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Surface modes in electron plasmas

APRIL 1977

John H. Hopps and Wayne L. Waldron~
Department of Physics, The Ohio State University, Columbus, Ohio 43210

(Received 18 November 1976)

Density fluctuations in a semi-infinite collisional electron plasma are studied using "two-stream" distribution
functions. Microscopic boundary conditions, imposed separately upon each of the velocity streams, are
formulated with the inclusion of both specular reflection and diffuse scattering contributions. The strong
damping of surface modes noted by previous investigators is shown to be, in part, a consequence of the use of
pure specular reflection boundary conditions. With increasing diffuse scattering contributions the surface
modes are seen to become an enhanced and identifiable spectral feature.

I. INTRODUCTION '

All natural and laboratory plasmas are in some
fashion bounded. In the study of the interaction of
charged particles and of electromagnetic radia-
tion with the collective modes of a plasma, one
should in principle take into consideration not only
the bulk modes, but also those modes localized in
the region of the plasma surface. As will be shown
here the inclusion of these localized, or surface,
modes may lead to predictions significantly differ-
ent from those of infinite medium theories.

Two quantities of general interest in the study
of plasmas are the electron and charge density
fluctuation spectra. These spectra pertain to such
problems as plasma diagnostics via laser light
scattering, the energy loss of charged particles in

plasmas, and the rf heating of plasmas. In this
context one would expect surface modes to be of
importance. First, the initial interaction between
the plasma and incident particle occurs in the
boundary region. Secondly, for low-energy
charged particles and photons the actual penetra-
tion into, and therefore interaction with, the bulk
is small so that the effects of the surface modes
may even become dominant.

The manifestation of surface modes may be
viewed. , for conceptual convenience, as being ei-
ther direct or indirect. In. their direct manifesta-
tion surface modes are exhibited as a distinct fea-
ture of the fluctuation spectrum. Experimentally,
such phenomena as anomalous plasma heating' and
the decoupling of source radiation and imploding
plasma in fusion experiments' may be direct mani-
festations of surface modes. Indirectly, surface
modes may be manifest through a modification of
the plasma bulk mode properties. This should be
of particular importance in the case of long wave-
length surface modes for which the penetration in.o
the bulk of the plasma is large. Additionally, bulk
modes may be either enhanced or diminished, de-
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pending upon conditions at the boundary, as a re-
sult of the reflection of these bulk modes at the
boundary. ' There is also the possibility of inter-
ference between bulk and surface modes of the
same frequency. '

Surface modes have been studied at the macro-
scopic level by several investigators. ' A number
of more recent investigations have dealt with mi-
croscopic theories of the dynamics of surface
modes in classical fully ionized plasmas. ' ' These
investigations are similar in that they consider
electrostatic surface modes in Vlasov plasmas
with pure specular reflection af particles at the
boundary. The results of these theories are
therefore essential. ly the same. At long wave-
lengths, the electrostatic surface modes for a
semi-infinite plasma propagate at a frequency of
approximately ~~/W2, where &o~ is the plasma fre-
quency. Thermal effects contribute a dispersion
correction which is linear in k,~, the component of
the wave vector parallel to the surface. This is
to be compared with the quadratic wave number
dispersion correction for the bulk modes. ' A
significant feature of these theories is the predic-
tion of strong damping of the surface modes in
comparison to those of the bulk, this strong damp-
ing persisting to relatively short wavelengths. The
solid-state analog of this problem, that of surface
plasmons in metals, has also been studied at the
microscopic level and has yielded qualitatively
similar results. ""

In this paper we report on results of a study of
surface modes in a classical semi-infinite plasma
which incorporates more realistic boundary con-
ditions and the effects of collisions. We consider
specifically an electron plasma sharply bounded
by a dielectric, for example, a neutral gas. The
microscopic boundary conditions are assumed to
contain both specular reflection and diffuse scat-
tering contributions. In addition to the nonspecular
reflection of a particular electron incident upon the
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boundary, the diffuse scattering contribution is in-
cluded to also simulate such physically realistic
effects as the reentry into the plasma of second-
ary electrons produced by such atomic processes
as ionization and charge exchange in which the re-
entrant electron velocity is virtually uncorrelated
with that of the original incident electron. A basic
a,ssumption of the model is that all of these bound-
a,ry processes may be considered as localized in

space, i.e. , to occur in the z = 0 plane.
In Sec. II we give a brief formulation of the

kinetic theory description of the semi-infinite
electron plasma with a full-conservation descrip-
tion of electron- electron collisions. The electron
density fluctuation spectrum is calculated by use
of two-stream distribution functions which de-
scribe particles going towards and away from the
boundary and by use of a direct variational method
which admits trial functions which are discontinu-
ous in velocity space. This approach is new and
is formulated in detail in Sec. III. The choice of
variational trial functions and the boundary condi-
tions to be imposed upon each of the two velocity
streams are discussed in Sec. IV. Computational
details are discussed briefly in Sec. V. Results
of the calculations are discussed in Sec. VI. In
Sec. VII, we offer some concluding remarks and
suggestions for further study.

II. KINETIC THEORY FORMUI. ATION

We consider a uniform electron plasma occupy-
ing the region z &0. The starting point of our the-
ory is the linearized kinetic equation

—+v V„vrt +—Vy rt ~ ' =J v v' v'rt
~V

(2.1)

for the perturbed distribution function f(v rt),
where p(rt) is the electric potential, which is a
functional of f, and J'(vl v') is the collision opera-
tor which accounts for individual particle inter-
actions. Qur notation is that an integration over
the repeated primed velocity variable is implied.
The equilibrium distribution f,(v) is given in terms
of the electron thermal velocity a = ks T/m ac-
cording to

0'+ ~kii~ +~ vkizo' + 2kl4 v d v'

x dz'[iv„+ v, sgn(z —z')]e ')) ' "'f(v'k„z'o)
0

—Z(v
l
v')f(v'k))zo) X(vk))z) (2 6)

The initial value appropriate to the calculation of
the fluctuation spectrum is'6

X(vk„z) = C (v) 6 (z)
k)) + (kg+ kJ ] )

—= 4(v)X(z) . (2.7)

The density fluctuations may be obtained from the
solution of (2.6) via the relation

n(k„k, o)) = He dz e '~~' d'v f(vk„z, o= i(u) .
0

(2.8)

It should be noted. that for the bounded system
under consideration n(k„k~o)) is not identical to the
dynamic structure function S(k, &u).

For the description of collisions we shall em-
ploy the full-conservation, or generalized,
Fokker- Planck operator'7'8

(v I
v') = ~[ra(vq6(v' v)+ 4 (v)fc(v

I
v')] (2.9)

where v is the collision frequency and

8
Zz(v) =—~ v+ a'—

~V Bv
(2.10)

is the familiar Brownian motion operator. The
remaining operator

K(v
l
v') = v v'/a'+-, '(v'/a' 3)(v"/a'- 2)

(
8 8,8 9

o+ jk})v}}+ vd f(vk))zo) —— ik})v)) + vd p(k z))o)

g(vlv )f(v'k„zo) =X(vk„z), (2.4)

where X(vk„z) =f(vk„z, t=0) and where we' ve as-
sumed Z(v lv') to be local and Markovian. In terms
of the distribution function the transformed poten-
tial is given by7

g, i(8-z I

y(k„zo) = —2ne d'v' dz' — f(v'k„z'o) .
0 ki)

(2.5)
I

Equations (2.5) and (2.4) may be combined to give

f, (v) =nb(v) =n(1/2~a')'~'e "'~2d'
(2 2) (2.11)

Defining a time and two-dimensional space trans-
form according to

gives the momentum and energy conserving
backflow terms. Finally, to simplify notation,
we write (2.6) in the compact form

l. (vz
l
v'z ')f (v'k})z'cr) =X(vk„z),

where the definition of I.(vz
l

v'z') is obvious.

(2.12)

Eq. (2.1) may be written

f)e}e„ee)=f de f d e„e"e' ' ef)ve'e), )d.d}'
0
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III. DIRECT VARIATIONAL FORMULATION

f (vk()zo) f(v ) 0 v k (zo')

f (vk() z o) =f(v, (0 v() k()z o)
(3.2)

and H(v, ) is the Heaviside function. Such a de-
composition gives us a direct and efficient means
of incorporating the effects of the discontinuity at
z = 0.'"" We note that the distribution functions

f, and f satisfy a coupled set of equations of the
general form (2.12), the coupling arising of
course from the interaction of particles in the
separate streams.

Secondly, we replace the problem of solving the
integro-differential equation (2.12) by an equiva-
lent variational problem. We introduce the func-
tional22

IV, k] = «F,f»+ «k, »&- «k, lf»
+ &v,k;(f; —F;)&„)0+&v,k'(f' F")&„(0,

(3.3)
where we have introduced the compact notation

In addition to the inclusion of nonspecular con-
tributions to the scattering at the boundary, the
present study departs significantly from previous
investigations in terms of mathematical and in-
tuitive approach. First, we develop our theory
in terms of two-stream distribution functions. ""
We introduce the decomposition

f(vk()zo') f (vk((z (T)H(v, ) +f (vk()zo)H( vd') (3 1)

where

which in the limit 0 = —ice is the desired density
fluctuation spectrum. This result is independent
of h which is the trial. approximation to the solu-
tion of the adjoint equation

(
9

a ah,„v„—v,—h(va) ——'k' fd'v'

d~'@ ~' i~'+~' sgn z' —z
0

—J(v j
v')k(v'z) = 1'(z), (3.8)

where we use the fact that the generalized Fokker-
Planck operator is self-adjoint. In the case thai
neither f nor k is exact, the functional I is seen
to constitute a variational principle. Its stationary
value is n(k„kho) and its first-order variations
vanish subject to the Euler- Lagrange equations
(2.12) and (3.8) and to the physically imposed dis
continuous boundary conditions. " In the general
case we find that

fff, k] =n(k„kho)+ (second-order terms in 6f, 5k),

(3.9)

where 5f and 5k are the errors in the variational
trial approximations. It should be noted that the
variational trial functions need not be constrained
to exactly satisfy the boundary conditions since
these will be built into the results through the
evaluation of the variational parameters of the
problem. Finally, we note that the+oundary
terms in the functional I are actually boundary
conditions or. the transverse currents.

((a, h)) -=fd'v f daa h'
0

(3.4) Pf. TRIAL FUNCTIONS AND BOUNDARY CONDITIONS

&a, b&„k —— d'va*b .
y &Oz

(3.5)

IIf, k] = «l, f».
More specifically for Y= e'~~', then

(3.6)

1[f hJ= f da a ~ ' d'vf(vk av)=a(k h a'),

(3.7)

The function f =f,H(v, )+f H( v, ) is a trial ap--

proximation to the solution f of (2.12), while the
functions f; and f' are the values assumed by the
two-stream components on the boundary. The
quantities I', and F' are the "physically imposed"
microscopic, boundary conditions for the system.
The first observation to be made in connection
with (3.3) is that for f exactly satisfying (2.12)
and the physically imposed boundary conditions,
then the functional assumes the value

f,(vz) =A, 4), (vz)+ g A;.4;.(vz) (4.1)

and

f (vz) =A, hl(, (vz)+ g Ap&(vz) .
j=2

(4.2)

where the A's are wave-number- and frequency-
dependent variational parameters. We' ve chosen
the first term in (4.1) and (4.2) to be identical.
These terms mill be. chosen specifically to re-
present the behavior of the distribution functions
far from the boundary. Physically we expect no

To proceed with the variational calculation, we
must choose the forms of the required trial func-
tions and specify the microscopic boundary condi-
tions. We consider first the choice of the trial
distribution functions for the two velocity streams.
For the trial approximations to (2.6) we use the
general form, suppressing the k and o depen-
dences,
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intrinsic difference in the distribution of speeds
in the two streams well beyond the boundary region.
It follows that the functions 4 J and 4, , for j ~ 2,
describe the distinctive nature of the two streams
in the vicinity of the boundary. Given the choice
of the physical character of the first terms, we
see that 4', and 4,. should vanish well outside of
the boundary region.

We shall base our choice of the 4 's on the col-
lisionless form of (2.6). The effects of collisions
will be automatically incorporated into the results
through the variationally determined set of param-
eters A. An obvious choice for 4, is just the
solution of the infinite medium Vlasov equation.
This standard result is

Xo(k)C (v) k', X,(k) ik vl(v) W(g)
o+zk v k' g(ko) o+zk v 8

(4.3)

where W is the plasma dispersion function"

X,(k) = 1 keg /(k'+ kD) = k'/(k'+ kv)

and the dielectric function z(ko) is given by

e(ko) = 1+ (kvz/k') [I+1W(g)] .

(4.4)

(4.5)

f(vz)= -e""&'g( v)z,

where
n(v) = (o+ik„v„)/v,

(4.6)

(4 7)

allows for the formal integration of the co1.1ision-
less equation. We find first that

We have also introduced the quantities 8= v 2 ika
and the dimensionless frequency f= —o/8, where
f =x = (d/v 2 ka at o~ —z IgI

The choice of the functions 4& and 4& is based
upon a somewhat more formal analysis, though it
is a motivation rather than a derivation. We note
that the transformation

g(vz) =g(v, 0)+
C (v)
5

dz X(Z')e '""

1, 4(v)
D2

iv„—v, e ~)) ~ dz'e " + i~„+&, e
0

dz'e 'e'")))z' gv z

(4 6)

where n'= n(v'). An approximate form for g(vz)
can be obtained by iteration. Using the first two
terms on the right side of (4.8) in the integrands of
the last terms and taking the limiting form of the
results for z -0 suggests the following choices of
the functions 4& for j~ 2: h, (vz) =A,4, + g A&@&(vz) (4.12)

range integrations and the different boundary con-
ditions imposed upon the two streams.

For the trial functions for the adjoint equation
we use the forms

4we-~ O(v)
&„+X 0+ik„~))+», (4.9)

( ) II n g (
-IIg -Igg) (4 10)

kII + A. o + z7ig vII —Av.
II II II g

( gIIg e gIg
) (4 11)

~+ ~~))~)) ~)) ~8'

where A. = (k'+kgo)'~'. In arriving at Eqs. (4.9)—
(4.12) we' ve simply retained the essential function-
al forms from the g(vz) iteration, using the vari-
ational parameters A to effectively replace wave-
number and frequency-dependent factors resulting
from integrations over v'. It should be pointed out
that although the 4,-'s are identical for each stream
the f's will not be the same by virtue of the dif-
ferences in A& and A.

&
resulting both from the half-

and

h (vz) =A,@,+ QAj@j(vz). (4.13)

The functions 4& for the adjoint equation are de-
termined in the same spirit as the functions 4 for
the direct equation. Thus we take 4, as the solu-
tion to the adjoint infinite-medium Vlasov equa-
tion. The specific form is

1 keg 1+ g W(f)
k' (k )

(4.14)

where W and E are the analytic continuations of
8' and g into Imp&0. The initial value appearing
in the infinite-medium adjoint equation appro-
priate to the variational calculation of the density
fluctuations is unity. '4 The motivation of the
V~'s follows the lines of the previous development
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for the Cz's. Here the transformation required for formal integration is

k(vz) = e' *'""q(vz)

yielding

(f (vz) = q(v, 0) — de ' F(r) ——— dz'
k~~

Vz p 2 Vz p

(4.15)

x e '' dV iv„—v, dz'e'~~~' ~
q vz

p

OO

+e"» "" d'v'(iU, ', +u,') de'e "l" "'q(Fz')I.

(4.16)

The analogous first iteration based upon the two
leading terms on the right side of (4.16) leads,
for small z, to the choices

0*—~kIlvII —~kiev
(4.17)

e', =--,'k2ze **/v, , (4.18)

4~2

2 k„—ik~

ZecL z
(4.19)

Es
Z +

d'v' P(v
i
v')E' (v')v,', (4.20)

~ &p

where P(v
~
v) is the probability that an incident

particle of velocity v' is scattered with velocity
v. We take P(v tv) to have the general form

We now turn to the consideration of boundary
conditions. We want to allow for the nonspecular
contributions to scattering at the boundary. In
general we relate the exact microscopic distribu-
tion of particles at z = 0 leaving the boundary to
those incident upon the boundary from within the
plasma according to ""

where 4) (v) and a are the MID)()ell distribution
and electron thermal velocity respectively, evalu-
ated at the wall temperature T .

It remains to specify E'. We base our specifi-
cation upon the physical notion that for the dis-
tribution of incident particles within a free path
of the boundary, collision effects may be ignored.
One of the motivations for the present approach
is that although we can not specify the exact full
range microscopic boundary condition, reason-
able forms for F' should be obtainable. Physically
we would expect E' to be primarily characteristic
of the plasma itself, since these particles are in-
cident from within the plasma. In E' we are in the
main concerned with particles other than the initial
excess thermalized particle at the boundary. In-
formation about the initial condition at the boundary
is, however, transmitted to such a typical in-
cident particle through the field particles near the
boundary with which it interacts. With this mo-
tivation we take E' to satisfy an equation of the
form

(o+ik„v„)F'(v)+ 2kv4(v)(iv„+ v, )

P(v ~v')=p5(v, ', —v„)6(v,'+v, )+(1 p)P (v). (4.21) dz'e ~~)~"f(v'z') =X(0), (4.23)

P, (v) =(2z)"'(v, /a )@ (v), (4.22)

The first term clearly represents specular re-
flection, v,', -v„and v,'-- v, , in which there is
complete memory by the scattered particle of in-

cident velocity. The second term represents the

opposite limit, diffuse scattering, in which there
is a complete loss of memory by the particle of
its incident velocity. Intuitively then we would ex-
pect the probability P~(v) to be a function char-
acteristic of the boundary itself. The parameter p
may vary from 0 to 1 and describes the relative
contribution of specular reflection and diffuse
scattering. We choose the diffuse scattering prob-
ability as

X(0)
cr+ ik„v„

1 ac(v)(iv„+v, )E,
( )2 0+ik„v„

where a transverse momentum-transfer balance
has been incorporated and where

Sw k„1II .

~II k~ kiI+~
(4.25)

where the distribution f(vz) in the integrand de-
scribes field particles containing information
about the initial disturbance. For the field par-
ticle distribution we use a form derived from our
small z iteration of (4.8). Specifically (see Ap-
pendix) we take



JOHÃ H. HOPPS AND WAYNE I . %AI DROÃ

V. DETAILS OF CALCULATION

The computational procedure" consists of sub-
stituting the forms (4.1), (4.2), (4.12), and (4.13)
into (3.3). This gives the result

Q Q (B,&,s'+DiIt, f) =-P,
g l

(j= 1,2, 3, 4; o. =+, =) (5.10)

where

2A ~= r"+ r~jJ gl (5.11)

g g g g(a', )*a;«e,', L, e, »
8

+ Q Q Q Q(A. )~~*Af&v, 4", ~, 4', ~ ) 5 ~
0. g j l

I"y) —r r ~
~8 08 (5.12)

With the B& 's and D& 's determined by (5.9) and
(5.10) it is easy to show that (5.5) reduces to the
relatively simple form

—Q Q (A~)*&v,+~', I',&, (5.1) I[f k]= Q Q (B;Wg+D;P;). (5.13)

r'„-=«4'„Ze, » &~,P,', e',"&5...
so that

1[f,li] = p p IA; ()', e)))

(5.2)

where j, l = 1,2, 3, 4 and o. , P = (+,-]. We now in-
troduce

The calculations of the quantities I'~~&, y, , and

y& require the evaluation of numerous integrals
which, in the limits k, /k)) «1 or k~/k„» 1, can be
either explicitly evaluated or expressed in terms
of plasma dispersion functions of appropriate
arguments. " In the present calculation we' ve
used a collision frequency whose dimensionless
value y is given by

(5.3)

y =iv/8= 0 00748.(k~/k)gin(37. 7/g),

where g=k~/n is the plasma parameter.

VI. DISCUSSION OF RESULTS

(5.14)

The coefficients AJ may be written in terms of
their real and imaginary parts as

Our basic results are given in terms of the
dimensionless density- fluctuation spectrum

A~ =go Di
where (Dz)*=—Dz. Qx terms of the B& 's and
D& 's the functional reduces to

~If, &1= Q Q(&(~";wg+D~i,")

I3'i+D

(5.4) R(x, y) = (1/2n) (1/&2ka) Ren(k„k~, o' = —it@), (6.1)

where x= ~/0 2ka. There are several relevant
dimensionless parameters to the problem. In

0.4

S =1.0

0.3-

where

B;D, D;.D,)r;;.),
(5 5)

(5.6)

(5.7)

g 0.2-

K

0.1-

(5.8)

Our actual variation is now performed by the
parameter variation scheme of Ritz. We take

si[f, k] 0 BI[f,k]
g gy)0i

00 2.0 3.0 4.0

which yields the set of algebraic equations

P g (B',It;,'++~;f) =y,
8 l

(j=1,2, 3, 4; n=+, -), (5.8)

FIG. i. Dimensionless density fluctuation spectrum for
bounded electron plasma as a function of dimensionless
frequency x = cu/v 2 ka for p, = i.0, 0.6, and 0.0 with p the
fraction of specular reflection relative to diffuse scatter-
ing. Other parameters are s =kalk, s~=kJ/k(j and the
dimensionless collision frequency y = v/v 2 ka.
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0.4

0.3-

S =1.0
S2= 0.2
Y =0.04

x 0.2
CL

0.1-

00 1.0 2.0
X

3.0 4.0

FIG. 2. Dimensionless density fluctuation spectrum for
bounded electron plasma as a function of dimensionless
frequency x=cu/v2ka for @=i.0, 0.6, and 0.0 with p the
fraction of specular reflection relative to diffuse scatter-
ing. Other parameters are s =kalk, s2 ——k~/k», and the
dimensionless collision frequency y = v/&2ka.

addition to p, , x, y, and g previously introduced,
we introduce the new dimensionless parameters

s = k~/k, s, = k~/kq s2 k,/k„. (6.2)

The collective regime corresponds to s sy» 1.
The nature of the results is indicated in the fig-
ures.

Figures 1 and 2 show the spectrum for s = 1,
corresponding to the transitional regime between
the free particle and collective regimes for the
case s, =0.2 withy values of 0 and 0.04. In each
figure, curves are given for p, =1.0, 0.6, and 0.0, ,

corresponding to a progression from pure specular
reflection to pure diffuse scattering. In all cases
the curves show a single peak with a shape simi-
lar to that obtained for the infinite plasma. %e

note, however, that in Figs. 1 and 2 the curves
shift towards lower frequencies with increasing
diffuse scattering contributions. This is a result
of the superposition of the diminished bulk mode
and enhanced surface modes occurring as a con-
sequence of diffuse scattering.

Figure 3 schematically illustrates how such a
shift arises. The sharper the surface-mode con-
tribution, the greater the shift. Physically this
enhancement is due to the possibility of charge
density accumulation at the surface as a result of
the diffuse scattering. Note that the boundary con-
dition (4.20) is a condition on the "currents" of the
two streams at the boundary rather than on the
actual distributions of particles in each stream.
The shift is more dramatic in the collisionless
case where the lines are broadened only by Landau
damping. It appears then that the strong Landau
damping of the high-frequency surface mode in the
case of specular reflection is not as severe for a
boundary with diffuse scattering. The downward
shift of the single peak due to the enhanced sur-
face modes has a very particular significance in
terms of plasma diagnotics via laser light scat-
tering. In the collisionless case we observe a
shift, between the limiting scattering regimes, of
in excess of 15/o. We note that the curves may be
fitted by an infinite medium theory with readjusted
parameters. This would lead, however, to errors
in the characterization of such parameters as the
plasma frequency and electron density. The simi-
larity in line shape of this "anomalous bulk mode"
and that of the true infinite medium is perhaps the
reason why manifestations of the effects of surface
modes have seldom been reported by experimen-

0.30

S =3.0

xpl2
LEGEND

---—-- bulk mode
ce mode

malous bulk mode

0.24--

x0.1 6.-

S2= 0, 2
Y =0.0

x
Q'

0
1.0 2.0 3.0 4.0

I

Xp

C

FIG. 3. Illustration of the production of anomalous or
shifted bulk-mode spectra as a result of the superposi-
tion of surface modes.

FIG. 4. Dimensionless density fluctuation spectrum
for bounded electron plasma as a function of dimension-
less frequency x=-cu/&2ka for p, =1.0, 0.6, and 0.0 with

p the fraction of specular reflection relative to diffuse
scattering. Other parameters are s =kD/k, k~/k~, and
the dimensionless collision frequency y = v/v 2 ka.
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0.30

0.24--

S =3.0
S2= 0.2
Y=0.04

8 0.16--

06

0.08--

'0 1.0 2.0
X

3.0 4.0

FIG. 5. Dimensionless density fluctuation spectrum
for bounded electron plasma as a function of dimension-
less frequency x=~/&2ka for p, = f.0, 0.6, and 0.0 with

p the fraction of specular reflection relative to diffuse
scattering. Other parameters are s=kD/k, k&/kii, and
the dimensionless collisio~ frequency y = p/v 2ka.

ta,lists.
Figures 4 and 5 show the corresponding spectra

for the case s = 3.0 which corresponds to the col-
lective regime. These are of interest in that with
increasing diffuse scattering the surface modes
become a distinct spectral feature although they
remain rather broad. It is not clear to us as the-
orists whether these are well enough above noise
level to be reliably measured. Data for short-
wavelength surface modes are not presented since
these tended to remain highly damped even with
the inclusion of diffuse scattering.

VII. CONCLUDING REMARKS

We have shown that the predictions of the dy-
namics of the surface modes of bounded plasmas
from microscopic theory are in some regimes
quite sensitive to the choice of boundary condi-
tions. We have studied density fluctuations in an
electron plasma with varying relative contribu-
tions of specular reflection and diffuse scattering
of particles at the boundary and have found that
diffuse scattering tends to sharpen or enhance the
surface mode feature.

The calculations performed have been done with-
in a direct variational framework in which the ad-
missable trial functions are discontinuous in ve-
locity space, allowing one to incorporate in in-
trinsic fashion the effects of the discontinuity at
the boundary. Though we make no claims as to
the validity of our model of the microscopic
boundary conditions, we emphasize that the basic
formalism employed is quite general and can be
used for arbitrary forms of physically imposed

microscopic boundary conditions. In this context
it would appear that more in depth studies of the
microscopic bound'ary conditions for realistic
plasma confinement situations would be warranted.
It may also be noted that the formalism as given in
the present paper is directly applicable to the
study of the dynamics of liquid surfaces.

Qur direct variational formulation, which is al-
ready nonadjoint, can be trivially extended to the
case of magnetized plasmas. The extension of the
formulation to two component plasmas, with and
without applied magnetic fields, is a,iso straight-
forward and would allow for study at the micro-
scopic level of low-frequency electrostatic and
electromagnetic surface modes. Such a formula-.ion, for the case of an infinite fully ionized plas-
ma, has already been developed and utilized for
the calculation of the dynamic structure function
and the energy loss function of a charged particle
in the plasma. ""

The foregoing remarks clearly indicate areas
for further study and extensions of the present
work. It is anticipated that some of these will be
studied by one of the present investigators (J.H. H. ).
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APPENDIX: SPECIFICATION OF F'

From (4.23) we have

(o+ ik„v, )F + 2kv24 (v) (iv„+v, )

x' d v dZe ii vz =XO, A1
0

where we take

X(0) =- 4w4(v)/(k„+X)

with v, &0 implied in C(v). The assumed form of
X(0) i.s motivated by the notion that we are con-
cerned with that set of particles incident upon the
boundary from within the plasma that was not at
the origin at the initial time. These are assumed
to interact with field particles whose distribution
is however determined by the presence of the ex-
cess thermalized particle at t=0. We note from
(4.3) and (4.9)—(4.11) that the integration over the
field particles in (A1) gives a term that is inde-
pendent of v and z. Thus we may write
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X(0) k2v 4 (v)(iv„+ v,)E,
CF+ 'tk((V„2 0'+ 2k„V„

(AS)

Since the fieM-particle distribution is only ap-
proximately known, we shall not use its explicit
form, as previously developed, to determine Fo.

(A4)

Rather, we determine F, from a momentum-
transfer balance condition, i.e. , we require that

v vga((E + d v'U 5((F = 0.
v &Oz yg&o

This gives, using (AS), (4.20) and (4.21),

4F 3»vgvuC (v) L 2 «3» vgvo(lvo+ vg)C (v)
k(( + A. &o 0 + zk(( 5(( &o

0' + sk((8

+ dsvv, v„— d'v'v, '[p5(v, ', —v„)5(v,'+v, )+(1—p)P„(v)]
u &o ~z o'&08 g

(
-4wC (v')/(k„+ X) —gEokv(ivt+ v,')4(v')

o+ sk„v('(

Performing the integrations, noting that

J '„d'v„v„P~(v) = 0, we obtain

k2 [1+&iii('(&ii)](n- - rI.)
II + ~ kll

g2
+ kEokv —", &ii [1+&iii('(&u)](7(- —n.) = 0

(I

where, e.g. , g, = J„&,dv, v,c (v,).
1 8m' k(II

8(( k g) k((

so that
4m 4 (v) k„E'= — . 1+—"(iv„+v,)+ ~kl(V(( o

(A7)

(A8)
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