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The time-energy spectrum of fast particles released in background plasmas is evaluated for the cases of
monoenergetic impulses and sources dispersed in time and energy, as well as for general source spectra.
Distant encounters are assumed to contribute mainly to the energy degradation of the test particles in the
slowing-down range in which ions are treated as fixed centers, and in which the probability of elastic
scattering by electrons is insignificant compared to the probability of scattering by plasma ions. The results

give a slowing-down time close to that evaluated by approaches that account for close encounters. Asymptotic
solutions of the Boltzmann equation are also obtained, and the effects of the confinement time of the test
particles on the time-energy spectrum are taken into account. Confinement times characteristic of open-ended
devices, tokamaks, and Bohm-like plasmas are considered. Pitch-angle scattering is not considered here, and
hence only a rough estimate of the parameters relevant to neoclassical processes is given. The average density
and mean energy of the test particles are obtained in the slowing-down range for these three types of plasmas.
Discrepancies resulting from the classical treatment of scattering as opposed to the quantum-mechanical
treatment are pointed out. A multienergy approach is introduced for numerical calculations; such an approach
is necessary in particular for model-dependent studies. The approach is rather flexible and can accommodate
different types of spatial dependence and scattering processes.

I. INTRODUCTION

The space- and time-independent energy dis-
tribution of fast test particles slowing down in
an infinite plasma background has been reported
in a previous paper' which is here referred to as
paper I. The purpose of the present work is to
extend the earlier effort to evaluate the time-
dependent spectrum and energy distribution of
fast test particles slowing down in a finite plasma.
The average values of the density and the energy
of the test particles are also obtained. The re-
sults are of particular interest in studying the
dynamics of neutral-beam heating experiments,
the behavior of reaction particles released by
fusion reactions, and the energetics of bvo-com-
ponent thermonuclear plasmas. '

In the slowing-down range, the velocity of the
test particles, V, is such that (2kT, /m, )'~'&V
&(2kT, /m, )'~', where T, and T, are the kinetic
temperatures of plasma ions and electrons, re-
spectively; m, andm, are the masses of the
plasma ions and electrons, respectively; and 0
is the Boltzmann constant. The electron tempera-
ture is restricted to values for which the scattering
probability of the test particles by electrons is
negligible compared to the probability of scatter-

ing by plasma ions." In this energy range, the
time-dependent conservation equation of the test
particles released in a single-ion-species plasma
may be written as'

BN(E, t) ~"1 Z(E'-E)y(E' t)
(E )+Z (E )]

N(E, t) „
~„(E)

where N(E, t) is the number density of test parti-
cles of species x per unit energy having an energy
E at time f; C(E, t) is the encounter density per
unit time; Z~(E') and Z~(E') are the macroscopic
cross sections of elastic scattering and fusion re-
actions, respectively, which describe interactions
involving the test particles and the plasma ions of
speciesi; E' and E are the energies of. the test
particles before and after scattering; 7„(E) is the
confinement time of a test particle x at energy 8;
o.,=[(M —m, )/(M+m, .)]'; M is the mass of the
test particle; Z(E'-E) is the macroscopic re-
moval cross section which describes the change
in the energy of the test particle from E' to E due
to elastic scattering events leading to transfer
of energy to the plasma ions; and =(E,T) is the
rate of release per unit volume per unit energy of
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test particles in the plasma background either by
external means or by fusion reactions in thermo-
nuclear plasmas. The functional dependence of the
cross sections on T, is not included in the notation
for simplicity.

An approximate form of the energy transfer
cross section Z(E'-E) has been derived in paper
I using a scattering model in which contributions
of encounters at impact parameters 5&X, are
neglected (A,, is the Debye radius). This form is
used here and is given by

Z, (E')/d, n, z' ~E &E'
z(z'-z) =

0, otherwise,
(2)

where b, =0'/2m, X,
' and n, = l -n/E'. The mac-

roscopic elastic cross section is explicitly given
by'

Z, (Z') =~&M/~z'.

Here ] is a parameter defined as

(zz, e*
)* m, wM

where Z ands, are the charge numbers of the test
particle and the plasma ion, respectively; n, is the
number density of plasma ions; and the rest of the
notation is used in the standard manner. The di-
mensions are given in the rationalized mks units
unless stated otherwise.

Equation (l) can be solved to give the time-
dependent energy spectrum of fast test particles
in different situations and for different types of
sources. In Sec. II, the time-dependent energy
spectrum is evaluated in the limit of 7„(E)& r, (E)
for an impulse of monoenergetic test particles
released in a finite plas'ma where r, (E) is the
slowing-down time. Dispersion in the energy
spectrum of the source of test particles is con-
sidered together with a spread in the impulse
duration. The effect of the confinement time of
the plasma is takeri into account. The solutions
are then generalized to include any form of time
dependence of the source term =(E, t). To probe
the detailed structure of the energy spectrum
during the slowing-down *process, asymptotic so-
lutions of the spectrum are obtained in Sec. III
for both of the cases of an impulse and of a steady-
state source of test particles. The effects of dif-
fusion of test particles are then taken into con-
sideration in Sec. IV. Three types of confinement
times are considered, namely, those of the open-
ended, tokamak, and Bohm-like plasmas. The
finiteness of the devices is incorporated in the cal-
culations through the adoption of the empiric
Bohm-diffusion coefficient and through the use of
coefficients estimated from detailed spatial

Fokker-Planck treatments. In Sec. 7 the aver-
age density and the mean energy of the test parti-
cles are determined using the results obtained in
Sec. IV. Comparison between the results of the
analysis of Secs. IV and V and the results avail-
able in the literature is made in Sec. VI. The use
of energy multigroup analysis to evaluate the
energy distribution is discussed in Sec. VII.
Finally, summation of the results is given in the
concluding section VIII.

This equation can be solved directly by Laplace
transform methods for different time and energy
dependences of the source term.

A. Impulse

A spatially homogeneous monoenergetic impulse
of test particles may be represented by

=(E, t}==,5(z, E) 6(t f, -)„- (6)

where =0 is the strength of the source, the energy
distribution 6(zo-E) is a 6 function centered at
the most probable initial energy E„and 6(t —to)
is the shape of the impulse which is a 5 function

II. DIFFERENT SOURCE SPECTRA [r~ (E)~ ~]

If the rate of production of test particles exceeds
the rate of their leakage from the plasma and if
,their mean time of slowing-down is less than v„(Z),
the medium can be treated as being infinite. In
the limit of an infinite 7„(E), Eq. (l) reduces to

C(E t)+ ——f dZ'9(E' t)+" (8 t)

(5)

where the fusion cross section is neglected and Eq.
(2) is used to eliminate the energy-transfer cross
section.

To reduce the integro-differential equation given
by Eq. (5) to a partial differential equation, we
may assume that the introduction of the time vari-
able causes 4(E, t) to deviate slightly from the
steady-state encounter density 4'(E) and that the
time-dependent encounter density 4'(E, t) does not
appreciably change over an energy interval 6;
thus, 4'(E', t) may be expanded in a Taylor series
about F., that is,

B@E' te(z', t) =+(E, t) +(z' -z),' + ~ ~ ~

BE'

(6)

Retaining the first bvo terms only, substituting
Eq. (6) into Eq. (5), and integrating, we get

BN(E, t) 6 84(E, t)
( )+-E,t.
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centered at some initial time tc. Equation (8)
can be used to explicitly give the source term of
Eq. (7). The right side of this equation may be
rewritten in terms of the encounter density, since
C(E, t) =Z3(E) V(E)N(E, t), and since both V(E) and

Z3(E) are time independent; therefore,

2 e+(E, t) e@(z, t)
~Z, (z) V(Z) et eZ

2-
e(E -E) 5(t) (9)

where the initial time to is taken as zero. By
means of the Laplace transform in time of Eq.
(9) the time-dependent energy distribution of the
test particles can be readily obtained, that is,

@{E t)

dz'e(z -z')

shows that g, (E.,) =N/=„which gives the mean
time for a test particle to slow down from an en-
ergy E„ to an energy E,. Here, E„ is the energy
upper limit below which the asymptotic solution
of Eq. (13) is valid„' E, is the lower cut-off energy
below which the slowing-down model is invalid;
andA. and A., are the mass numbers of the test
particles and plasma ions, respectively. The
value of E„ is very close to Eo, and E, is usually
taken as 2AT;.

The time-dependent energy distribution given by
Eq. (11) indicates that an initial impulse of test
particles remains as a line spectrum about the
slowing-down time, that is, the spectrum main-
tains its initial shape and merely moves down
the energy scale and each value of energy is
uniquely correlated with a particular time. How-
ever, Eq. (11) does not give much information
about the structure of the spectrum.

(2M)'/' t's dz"
(E(7)E7(7/3

=0, t&vl

where v.l is the integral term in the time 5 func-
tion. Thus, the number density per unit energy
per unit time of test particles at energy E at time
t ls

N(z, t) =(=,/~vY)z" e[t-~,(z)],
where g, is the slowing-down time given by..(E}= (~2/3&) (E --E"), (12)

which is the time required for the energy of a test
particle to decrease from an initial value E„ to an
energy E The value . of v, obtained in Eq. (12) is
an approximate value of more accurate expression
obtained earlier by Husseiny and Forsen. ' The
above derivation, which is similar to Fermi's age
theory of spatial neutron slowing-down, ' represents
a simple and straightforward tool to calculate
directly the mean slowing-down time without a
prior knowledge of the time-dependent spectrum
of the test particles. Comparison of the results
of Eqs. (11) and (12) with the average test-parti-
cle density N, which has been obtained in paper I
for the asymptotic time-independent case, that is,

B. Dispersed energy source
(\

The initial energy of the source may have a
spread in energy as that given by the Gaussian
source considered in paper I. In addition, the
time dependence may be in the form of a dis-
persed 5 function centered at some initial time
to) that is,

(14)

where the widths U and t, of the energy and time
spectra, respectively, are tobe determined from
the source characteristics. In the case of re-
action particles produced by fusion in thermo-
nuclear plasmas, U =2kT,. and t, =2q. where z is
the plasma confinement time. Taking to=0 and
replacing the source term in Eq. (7) by the ex-
pression given in Eq'. (l4), the time-dependent
conservation equation of reaction particles takes
the form

ee(z, t) ee(z, t)
~z, (z) v(z) et ez

2 k
exp — . 15

(7 7 (E~3/3 E3/3) 37.396'1{j~~= g.
n Z'~'W~ " c ™7

i
(13) This differential equation can be solved by Laplace

transform in time to give

"-.z'" ", - z.-z' ' [t-(vY/3()(z"/'-z")]'
4I/2 KT $ 2/3T 4 3

t&(v2/3$) (E" ' E'/')—
=0, t&(llr/3() (E' —E ) . (18)



KNKRG Y DISTRIBUTION OF FAST TEST.. . II. . . 1671

The first exponential function in Eq. (16) peaks
at E' =E, and then drops very fast for E';ED.
The argument of the second function assumes
a value of (f/2r)' at the lower limit of the
integral, and it changes toward the upper limit,
passing by the value [(t —v,")/27]' at E' =Eo. Smce
the main practical interest is in a time scale of
the order of g, and since on this time scale the

main contribution to the integral comes from the

first exponential function while the second ex-
ponential function can be taken outside the integral
evaluated at E' =ED, the number of test particles
having an energy between E and E+dE at a time
between t and t+dt is given for t-7, as

N(E, t) = 1 —erf
4 2mqg

x exp

This result shows that the spectrum remains es-
sentially a Gaussian centered about t =z, and
merely moves down the energy scale as in the
case of the impulse.

After a long period of time, that is, for t-z,
»27, Eq. (16) can be evaluated at the limit ~-0;
thus )

(16)

The time dependence preserves the shape of the
energy distribution but causes a shift in the peak
from E =ED to E =ED (1 —3&t/v 2EO' ')' '; that is,
the location of the peak is shifted to lower energy.
The shift is approximately equal to (1-f/r, )
for E,«E„hence, at a time t =w„ the peak
reaches E =E,.

any form of time dependence and z, is given by
Eq. (12).

For a steady-state rate of production of test
particles, that is

=(E, t) =„--,6(E,-E), (21)

and E(t —to) = 1, the distribution given by Eq. (20)
reduces to the solution obtained asymptotically in
paper I for the time-independent Boltzmann equa-
tion. This supports the argument presented in
paper I that the asymptotic solutions may be ex-
tended to E =E, without a significant error.

Using the technique described above in solving
the time-dependent Boltzmann equation, the de-
tails of the shape of the spectrum cannot be de-
termined unless several terms in the Taylor ex-
pansion of Eq. (6) are used. However, even if
the third term is included in the analysis, the
problem becomes too complicated for analytical
evaluation. However, more information about the
shape of the time-dependent spectrum of test
particles can be obtained by evaluating the asym-
ptotic shape of such spectrum.

III. ASYMPTOTIC TIME-ENERGY SPECTRUM

If we consider a source term of the form given
by either Eq. (6) or Eq (21) a.nd assume that the
test particles are perfectly confined for a time,
v„=r„and thatE&E, and f, ~t„Eq. (7) reduces
to

2M B VN(V, t) B VN(V, t)
b, Z~(v) Bt BV

in which the variable E is replaced by the variable
V. This partial differential equation may be trans-
formed to a first-order ordinary differential equa-
tion by using the method of combination of vari-
ables. Thus, by introducing a dimensionless vari-
able 8, defined as

C. General source spectrum

The solution of Eq. (10) is the Green's function
of Eq. (7) for arbitrary source spectrum Thus, .
Eq. (10) may be rewritten in the general form,

N(E, t) = E' ' dE'f(E')F(&-~, ),

~z, (v) t
2MV ~' V''

where g, =]/M'~', Eq. (22) becomes

(1+38) „+3C (8) =0,de (8)

where 4(8) is a dimensionless flux given by

(24)

t) g~, (19)

(20)

where the shape functions f (E') and E(t rz) give-
the energy and the time dependence, respectively,
of the source spectrum Iff{E').is represented
by 5(Eo-E'), then Eq. (19) reduces to

N(E, t) = (=, /Wag) E"E(f 7.,), —

VN(V, f)""=v.N(v. '...)
. (25)

Here, the subscript c designates parameters
evaluated at f =v, . Equation (24) can be easily
solved using the boundary condition O(8, ) = 1 to
give

in which the shape function E(t 7,) can assum-e 4 (8) = (1+38, )/(1+ 38) . (26)
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Defining the vth moment of the dimensionless flux
as

10

Jp
de 8"4(6), (27)

the zeroth moment may be evaluated. Thus,

II o
= 3 (1+38, ) ln(l + 38, ) . (28)

-8
10

rr
10-10

However, for a specific value of V, Eq. (28) may
be written explicitly as

(29)

where the value of the integral is equal to the time-
independent asymptotic velocity distribution ob-
tained m paper I and, consequently,

zi

10
-ll

1

V.N(v„~, )
' (30) 10"

10

I

10

I

'IO 10

Using the definition of the dimensionless flux given
by Eq. (25) and the values of the zeroth moment of
Zqs. (28) and (30),

N(V, t) = 3 [V(1+3(, t/V') ln(1+ 3g, r, /V')] '.
(31)

where v, is equal to the slowing-down time v, (E, )
required for the test particles energy to change
from E„ to E,. The details of the dependence of the
spectrum on both I; and V are well displayed in Eq.
(31).

As an example let us consider the case of alphas

E (keV)

FIG. 2. Energy distribution at different times.

produced at Ep = 3.52 MeV from fusion reactions in
a plasma composed of equal portions of tritons and
deuterons at T, = 10 keV and plasma ion density of
10"m '. The n spectrum is shown in Fig. 1 as
function of time at two different energies. The
alpha distribution is also plotted versus E~ at
boo different times in Fig. 2.

IV. EFFECT OF DIFFUSION OF TEST PARTICLES

10

10
UJ c

10

1
0-11

I

&0 4 &0-' &O-' &0-' 1.0
Time (sec)

Fast test particles released in a background
plasma are likely to continuously diffuse out of the
confinement. Since the confinement time of the
test particles 7„(E) generally depends on their
energy E and on their type, as well as on the
parameters of the background plasma, the value
of r„(E) may be comparable to or less than the
slowing-down time. In this case, the results of
Secs. II and III are not valid, and the possibility
of the leakage of the test particles throughout the
slowing-down process needs to be taken into ac-
count. To do that, the leakage term given in Eq.
(1) must be included. For a source of nonfussiIe
test particles of the form given by Eq. (8) or Eq.
(21), at energies E ~ E„«,and at time t&t„Eq.
(1) reduces to

2M 8 VN(V, t) s VN(V, t)
~ z(v) st sv

where the parameter z(V) is defined as
FIG. 1. a. -particle spectrum at different energies in a

nonlossy finite system. K(V) = V'/[3), v„(v)]. (33)
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A comparison between Eqs. (33) and (12) shows
that ]((V)= v, (V)/y„(V). Equ" tion (32) is similar
to Eq. (22) save the presence of the additional
term, including the parameter z(V). This term
can be neglected in situations wherein v„(V)&r, (V)
or when v„(V)-~. For 7„(V)6 q, (V), the solution
of Eq. (32) is determined by the funct:ional depen-
dence of r„(V) on V. Thus, we may consider con-
finement times typical of open-ended and tokamak
devices as well as plasma confinement systems
in which the test particles follow the Bohm dif-
fusion regime.

A. Classical diffusion

n;M V'

8(,m) n, lnA(V)
(34)

where n, is the plasma electron number density,
the function A(V) is given in this particular case
by

A(V) =)[[,1].
&
V/@, (35)

and p, is the reduced mass of a test particle and
a plasma ion. Hence, Eq. (33) may be explicitly
writteri as

Plasma diffusion in open-ended devices is char-
acterized by a classical confinement time which
is proportional to the mean deflection time 7D(V).
This is defined as the mean time required for a
particle to be deflected by 90' due to multiple Cou-
lomb collisions. The constant of proportionality,
g =z~(V)/w„(V), depends on the particular geometry
of the device and on the intensity of the confining
magn. etic field.

In the range of energy of interest here, '

only for tokamak devices; that is,

r„(V) = uV'/lnA(V), (38)

where u is a constant that depends on the type of
plasma geometry. This confinement time may be
used also as an estimate of neoclassical effects.
Thus, Eq. (33) may take the form

z(V) =(1/3u), ) lnA(V),

which reduces to the constant

z(T, ) =inA(T, )/(3u], ) =~o

(39)

(40)

when the argument of the logarithm is approxi-
mated by the Coulomb value given in Eq. (37).

Let us first consider the case when z(T,) =zo
is used and apply the same method used in solving
Eq. (22). Thus, the dimensionless flux takes the
form

(
1+33.)"

"
(41)

where 8 and 4(8) are defined by Eqs. (23) and (25),
respectively. The time velocity distribution is
similarly obtained and is given by

3Kp

V(1+ 38)Ko+3 [1—1/(1+ 38 )Noj
(42)

which reduces in the limit of ao-0 to Eq. (31) for
~.(V) & .(V)

In order to take into consideration the dependence
of the logarithmic function on E, let us rewrite
Eq. (1) for nonfussile test particles and use the
expansion of Eq. (8) and the source term given by
Eq. (8) with to=0; thus,

v'2E sg(E, t) 8((E, t) v'2E
8E 8E ~~„(E)

~(V) = ' * h A(V). 2
+ —=,5(E, -E) 5(t) (43)

Since the logarithmic function is not sensitve to
moderate changes in V, it is often taken as the
Coulomb logarithm for which the argument

which can be solved by Laplace transform. The
result is

«I T, '~'
A =A(T, ) =12]] ', ' n,8 +e

(37)

is used. In this case, lnA and hence K are inde-
pendent of V.

In the case of tokamak devices for which the
neoclassical theory is applicable, the dependence
of y„(V) on V and A(V) is the same as in the case
of open-ended devices; however, the constant of
proportionality is different due to the presence of
pitch-angle scattering processes. Thus, the. con-
finement time of the test particle may be expressed
in a general form which is applicable for devices
characterized by the loss-cone or classical dif-
fusion, and which would provide a rough estimate

where w, is given by Eq. (12). Thus, the leakage
of the test particles does not affect the slowing-
down time. Substituting for w„(E) from Eq. (38),
carrying out the integration in the argument of the
exponential function, and then integrating the re-
sult over time,

N(N) = . N' 'exp (- [).3 A(P) —)3*X(N)]*). ,u a

(45)
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integral in this term is less than 1. For the D-T
plasma example, the exponential function in the
second term is of the order of 10, and the
Damson integral in the same term is 0.025; hence,
neglecting this term is justifiable. If the plasma
is contained in an open-ended device of (=0.1,
the average number of o. particles is g~ = V. 5x10"
n1

In the energy range of thermonuclear interest,
the asymptotic value of the Dawson integral may
be used; that is, S(Y)=0.5/1', and consequently
Eq. (47) reduces to

8x103—

6x ip

v 2=.E.'"
6g [1+lnA(E, )/3(, u]

' (50)

The mean energy of test particles in the range
2kT,. &E &E, is

2x&0~
10 20 30

T.
,

(keV)
40 50

PLASMA, g = )00

where

2 2

X
u(Y„)e"o —n(Y; )e '
n(Y„) er[)). —n(Y;, ) er))

Y02= (,~g2 [lnA(2kT;)+6 g~u])2u)) )

(51)

FIG. 5. Ratio of the mean density of n particles to
plasma ions in a Bohm-like plasma, 1- =100.

from the confinement results in shifting the mean
energy to higher energies.

In the case of Bohm-like plasmas, the average
number density of test particles can be obtained
from Eq. (46); thus,

E ~ED Yo~ /Y02 (54)

and for the example given above for reaction
alphas, E„=0.9E,. This may be compared to
ED=0.6EO which has been obtained in paper I for
v~,"~(E)& 7„(E)or for ~~(E)-~; where v~"'(E) and

r „(E) are the slowing-down time and the confine-
ment time of the reaction n particles, respec--
tively. Thus, the diffusion of the test particles

Y[~= (,~)2 [lnA(2kT;) + 6 g~u].2u ))

Applying the same approximation used to obtain
Eq. (50) from Eq. (47), the average energy of the
test f&articles given by Eq. (51) may be reduced to

)) =B:- ) —exp — [8' ' —()kT.)'&'])}.
2&2

g ~p 0

(55)

For values of l ~1 the exponent is a large number,
and the term between braces is close to unity. For
the D- T example discussed above, n„=1.9x10"l

m, which is about 0.25l times the value obtained
for the open-ended device. Figure 5 shows the
behavior of the average n-particle density as func-
tion of T, for l = 100.

The average energy in the slowing-down range
of test particles released in Bohm-like plasmas
is obtained from Eq. (46) and is given by

&2E& 'exp(-2v 2 Eos '/3lr&() " (2W2Eo3 '/3lr~()' —(2kT /E, )' '[(4kT))' '/3l7e P]~

lysg(1 —exP(-2v 2 [E~~2- (2kT, )'~']/3lrs)j) ~ j((-,'+ —', j)
(56)

The value of E is very close to Eo since the Bohm
diffusion causes a significant hardening in the
spectrum compared to the cases of classical and
neoclassical diffusion.

VI. COMPARISON WITH PREVIOUS WORK

Considering the case of test particles with a
confinement time v„(E)6 r, (E), the results of Secs.

IV and V may be compared with the analytical re-
sults which have been reported thus far. Using a
deductive approach, Rose and Clark' have obtained
an energy distribution similar in form to the time
integral of Eq. (44). Since they used the Coulomb
logarithm instead of lnA(E) in their analysis, the
sa.me is done in this section using the results of
our work in order to provide a common ground
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2~2«o311 n, &ol)o,
3e'4M „(1+K, )

where the approximation

3(Kp+ 0/2 /g& ~ $ 3(Kp+ j.)/2 ~ 3(Kp+ 1)/2

(59)

is used. For devices of practical interest zp is a
small number since gs0. 1. Using the approxi-
mation x =0 is equivalent to assuming that the ~
yarticles degrade to very low energy before es-
caping; that is, T~ (E)»T,"~(E). In this case, Eq.
(59) must give the value of N for T„(Z)-~; how-
ever, using the parameters given in the example
discussed above for D- T plasmas, N„=2.65x10"
m ', which is orders of magnitude lower than the
values obtained for y~& g, as mell as for v „.-~.

for comparison. Doing so, Eq. (44) can be used
to provide the solution for N(E, f) near the source
energy; that is,

N(@ t) 0 5 (f )@3K3 /2+1/22="

A@3K3/2 s
p

For reaction n particles released from D-T fusion
reactions, Eq. (57) is integrated over time; thus,

N(E) 0 i 1 ( )DT @3K3 /2 pl/2 .
(58)~4/M E3Kp/2 Q,

C' exp

where (ol/)» is the product of the D- T fusion cross
section times the relative velocity averaged over
the velocity distributions of the interacting ion
species. Equation (58) is of a form similar to the
reaction z-particle distribution which has been
estimated for a steady-state mirror device by
Bose and Clark, ' where they take into account the
effects of n thermalization via scattering by plas-
ma electrons. Their results differ from that of
Eq. (58) due to the difference in the values of the
elastic scattering cross section which are used
here. While they have treated the scattering clas-
sically, the results given here are based on quan-
tum-mechanical considerations. The necessity
to treat the scattering probabilities quantum
mechanically has been discussed by Husseiny and
Forsen' and Husseiny and Sabri. ' The difference
between the two approache has led to different
values of Kp and of the constants appearing in Eq.
(58) .

Actually, the use of the Coulomb logarithm as
opposed to the use of lnA(E), as with the argu-
ment given by Eq. (35), leads to a disagreement
between the result of Bef. 7 and the result of Eq.
(45) with respect to the dependence of N(E) and E.
In addition, the use of the Coulomb logarithm
leads to underestimation of the average population
of the test particles in the slowing-down range as
demonstrated below. Integrating Eq. (58) over the
energy range 2kT, &E &E, gives

Although no analytical results have bpen obtained
in Ref. 7 for Bohm-type plasmas, we may apply
the technique which has been used in Bef. 7 for
mirror machine to derive an expression for N„(E)
in the case of Bohm-like plasmas. Thus, the num-
ber of reaction alphas in a D-T Bohm-like plasma
mith energies between E and E+dE is

N„(E)dE

1 25x] 017& ( &) 73/2Elg2 (@3/2 296T3/2)K-1

(E3/2/296/%3/2 )K

(60)

where

E =10"T3/2/(3n IT ) .. (61)

and T, and E are in keV. The average density
is obtained from Eq. (60) and is given by

N„=4x10 'n,'. IT (cv)

1
E3/2 296T3/2 E

For the plasma parameters discussed above, N
= 3x10"l m ', which also underestimates the z
concentration as was the case for the mirror de-
vice.

Although the results reported in Bef. 7 have
been roughly estimated, they cover a wider range
of energy than the slowing-down range considered
here. In addition, encounters of impact param-
eters smaller than A, , are included while encounters
at larger impact parameters are neglected, which
is exactly opposite to the model considered here
in Eq. (2). Contributions of scattering events at
small impact parameters to the distribution of test
particles are less than contributions of events at
large impact parameters as we have shown in
paper I. Consequently, excluding scattering events
at large impact parameters would lead to the un-
derestimation of the average number of the test
particles which is found here.

VII. MUI,TIGROUP CONSIDERATIONS

In the preceding analysis the energy is treated
as a continuous variable and the energy scale is
divided into three groups, namely, a group near
the source energy, an asymptotic slowing-domn
range, and the thermalization range. So far, the
last energy range is not considered. Division of
the energy scale into more groups is expected to
yield more accurate results. In the multigroup
approach test particles are treated as if 'they dif-
fuse monoenergetically in each energy group and
then get transported from one group to another by
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elastic and nonelastic scattering. This method
enables us to consider inhomogeneities in the
plasma core and nonelastic scattering, which
plays an important role, especially in the pres-
ence of neutrals and impurities. The number of
energy groups can be selected according to the
desired degree of accuracy.

Let us divide the energy scale into I. groups
with widths g, which is generally a variable, and
define the flux of the test particles in the jth group,

as

+j-1
+ dZ i dE, 'Z Z'-E, Z . 64

0

However, the conservation of the test particles in
the jth energy group gives

4~
[y(z)& (E)] J 4 ~d ~Z( j) 4S '

i~y

Comparison of these two equations yields the group
parameters,

(65}

dEZ E E
j g

(66)

1 1 s~-& Q(E)
V(z) ~„(z) y. .. ~(z) ~.(z) ' (67}

where Q(E) = V(E)N(E) and E, , and E~ are the
lower energy boundaries of the (j —1)th and jth
groups, respectively. Integrating E(I. (1) over the
jth group, assuming a steady-state homogeneous
plasma and rearranging the result,

dz $(z)
( ) ( )

+ dzZ(Z) y(E)
Jly X E

by

Z„) = QZ(j i) . (70)

The source term -,. includes a contribution from
external injection of test particles in group j, that
is, -,„„&, and a contribution from fusion reactions
resulting in production of test particles in the same
group, ~ &. However, the fusion source term is
usually confined to one energy group, such as
group 1; thus =,. = -,„, , for j~1, while for j = 1

(Vl)
V elP~

where 5„„, is the Kronecker delta and the second
term represents the number of test particles of
type x produced by fusion reactions between the
plasma ions of species v and v'. lf the reaction
particles are produced in different energy groups
due to different fusion events, a parameter X'
may be used to represent the fraction of reac-
tion particles produced with energies in group
i due to fusion in group j. In this case the source
term for jw1 includes a term similar to the second
term in E(I. (Vl) multiplied by y' ' and summed
over all energy groups i.

Parameters similar to those defined by Eqs.
(66) through (70) can be assigned to each of the

energy groups. According to the model introduced
in paper I, the probability of removal of a test
particle from group j to the next group j+ 1 is
much more than the probability that the particle
will be removed to any further group; that is, the
scattering will not lead to group skipping. This is
particularly true if g»6; thus, it can be assumed
that Z(j i) = Z(j j + 1). In the slowing-down
range, scattering can be assumed to lead only to
energy loss. For the special case in which no ex-
ternal injection takes place and the test particles
are monoenergetically produced from fusion reac-
tions in group 1, the conservation equation for the

jth group is simplified to the form

dE= E,
E~

(68}

j
[I (E)~ (E)],

=Z(j —1 j) y& + 6&„j=1,2, . . . , 1, . ('l2)

~i-i
z(i-j) = dz dz' z(z'-E) y(z') .

z,.

(69)

The total cross section Z(E) is the sum of the
fusion cross section Zz(E) and the scattering cross
section Z~(E), and Z,. includes a fusion cross sec-
tion 7„,. and a removal cross section Z„,- which
represents the probability to transfer a test par-
ticle from group j to any other group i and is given

E(luation (72) can be solved for j = 1 to give

y, = "=,(Z, +Z(1-2)+ I/[~(z) ~.(z)] ] ', (72)

and for j =2

y =Z(1-2) y (Z +Z(2-2)+I/[I'(E)~, (z)] ] '

(74)

Expressions similar to Eqs. (72} and (74) can be
found for the fluxes of the other groups. Numeri-
cal calculations become necessary if I. ip taken to
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be a large number. However, these detailed nu-
merical analyses are only necessary if the model
of the plasma device is considered and if the spa-
tial dependence of the'plasma parameters is known.

VIII. CONCLUSIONS

In the scattering model adopted here only distant
encounters are considered. The incremental
loss in the energy of a test particle is as-
sumed to be so small that the change in the dis-
tribution due to such energy loss can be treated as
a small perturbation. This assumption is used to
evaluate the time-energy spectrum for various
shapes of the source spectra of the test particles.
Assuming that the confinement time of the test
particles exceeds their slowing-down time, the
spectrum is obtained for a monoenergetic impulse
of test particles and is given by Eq. (11). Com-
parison between this result and the time-indepen-
dent energy distribution of the test particles in a
Maxwellian infinite plasma which has been de-
rived in paper I yielded an expression for the
slowing-down time of the test particles. This is
given by Eq. (12). The slowing-down time ob-
tained here is found to be approximately equal to
an expression which has been obtained earlier by
Husseiny and Sabri~ using a.scattering model
wherein both close and dist' encounters have
been included. Considering the spread in the in-
itial energy and the duration of the source impulse,
the Boltzmann equation is solved to get the time-
energy spectrum of the test particles which is
given by Eq. (16). Then, a generalized form of
the spectrum is obtained in Eq. (20) for a source
of test particles having arbitrary energy and time
functional dependence.

The time dependence of the spectrum for differ-
ent sources indicated that the spectrum maintains
its initial shape, which becomes centered about.
the energy-dependent slowing-down time; that is,
the initial source spectra move down the energy
scale as the particles slow down. The detailed
structure of the time dependence appeared in the
asymptotic solution which is obtained below the
source energy and is given by Eq. (31) for either
a monoenergetic impulse or a steady-state pro-
duction of monoenergetic test particles. The re-
sults are plotted in Figs. 1 and 2 for n particles
slowing down in D- T plasmas.

Taking into account the possibility of test par-
ticles having confinement times smaller than their
slowing-down times, the time-energy spectra are
obtained for classical diffusion of test particles.
The result is given by Eq. (42) for a confinement
time that varies as the product of the cube of the
velocity of the test particle, V', and the Coulomb

logarithm. Equation (44) or (45) gives the time-
energy spectrum for the case when the confinement
time varies as VslnA(V), where A(U) is given by
Eq. (35). The diffusion of the test particles causes
the distribution to drop faster as the energy de-
creases. For test particles obeying the Bohm-
diffusion law the energy distribution is given by
Eq. (46). The slowing-down time is found to be the
same regardless of the value of the test particles
conf inement time.

Values of the average density and mean energy
of the test particles in the slowing-down range are
given by Eq. (50) for the classical diffusion regime
and by Eqs. (55) and (56) for both of the Bohm dif-
fusion and the constant confinement time regimes.
Equation (51) gives a rough estimate of the corre-
sponding values in the case of toroidal-type con-
finement. The specif ic scattering phenomena
characteristic of neoclassical processes are im-
plicitly incorporated in a undetermined proportion-
ality constant. To evaluate explicitly this constant
pitch angle scattering has to be included as well
as spatial dependence in the Boltzmann collision
operator.

It is customary, to a priori evaluate diffusion
parameters and then use the results to obtain the
energy distribution including the slowing-down
tail. " This is done here for both open-ended and
toroidal systems wherein estimates of diffusion
coefficients obtained by spatially dependent Fokker-
Planck calculations are employed to calculate the
proper confinement time„and then the Boltzmann
equation is used to find the energy distribution.
The results obtained in the limit of time and space
independence can be estimated also from energy-
transfer rates derived using Fokker-Planck form-
alism. '~'" Both approaches has been employed
in calculating the thermonuclear reaction rates
taking into account slowing-down effects in the
STEEP 4 code. The quantum-mechanical effects
can be incorporated in a Fokker-Planck collision
operator yielding a quantum-mechanical form of
the kinetic equation. " Nevertheless, the Boltz-
mann formulation provide a powerful tool for
numerical calculations of interaction rates as
well as analytic evaluation.

Taking lnA(E) as the Coulomb logarithm is found
to lead to underestimation of both the mean energy
and the average density of the test particles. This
underestimation involved several orders of mag-
nitude in a mirror confinement as demonstrated
by comparing the results of this work with those
estimated by Bose and Clark. ' Such comparison
also indicated that the classical treatment of scat-
tering wherein distant encounters are excluded by
the use of a cutoff, leads to values of the density
and mean energy which are lower than those ob-
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tained by the quantum-mechanical treatment used
in this work. This is in support of earlier find-
ings. "'

To obtain results more accurate than those
given here, one needs to resort to the laborious
multigroup approach for which numerical calcula-
tions are indispensible. However, the present
results are satisfactory for the exploration of the

dynamic behavior of fast test particles in a back-
ground plasma and for the evaluation of their aver-
age density and mean energy in the slowing-down
range. Further work is necessary to account for
plasma inhomogeneities and to evaluate the energy
distribution, average density, and mean energy of
the test particles in the transition range between
the slowing-down and the thermalization ranges.
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