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A model is developed to describe the scattering of fast test particles in an infinite background plasma in which
conditions are such that the probability of elastic scattering by plasma ions much exceeds the probability of
elastic scattering by plasma electrons. Encounters leading to large angles bf scattering are excluded in
calculating the scattering kernel and the slowing-down density. These functions are evaluated using the
quantum-mechanical elastic scattering cross sections. The encounter density is obtained by solving the space-
and time-independent Boltzmann equation in the presence and in the absence of fusion reactions between the
test particles and the plasma ions. Asymptotic energy distributions in the slowing-down range below the
source energy are obtained for both cases. The average density and mean energy of the test particles in the
slowing-down range are also evaluated. The results are found for arbitrary sources of test particles, taking into
account spread in the initial energy of the particles. Binary and multicomponent plasmas are considered.

I. INTRODUCTION

Evaluation of the energy distribution of fast test
particles released in a background plasma is of
interest in several areas; in particular, in neu-
tral-beam injection modeling, in studying sec-
ondary fusion reactions, and in investigating the
energetics of quasi-steady-state plasmas. A
knowledge of the energy distribution of test par-
ticles is also necessary for calculating their av-
erage density, energy, kinetic pressure, and dif-
fusion coefficients.

The effects on steady-state thermonuclear re-
actions of finite energy transfer between the
charged primary fusion reaction products and the
plasma particles have been considered by Jensen,
Kofoed-Hansen, and Wandel. ' In their analysis
they have assumed that the reaction products are
confined long enough to acquire Maxwellian dis-
tributions. The energy distribution of alphas pro-
duced by D-T fusion reactions in mirror machines
has been evaluated numerically by Kuo-Petravic,
Petravic, and Watson. ' Adler and Dorning' have
used Laplace transform methods and adopted scat-
tering kernels obtained by Husseiny' and Husseiny
and Forsen'6 to approximately evaluate the energy
distribution of ions slowing down in a plasma. The
spatial distribution of fast test ions resulting from
tangential injection of a diffuse neutral beam into
a tokamak has been discussed by Home, Callen,
and Clarke. ' Other investigators have implicitly
considered the energy distribution of test particles

in the course of the numerical analysis of specific
plasma problems"', however, no explicit data or
expressions have been provided for such distribu-
tion.

In this work, the time-independent energy dis-
tribution of fast test particles in an infinite Max-
wellian background plasma is derived. The aver-
age density and the average energy of the test
particles are also evaluated. The results are
valid for steady-state homogeneous plasmas at
regions far from the boundaries when the leakage
of the plasmas and the test particles can be ne-
glected throughout the energy range of interest.
The energy of the fast test particles and the kin-
etic plasma temperature are such that quantum-
mechanical cross sections can be used."The
treatment is restricted to the slowing-down range;
that is, the velocity of the test particle, V, is as-
sumed to be larger than v, , the velocity of plasma
ions of species i. The electron kinetic tempera-
ture is such that the probability of scattering of
the test particles by plasma ions is larger than the
probability of scattering by electrons. "'

In Sec. II a scattering model is developed, and
the transport equation is formulated for a source
of arbitrary energy dependence. The distribution
of nonfussile" test particles is then evaluated in
Sec. III, and asymptotic solutions far from the
source are obtained for plasmas containing single
ion species as well as multicomponent plasmas.
The effects on the energy distribution of the initial
energy spread of test particles are taken into ac-
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count. The average density and energy of the test
particles are also obtained. In Sec. IV, fussile"
test particles are considered, and their energy
distribution is found. The effect of secondary
fusion reactions involving fussile test particles
on the distribution is discussed. Concluding re-
marks and examination of the validity of the scat-
tering model are then given in Sec. V.

'E-

where the subscripts x and i are deleted for sim-
plicity in notation. Here, E' is the energy' before
encounter, n, is defined as

min

II. THE SCATTERING MODEL

The number of test particles of type x that
undergo elastic or nonelastic scattering with the
particles of an l-component plasma background per
unit volume per unit time per unit energy is given
by the encounter density 4„(E),that is,

l

4„(E)= Q [Zs„(E,T„)+Z~„(E,T„)]N(E)V(E),
v=1

(I)
where N(E), V(E), and E are the density per unit
energy, the velocity, and the energy of the test

' particles, respectively; T„is the kinetic tempera-
ture of plasma particles of species v; and

Zs„(E,T„)and Z~„(E,T„)are the total macroscopic
nonelastic and elastic cross sections, respective-
ly, for scattering of test particles by plasma par-
ticles of species v. In the ease of fast fussile test
particles in fully ionized plasmas, the nonelastic
cross section Z„„(E,T„)=Z~, (E, T;)n, a~„(E,T, ),
where n, and T; are the density and the
kinetic temperature of plasma ions of species
i, respectively, and Z~„and o~„arethe macro-
scopic and microscopic cross sections, respec-
tively, of fusion reactions between the test par-
ticles and plasma ions of species i. Expressions
for the elastic scattering cross sections have been
derived for a wide energy range of test particles
by Husseiny, ~ Husseiny and Forsen, ' ' and
Husseiny and Sabri. '0

In the slowing-down range, the macroscopic
elastic scattering cross section of test particles
of type x and plasma particles of type v is given
in. mks rationalized units by~

where q and M are the charge and mass of the test
particle, respectively, and T„is in 'K.

Consider a fully ionized quasineutral single-ion-
species plasma, with T, =T, =T, and assume that
the velocity of the test particles is in the slowing-
down range described above. The space- and time-
independent transport equation of the test particles
may be expressed in terms of the encounter den-
sity, that is, the rate of encounters per unit vol-
-ume, per unit energy,

E
„

is the minimum energy with which the test
partic1. e can emerge after one encounter with an
ion, and m, is the mass of a plasma ion of species
i, Th. e function Z(E'-E) is the scattering kernel
for encounters leading to changes in the test par-
ticle energy from E' to E. The kernel is related
to the energy-transfer probability function
I(E'-E) by

Z(E'-E) = r(E'-E)Z, (E', T) .

The function 8(E) of Eq. (3) is.a source term which
gives the number of test particles released into
the plasma at energy E per unit volume per unit
time.

The form of the source function depends on the
origin of the test particles, whether they are pro-
duced by fusion reactions in the plasma or being
injected by an external source. In both cases,
the source can be represented by a & function
centered at an initial energy E,; that is,

8(E) =80&(E -Eo), (6)

where 8, is the strength of the source giving the
number of particles released. in a unit plasma vol-
ume per unit time.

For a Maxwellian plasma background, the ther-
mal motion of the plasma ions causes the initial
distribution of the reaction particles to assume
the shape of a Gaussian peaked at E„i.e., a dis-
persed & function. Thus, the number of fast test
particles released into the plasma per unit energy
per unit time between an energy E and E+dE may
be explicitly expressed as

8 (E) dE = ' exp
80 E-Eo 2

v'~U

where U is the width of the dispersed & function
and U«EO. For reaction particles, U=2kT&. In
the case of neutral beam injection, the source is
also expected to be a slightly dispersed monoener-
getic beam. The degree of dispersion depends on
the type of injector, and the source strength is
determined from the beam parameters. In some
cases the source may have more than cine distinct
component.

In the slowing-down range I'(E' -E) has been ob-
tained analytically' and is given by
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r(z'-E) =
(El E+ ~)2 1

0, otherwise,
(8)

as the number of test particles slowing down past
an energy E per unit volume per unit time; this
is given in general by

1/a, n,z' ~E ~E'
I' E'-E—

0, otherwise . (9)

In this case, fssI'(E', -E)dE=1, but the prob-
ability that the test particle will have an energy
E & o.Q' after an encounter is zero The .use of
thi. s model is equivalent to assuming that no energy
is transferred from the fast test particles to the
plasma ions through encounters at impact parame-
ters b & X,. leading to deflection angles X &X„where
X, =h/p VX, and p, is the reduced mass of the two
interacting particles. On the other hand, encount-
ers at impact parameters b & A,

&
which result in a

deflection angle X- X, approximately lead to an
incremental energy loss 4 which is independent
of E and E'. Examination of the dependence of the
differential elastic scattering cross section on the
angle of deflection shows that the elastic scattering
cross section is large at X =X„andit changes
rather slowly in the range 0«X «p„then it drops
more rapidly for X&X,.

The, total elastic scattering cross section has
been found to be 0~,.=4m%.', in the range wherein the
classical theory is applicable. ' This cross section
corresponds to a hard-sphere scattering. In the
quantum-mechanical range this value is modified
by a factor (qq, /4va, SV)', which is less than unity. '
The nature of the encounters can be visualized as
collisions between a charged test particle and
neutral Debye spheres of radius X,.

Using the model of Eq. (9), we may rewrite Eq.
(3) in the form

Z,(z', r)e(z')
E,1)+Z (E,T

(10)
We may also define a slowing-down density T(E),

where a =5'/2m, A,'„A., is the Debye radius; that
is, A~&=ePT, /n, q'„and q, is the charge of a plasma
ion of species i. The energy-transfer probability
function has a maximum corresponding to no ener-
gy transfer, and then it decreases slowly as the
after-encounter energy decreases from E' to an
energy o.'Q', where n, =1 —b,/E'. This energy
range corresponds to distant encounters which are
the most probable events. For after-encounter
energies below o.'Q' the energy-transfer probabil-
ity drops as (E' -E) ' until it reaches a minimum
at an after-encounter energy of , E' which corre-
sponds to the unlikely event of head-on collision.
Thus, the Lorentzian of Eq. (8) can be replaced
by a scattering model of the form

'i"„,Z,(z', T)e(z')G(z', E)
Z„(E',Z')+Z, (z', r) '

where G(E', E) is the probability that a fast test
particle of initial energy E'&E emerges after an
encounter with any energy in the range between
o.,E' and E; that is,

E
G(E', E) = dE" r(z'- E") .

0,~&'
(12)

Substituting for the energy-transfer probability
function from Eq. (8) into Eq. (12)

E'-E+z z'(1 n, )+z '

G(E', E) =

E/o. , &E'&E.

In the absence of absorption and if the test parti-
cles do not escape from the interaction volume,
the slowfng-down density is simply equal to the
number of the test particles produced with initial
energies, Eo, that is, T(E) =8,. Using the model
described by Eq. (9), the relation given by Eq.
(13) reduces to

E' —6 —E —E'
G E', E 0, otherwise,

which can be used into Eq. (11) to evaluate the
slowing-down density.

(14)

III. ENERGY DISTRIBUTON OF NONFUSSILE PARTICLES

In absence of reactions between the fast test
particles and the background plasma particles,
Eq. (10) simplifies to the form

(15)

A. Distribution near the initial energy

To solve Eq. (15) for the encounter density, the
first few encounters involving test particles having
energies near their initial energy are considered,
and an iterative method is used. If the test parti-
cles born with energy E, suffer an encounter at
all, they will be slowed down to Eo —4 on the

This relation applies to fast nonfussile charged
particles released from fusion reactions, such as
n particles and protons. It is also approximately
valid for fast fussile particles at energy ranges for
which the elastic scattering cross section is much
greater than the fusion reaction cross section.
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average after a single encounter. The probability
that a test particle is scattered into an energy
element dE at an energy E between E, —4 and Ep
is I'(Eo-E)dE. The probability of scattering
outside this range after a single encounter is zero.
Using the source function given by Eq. (6), the
density of the first encounter is

e ~ edE'6(E' E,) =—',
e, (E) =(

0,

E, -~&E&E,
E(E

(16)

Here, the subscript 1 indicates the encounter num-
ber. Following the sequence of encounters of 8p
particles per unit volume per unit time as they

slow down from an initial energy Ep until they
reach the cutoff energy E, below which the slowing-
down model is not valid, Eq. (15) can be solved in
a stepwise fashion. ' Thus, the energy range of
interest is divided into intervals of equal width 4
with the upper energy taken as the initial energy.

To determine the density of the second encount-
er, 4', (E), two situations need to be considered,
namely, when the energy before the second en-
counter, E, is such that E, —~~E —E, and
Ep- 26~E ~Ep —6; thus,

e,(E) = e,(E, -E)/~',
=8(E E,+2m)/~', E, -2~ E E, -~
=0, E~E

Similarly, the density of the third encounter,
e,(E), is

4', (E) = 80(EO —E)'/2 4', E, s~E~E„
=80[64(E, E) —2(—EO —E)2 —362]/2E', Eo —2r ~E~E —b. ,

= 80[(EO —E)' —6b.(EO —E) +9bP]/2&', EO —3&—E E —2a—,

E «Ep-36, (IS)

and that of the fourth encounter, 4'4(E) is

=80[3(E0—E)3 —246(EO —E)'+60K'(Eo E) —44K']/6', E-o —36 E ~ED —2d

=80[64& —(E0 —E) +124(EO —E) —48K (EO E)]/66, -Eo —4&~E ~EO- 3a
E~E, -4a.=0

e,(E) =e,(E, -E)'/6~', E, a~E «E,'

= 80[463 —3(EO —E)'+ 126(EO E) —12bP(E—
O
-E)]/664, EO —2h~ E ~ Eo —b,

Figure 1 shows the behavior of the encounter
density for the first four encounters. This only
describes those test particles which have already
made an encounter. The complete solution for the
total encounter density is clearly the sum over the
source particles that have suffered no encounters
plus the sum of all the encounter densities calcu-
lated separately for each encounter. Discontinui-
ties in the individual encounter densities lead to
discontinuities in the total encounter density. The
complete solution thus requires going through the
above calculation L times, where L is the number of
encounters in the slowing-down range between E,
and E;, that is, I, =(E, E,)/6 In the —first st.ep
of energy loss, that is, in the interval between E,
and E, —b, the solution for the encounter density
can be represented by the series

— 3 e, /4a
2 ao/3h

I

~

x' /
Eo 4h Eo 3h Eo 26 Eo Eo E

where I designates the number of the interval.
Similar series can be obtained for other intervals.

The number of intervals is usually very large;
for example, for 3.03-MeV reaction protons re-
leased in a background deuteron plasma of na

(E E)&-|
4', (E) =e,p (' )

&=1

(20) FIG. 1. Transient behavior of the encounter density of
the test parhcles.
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B. Asymptotic energy distribution in single-ion-species plasmas

For energies below the source energy Eo a solu-
tion of the integral equation (15) is 4(E) =t,
where C is a constant that can be obtained from
Eqs. (11) and (14). The slowing-down density is
independent of E, that is,

Y= dE'4 E' =CA, (21)

but the fact that the slowing-down density is also
given by Y =8, in a nonabsorbing medium can be
used to give the encounter density as

= 2 x 10"m ' and TD = 60 keV, the number of en-
counters is I.=4.66 x 10". However, the first few
encounters give the transient behavior which indi-
cates the presence of oscillations in the encounter
density similar to the well-known Placzek wig-
gles. ' The four encounters described above take
place in about 10 "sec, while the encounter den-
sity tends to smooth out to a Gaussian when the
testparticles' energy approaches the thermal energy
range, and hence, asymptotic solutions may be
sought by considering scattering events below the
source energy.

The energy distribution of the test particles may
be normalized by using Eq. (24), and hence Eq.
(23) may be rewritten in the form

N(E) 3E'/'
2(E»2 -E;/') (25)

The average energy E in the range between E,
and E„canbe directly found from Eq. (25); thus

0 8(E5/2 E5/2)
E3/2 E3/2

I1

(28)

If the upper energy is such that E„»E„then E
=0.6E„;hence, the average energy is close to the
upper part of the energy distribution. However,
this is only true in the slowing-down energy range.
In this range E is rather insensitive to changes in
the ion temperature.

As an example, let us consider reaction protons
which are produced at an energy E,= 3.03 MeV by
D-D fusion reactions. The number of reaction
protons with energy between E~ and E~+dE~ in an
infinite homogeneous deuteron plasma of nD
=2X 10 ' m ' and TD=60keV is obtained from Eq.
(23); thus

e(E) =e,/~. (22) N (E )dE =7.8 &&10"&E~dE,Protons/m'

Thus, the density of test particles having energies
between E and E +dE is

&,m,.WE dE
N(E) dE =

(
'/4' ),( ),/, particles/m' .

(23)

The average number of test particles that have en-
ergies between E, and some upper energy E„below
which the asymptotic solution is valid can be ob-
tained from Eq. (23) by integrating over E, thus,

7 396 ~10 '8 A

n,Z'Z', .

E, & E„&EO (24)

where A, and A are the atomic masses of plasma
ions and test particles, respectively, Z,. and Z are
the charge numbers of plasma ions and test par-
ticles, respectively, and E„andE, are in MeV.
The value of E, is arbitrary; however, a value of

E, =2T, , where T,. is in MeV, is found to be ap-
propriate. 4 The upper limit can be selected very
close to Eo, since the encounter density is ex-
pected to smooth after several encounters, while
a slight reduction in the energy of the test par-
ticle is expected to occur after very many colli-
sions. For deuteron pla, sma at 60 keV, we find
that &=6.24 X 10" MeV and that 1.6&10 7 en-
counters would take place to reduce the energy of
a test particle by 1 keV.

0.12 &E& & 3.03 MeV (27)

where E~ is the proton energy in MeV. The aver-
age reaction proton density in the slowing-down
range N~ can be found using Eq. (24) or Eq. (27).
If @re chose Ez a,s 3 MeV, then N& —2.46 && 10 pro-
tons/m'. The average number of reaction protons
in the slowing-down range slightly exceeds the
density of plasma deuterons. This is because the
density of the deuterons is assumed to be con-
stant while protons are continuously produced in
an infinite nonabsorbing medium. On the other
hand, the average proton energy E~ = 1.8 MeV.

Since current interest in thermonuclear research
is primarily devoted to plasmas composed of equal
portions of deuterons and tritons, we may consider
the case of reaction & particles released in a
plasma of TD =T~ = T, =20 keV and nn =n~ =n, /2
= 10"m ', where subscripts D and T refer to the
plasma ions D and T, respectively. The ion mass
may be taken as m, = (mn+n~~)/2. Since o. par-
ticles are released at 3.52 MeV, the value of E„
may be taken as 3.5 MeV; thus N =3.25X10"
alphas/m' and E = 2.1 MeV.

C. Asymptotic energy distribution in a multicomponent plasma

In a multicomponent plasma the encounter den-
sity at energies E&Eo may be written as
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e(z) = g e„(z,r„)
"s &„,Z, (Z', T„)e(z')

z, (z')

where the summation is over all the (l —1) ion
species in an I-component plasma, and Z2(z) is
the sum of the macroscopic cross sections of
elastic scattering of test particles with each of
tbe plasma components. From Eq. (2),

(26)

Z, (Z)= QZ, (z, r„)=~, gr. .
P V

The kinetic temperatures of the different species
of ions are likely to be equal if the equilibration
time is less than the plasma confinement time,
and hence the sum in Eq. (29) may be replaced by
(/ —1)T where T =T„Thet.otal scattering cross
section depends on neither the mass nor the den-
sity of the plasma constituents. The ratio
Z3(E, T„)/Z2(E) is independent of energy since
both of the corresponding microscopic cross sec-
tions a'2(z, T„)and o'3(E) depend on E in the same
manner. Similarly, the slowing-down density is

(29)

s &„,Z, (Z', r„)(Z' E+~)e(z')
Z, {E')

(3O)

where A„and Z„arethe atomic mass and the
atomic number of the vth species. The average
test particle energy is the same as that given by
Eq. (26) for the single-ion-species plasmas. The
choice E, depends on the ion kinetic temperature
for each plasmas species. If these are all equal
to a single temperature T, , then E, = 2k'',- can be
chosen as before; otherwise, a number average
temperature may be selected, namely

T, =g n„r„/n, . (33)

Here n, is the total ion density. We may recon-
sider the example of reaction alphas in D-T plas-

where G(E', E) is evaluated using Eq. (12) for en-
counters involving plasma particles of species v.

Using the same approach as in Sec. IIIB, the
energy distribution of the test particles is

1$rEO82E~/2

Z'8 (2M)'/'g (n„s'„/m„)'

where nz„is the mass of a particle of the vth spe-
cies. The average density in the energy interval
between E, and E„is

396 )( IO21.6 (Z3/2 Z3/2)
particles/m',z' A „(n„z„'/&„)

(32)

mas which is discussed in Sec. III B. Using the
mass of deuterons and tritons instead of the aver-
age mass and using Eq. (32) to determine n, , the
result given in Sec. III 8 is found to overestimate
n by about 4.17%.

rg
e(E) = ', dz'e(E')4 (E')+e(E),

E
(34)

where CU(E') is the encounter density that arises
from a source of unit strength at E', and the value
of E „extends to the upper bound of the energy
range of the source spectrum. If O'U(E) is taken
as its asymptotic value, that is, I/b, , then tbe
energy distribution of the test particles is obtained
using Eqs. (7) and (34); thus,

8«g E~~2
N(E) dz =

q2(2M)i/2

m UkT) z U

+—'~ I erf ' dE E E
nq2) g U

For E-E„the second t'erm between curly brack-
ets is dominant while the first term is more sig-
nificant at E&EO. In the case of E &ED the energy
distribution of Eq. (35) reduces to a form approxi-
mately given by Eq. (23).

IV. ENERGY DISTRIBUTION OF FUSSILE PARTICLES

In the case of neutral beam injection the test
particles are fussile and may suffer fusion reac-
tions in the course of slowing down; consequently,
their energy distribution differs from that obtained
in the absence of fusion reactions. The same sit-
uation takes place for fussile reaction particles,
such as T and 'He, produced by D-D reactions.
The time-independent spatial-independent trans-
port equation governing this process is

Zp(E, T,)N(E)V(E).
=-Z, (z, r,)V(z) (E)

1 r E+b,
Z (E', T,)N(E')V'(E')dz+8 6(z -E ) ~S

(36)

D. Dispersed source

Thus far a monoenergetic source of test particles
has been considered; however, the solution of the
encounter density is also the Green's function of
any other source energy spectrum. Thus, for a
test-particle source of an arbitrary energy depen-
dence, the encounter density is



ENERG Y DISTRIBUTION OF FAST TEST.. .I.. . 1665

Since oz(E, T,.) & o~(E, T,), the encounter density
does not significantly deviate from its behavior
iri the absence of absorption, it can be expanded
by a Taylor series about E. Retaining only the
first two terms of the expansion, Eq. (36) becomes

Z ~(E, T, )N(E) V(E) =——[Z~ (E, T;)Ã(E)V(E)]

+8O5(E -Eo), (37)

which can be directly integrated to give

8 exp[ (2/6-) Jz dE' Zz(E', T,)/Zz(E', T&)]
b,Z~(E, Tq)V

(38)

This is essentially the distribution obtained for
nonfussile test particles, Eq. (23), modified by
the exponential term.

The, energy distribution can be explicitly eval-

uated for a given plasma composition once the
fusion cross section az(E', T,) is specified. The
dependence of the fusion cross section on T, is
important only when the energy of the fussile test
particles approaches the plasma-ion temperature.
For plasma ions of T, «E, the cross section of
fusion reactions involving test particles and plas-
ma ions is independent of T, and depends only on
E. Hence, the cross section may be represented
by segments of the form

o~)(E) =a+uE", E, ~E ~E, , (39)

where E, and E, are the limits of the energy range
for which the expression of Eq. (39) is valid and

a, u, and y are constants to be specified by a fit
to the cross section data. Using the approximate
relation of Eq. (39) the energy distribution of
fussile test particles may be obtained in the spe-
cific energy range between. E, and E„that is,

(2M)'~~8 (E)~ ' 1 2u(E' -E'")
N(E 2rnp (E T)E qI rEo (E, T) E E + y+2, E —E —E (40)

be approximated by the following relations:

8.3 —27.8E~, 0.12 & E~ & 0.25,

0.25 &E &0.5, (41)

0.5&E & 1.0,
on~(E~) = 2.7 —5E~,

0.2,

where E~ is the triton energy in MeV and our(Er)
is in barns. Assuming that no significant reactions
will take place above E~=1 MeV, the number of
reaction tritons having an energy between E~ and
E~+dE~ is

where we used the fact that the product o'~(E„T,)E, .
=a~(E, T,)E is constant. The overall energy dis-
tribution may be constructed by considering each
energy segment separately.

Let us consider, for example, the case of deu-
teron plasma which is discussed above in Sec. III 8
and obtain the energy distribution of the tritons
which are ~produced at 1.01 MeV from D-D reac-
tions. %e may take E, =120 keV, E„=1MeV, and
neglect the T-T fusion reactions between the reac-
tion tritons. The fusion cross section o»(Er) be-
tween reaction tritons and plasma deuterons may

1.714 x 10"v'E~ exp(92.96E~ —207.573E~), 0.12 ~ E~ —0.25

N~(E~) = 4.633 x 10'8&E~ exp(30 24E~ —37..3E3~), 0.25~E~~ 0.5

4.775 x 10"v'E~ exp (2.24E~r), 0.5 —E —1.0 . (42)

In contrast, the number of tritons having an energy between E~ and E~+dE~, neglecting fusion reactions,
can be obtained from Eq. (23), and the result is

N~(E~) dE~ = 4.486 x 10'Ov'E~ dEr, 0.12 ~ E~ —1.0 MeV. (43)

Comparison of Eqs. (42) and (43) shows a significant drop in the energy distribution as E~ approaches
0.12 MeV. The ratio between the energy distribution including fusion and the distribution in absence of
absorption is 1 at 1 MeV, 0.186 at 0.5 MeV, 0.038 at 0.25 MeV, and 9.13 x 10 ' at 0.12 MeV.

For u =0, the average number density in the energy range E,~ E«E, can be readily evaluated; that is,

1.1094 x 10"8oA,P(1, 3) aE,
~, &'&',vX «gj (E.)

(44)x[E,' F(—', 1,—', -'; 1, —', -', -'; aE'/so~, (E))-E,',F4(S, 1, 5, —,'; 1, -', -', ';aE'/~a~, (E,))]-
where P(1, 3) is the beta function and ~F4 is the generalized hypergeometric series. Similarly, the mean
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energy in the range E, E —E, is

P (1, 5)[E,'4F, (z, —,', 4, 2; —,', -', , 2, —,'; aE23/ho'«(E, ))—E,',F 4(z', -,', —,', 2;-,', z', 2, —,'; aE', /AE, o«(E', ))]
P(1, 3)[E,'4F, (,', 1-, —,', —,'; I, -', 3,—,';aE2/Ao«(E, ))-E,'4F,(3, 1, —,', —,', I,-', -', , -';aE', /DE, o~, (E,))]

'

Numerical integration may become necessary for cases when u&0.

(45)

e(E) = (B,/A) e~[- (1/q)e'"-s&~"'], (46)

where g =e', and y=0.5772. . . . Aside from some
approximations used in the derivation of Eq. (46),
the result give'n by this equation takes into account
contributions from both large-angle scattering
events and small-angle encounters. Comparison
between the result obtained in Eq. (22) and the ex-
pression given by Eq. (46) shows that they differ
by the exponential factor appearing in Eq. (46).
The exponential factor drops very fast as Ep E
increases above A; hence 4(E) =0 for E&Ep —A,

while the exponential drops from 0.57037 to 0.37367
as E changes from E =E, to E =E, —~. Thus, the
use of Eq. (22) to calculate the encounter density
gives a value higher than that obtained from Eq.
(46) in the range of small scattering angles. Never-
theless, contributions of the large-angle scattering
events to the encounter density are negligible com-
pared to contributions from events leading to small
deflection angles. Consequently, the approximate
model of Eq. (9)which is used here is fairly accurate
for the above evaluation of the energy distribution and
for the calculation of the average parameters of
energetic test particles released in background
plasmas in the slowing-down range.

The distributions derived above may be compared
with results obtained from Fokker-Planck forma-
malism. Thus far such results are not available
in explicit form. However, an estimate of the
space- and time-independent slowing-down energy
distribution may be obtained from available ex-
pressions of the energy transfer rate evaluated by
the Fokker -Planck approach. Comparison between
the distribution given in Eq. (23) and the energy
transfer rate derived using the Boltzmann colli-
sion operator' shows that

~(E)dE Bp lnA(E) dE
( dE/dt)-

where

(47)

V. CONCLUSIONS

The encounter density used in the above calcula-
tions is based on the model given by Eq. (9) and is
asymptotically given by Eq. (22). In this model,
large-angle encounters are not taken into account.
The encounter density derived by Adler and Dorn-
ing using the nonapproximate model of Eq. (8) is
given in the present notations by'

(48)

An expression has been obtained using-the Rosen-
bluth, MacDonald, and Judd (RMJ) form of the
Fokker-Planck equation. " Substituting that result
into Eq. (47) we get for the range of validity of
Eq. (23)

NE dE= Bpm, vE lnA(E) .dE
m n, (qq,./2mcp)'(2M)'~' InAc

(49)

where lnAc is the classical Coulomb logarithm.
Equation (49) is simila, r to Eq. (23) except from the
factor InA(E)/InAc. This factor approaches unity
if A~ is replaced by the quantum-mechanical
equivalent. In fact, using the formalism employed
in deriving Eq. (23) for a. Rutherford cross section
model with a classical cutoff angle gives a result
in full agreement with that estimated from the
solution of the RMJ equation for the energy-trans-
fer rate. ' A detailed comparison between the en-
ergy transfer rates obtained from the Boltzmann
formalism and those obtained by the Fokker-Planck
approach has been given in Refs. 5, 10, and 14.

Monoenergetic nonfussile test particles released
in an infinite plasma containing a single ion species
are found to assume a discontinuous encounter
density near their initial energy E„asshown in
Fig. 1. After several encounters the distribution
of these particles smoothens and asymptotically
behaves as E' ' in the slowing-down range. This
is given by Eq. (23). In the case of reaction parti-
cles produced by fusion events in a thermonuclear
plasma, the average number of reaction particles
in the energy range 2kT,.—E «E, is sensitive to
the plasma ion temperature, Eq. (24). Neverthe-
less, the mean energy does not vary significantly
with T,, and it has a value close to the initial en-
ergy as indicated by Eq. (26). Similar results are
also obtained in Eqs. (31) and (32) for plasma con-
taining several ion species, which is practically
the case in all thermonuclear plasmas of interest.

Considering a spread in the initial energy of the
test particles released in the background plasmas,
the source is represented by an initial Gaussian
distribution centered about the most probable en-
ergy of production, Ep, Eq. (7). After several en-
counters the energy distribution of the test parti-
cles, Eq. (35), assumes the same behavior ob-
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tained for monoenergetic reaction particles for
energies lower than Eo. At energies higher than
Eo the distribution is essentially a Gaussian with
high-energy tail. The average number of test par-
ticles in the energy range 2kT& —E — is of the

same order as that obtained from monoenergetic
test particles. Presence of fusion reactions be-
tween fussile test particles and plasma ions causes
the asymptotic distribution, Eq. (38), to decay
faster as the energy decreases.
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