'
when k& A~. There probably exists a uni. versal
scaling function, e'~'k '~ f(k/Ax) in mean-field
theory, that would be interesting to calculate. In
addition, there should be an exponent analogous to
v that corrects the mean-field relation A~-R'~4.

It must not be inferred from our results that
e&0 when 8- ~.""Each time a shell is added to
the cascade with e fixed as in Eq. (5.5a), E, might
increase by a factor 2&, y-O(g). Then to keep E,
fixed, e should be decreased by 2. '& ', implying

The decay rate of the largest
eddies, &, is not a free parameter, although
with only four shells, Eq. (5.5a) is equivalent
to the more realistic model in which E, is pre-
scribed and generates a random shear that
drives the succeeding shells. Because y is small,
a change in E, when going from four to five shells
at constant e might be an artifact that would dis-
appear if we were able to han@e many more shells.
The same objection could be raised against our
other results, but p. is sufficiently large and to a
degree self-consistent that its vanishing appears
unlikely.

A tractable method is needed for iterating a de-
scription of several cascade steps to map out the
entire cascade. If this were possible, one could
formulate some notion of "relevancy. " It was ar-
gued qualitatively, and to some extent checked nu-
merically, that V, , ~ VV, , and 0, , ~ VV, +V, ~ VVI,
are smaller by a factor 2 '~' than the other terms
in dV, /dt and are not required for stability. Is
there some limit in which they are negligible'
Another open question is the existence of scaling
laws. There are an infinite number of singular
correlation functions, for instance (e",) or (E",),
n = 2, 3, ... , that might all have different expon-
ents. The log-normality models relate all inertial
range exponents to p, by postulating a probability
distribution for E'g."

The most compact description of a turbulent fluid
is in terms of a probability distribution that for
reasons of economy should be calculated directly
rather than prepared from a histogram of a time
series. If a probability distribution is calculated
recursively, the modes that are integrated out:
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should be faster than those retained, so as not to
introduce progressively more retarded interac-
tions between the remaining modes. Hopefully, the
probability at t+5t will depend only on the proba-
bility at t. Eight realizations of shell /+1 would
be needed if its damping effect on shell l were not
parametrized by an eddy viscosity. A probability
distribution, however, describes all eight l+ 1
boxes in each l box and permits one to work from
small to large scales.

For many reasons it is necessary to consider the
entire cascade rather than only four shells. Even
if there was sufficient machine time and storage
capacity to integrate a realistic number of shells,
one would still have to contend with the decreasing
characteristic time in the smaller boxes. For 20
shells, g20/q, -10 and the variance of e,o would be
10' times what we found in Fig. 1. There is no
reason to choose the time step the same in all
shells. Schematically, one would subdivide the
hierarchy into subgroups in which the character-
istic time varied by a reasonable factor and adjust
the time step accordingly. The last group would
be integrated several times with a smaller step
each time the preceding group was integrated once.
As one integrated forward in time, the smallest
scales would equilibrate first followed by the lar-
ger scales. After sufficiently many shells had
equilibx'ated, the velocity distribution should scale
from shell to shell, marking the inertial range.

The intent of this paper is to provide insight into
the physical origins of the fluctuation effects that
invalidate Kolmogorov's theory. Numerical ac-
curacy was sacrificed in order to reduce the model
equations to the simplest possible form without in-
troducing arbitrary adjustable parameters. By
partitioning the degrees of freedom into wave-num-
ber bands it became easier to visualize the dynam-
ics of the cascade process. Our numerical calcu-
lations, however, encompassed only a range of 2
in wave number while direct simulations are now

capable of handling - (4v/3) x (32)' modes.
In conclusion it is worth while to reiterate the

purely computational efficiencies of cascade calcu-
lations because many more than four shells can be
handled with present day computers. The most ob-

vious is that a simulation requires N- (4v/3)2~
modes versus 78n to encompass n octaves of wave
'number. With an intelligently written code, the sim-
ulation requires -N lnN operations per time step. "
Our program performs -n x (78)' operations per step
which could presumably be lowered to -78 ln78 opera-

~tionss

if convolutions were computed more efficiently.
The maximum time step is limited by the frequency
of the smallest scales which depends essentially
only on the maximum wave number. The number of
time steps controls the statistics. Here the simu-
lation possess a clear advantage since it retains
many realizations of the smaller scales compared
to the single box retained in the cascade approach.
However, the characteristic time of the small
scales is least, so integration for a fixed length of
time largely compensates for their noisier be-
havior. The statistical uncertainty is nearly the
same for all shells beyond the first in the cascade
calculations.

Simulations typically terminate the cascade by
including a sufficiently large viscosity to make the
Kolmogorov cutoff coincide with the last: shell.
This is of course the most correct procedure but
it means that the last several shells no longer
model the inertial range. A cascade calculation
should also be terminated in this way but is also
quite easy to self-consistently determine the last
eddy viscosity. One gains more information on the
inertial range at the expense of some arbitrariness.
At the present state of our theory, a simulation
would provide the most direct check on the many
approximations we have had to make. A simulation
could also be done on a truncated form of the Nav-
ier-Stokes equations that neglects interactions
among triples of wave numbers when any two of
them differ by more than a factor b-2 in magni-
tude. The results should be directly comparable
to a nearest-neighbor cascade calculation and would
check the importance of intrashell effects and dis-
tortions caused by the eddy damping approximation.
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