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The comparison between the classical and quantum theories of optical coherence is presented by using an idea
used. in the problems of modulation of light beams of classical fields. In such problems it is assumed that it is
possible to vary the mean light intensity of a beam without changing its statistical properties defined by a set
of coherence functions. We generalize this idea and introduce precisely the class of optical fields which are
consistent for modulation. It is shown that all the quantum fields of this class have a positive P representation
and are strictly equivalent to classical fields. Moreover, when the field is assumed to be stationary, an
interpretation of this condition is given which in particular makes precise the relations between photon-
counting and light-intensity measurements. Finally it is shown that all the quantum fields without P
representation cannot be consistent for modulation, and the condition of consistency for modulation appears
as a characteristic property of fields strictly equivalent to classical ones.

I. INTRODUCTION

About ten years ago there appeared a large num-
ber of papers dealing with the relations between
classical and quantum theory of coherence. The
list of such papers is not of much importance for
the following discussion. Since that time, the
interest in such problems has been decreasing,
even though many questions have not been com-
pletely clarified. We will start by very briefly
summarizing the actual point of the situation,
which seems characterized by two facts.

(a) The statistical properties of optical fields
are completely described by a set of coherence
functions which can be defined "classically" or
"quantum mechanically. " The quantum theory is
more general than the classical one, because any
classical coherence function can be associated
with a quantum-mechanical coherence function,
but the inverse is not true, and there are pure
quantum fields without a classical equivalent in the
sense of coherence functions. The best example
of such a field is the k-photon field.

(h) Nevertheless, even with the development of
very fast electronics or of new kinds of optical
sources, such as the lasers, it is extremely diffi-
cult to perform experiments like interferences,
photon counting, or coincidences of photons on
fields which are not classically described. In
particular, there are no results published con-
cerning such experiments for a k-photon field.

From time to time, nem papers concerning this
kind of problem are published, but in several
years no significant change has been reported in
the situation briefly summarized by the two pre-
vious facts.

In this paper we try to present some clarifica-
tions of this problem and explain the difference

between the pure quantum fields and the classical
ones. For this precise purpose we introduce a
condition of consistency for modulation which is
implicitly assumed in almost all experiments of
statistical optics on classical fields.

By ".modulation of an optical field" we mean the
possibility of varying the field s mean light inten-
sity without changing its statistical properties
defined by a set of coherence functions. This
property is currently assumed, for example, in
the use of a passive light attenuator. We do not
study precisely the physical properties of light
modulators, which is certainly an interesting
problem.

More precisely, we will state that a given field
is consistent for modulation if it is possible to
construct theoretically another field with the same
statistical properties and a different mean light
intensity. But we do not discuss the problem of
the modulation itself, which is the transformation
of the initial fieM into the modulated field, and
particularly the physical devices which allow this
transformation.

After a precise definition of the condition of con-
sistency for modulation, we show that it is always
satisfied for classical fields, but not for quantum
fields. Moreover, the theoretical discussion will
show that this condition is a characteristic prop-
erty of classical fields in the sense that any quan-
tum field which cannot be represented classically
also cannot be consistent for modulation. Before
this discussion, we present a short summary of
classical and quantum theories of coherence.

II. OPTICAL COHERENCE —CONSISTENCY CONDITION
FOR MODULATION

In this section we begin with a short survey of
standard results concerning the theoretical des-
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cription of optical coherence. This survey is evi-
dently not complete, and we present only the ma-
terial necessary for understanding the following
dls cuss ion.

It is well known that coherence properties of
optical fields are well described by a set of co-
herence functions. These functions are higher-
order correlation functions, and can be defined
classically" or quantum mechanically. '4

In the classical theory of optical coherence it is
assumed that the electromagnetic field is a ran-
dom field. For example, the electrical field
E(r, t)=E(x) is not a deterministic function, but
rather a stochastic process E(x, ~), where &o is a
point in some arbitrary probability space (0,F, (P).'
The process E(x, &d) is evidently real, but to de-
fine correctly the light intensity of a quasimono-
chromatic field it is convenient to associate with
E(x, &0) its analytical signal Z(x, &u).

' This function
is directly obtained from E(x, &0) by a linear fil-.
tering, and there is the same information in E as

. in Z. Now Z(x, &d) is a complex stochastic process,
and we introduce the coherence functions of the
field defined by

I'(n™[(x}]=(Z*(x) "Z*(x )Z(x )" Z(x ))

(2.1)

in which the angular brackets mean an ensemble
average on the probability space. The complete
set of coherence functions I'"'"'[(x,}jfor every n,
m, and J(x(}gives a complete description of the
statistical properties of the field, and particularly
the properties of optical coherence.

In quantum theory the electric field E(x) is an
operator and the statistical properties of the field
are introduced by means of an appropriate density
matrix p. It is possible to introduce quantum co-
herence functions defined by

G(s'm)[(x(}]= Tr[pE (x ) ~ ~ E (x )

x E'(x„„)~ ~ ~ E'(x )), (2.2)

in which E'(x) are obtained from E(x) by using its
positive and negative frequency parts. This pro-
cedure is very similar to the obtainment of the
analytic signal of E(x), but in quantum mechanics
E'(x) and E (x) are still operators, and more pre
cisely are respectively annihilation and creation
operators of photons.

Even if the physical backgrounds of classical
and quantum theories are very different, the co-
herence properties are defi.ned very similarly
by a set of coherence functions. The structures
of these functions are different, and G'"' ' is not
necessarily a higher-order moment of an appro-
priate stochastic process.

Thus it is convenient to introduce the concept of

strict equivalence between the two descriptions.
A quantum field statistically defined by a density
matrix is strictly equivalent to a classical one
if there exists a set of classical coherence func-
tions I'("' )[(x,.}]identical to the quantum coherence
function G("'")[(x(}]for every n, m, and (x,}. For
such a field it is impossible to perform experi-
ments which cannot be completely described clas-
sically. Again, if it is not possible to find a clas-
sical equivalent of a given field, we express this
fact by saying that this field is a pure quantum
field. There are good examples of such fields,
particularly the k-photon field for which the co-
herence functions G'"'"' are equal to 0 if n&k.

Finally we note that in general the coherence
functions G "' ' are only used for n=m. This is
the case, in particular, in the original papers of
Glauber. For most problems this restriction is
sufficient. Nevertheless, it is no longer possible
to take n= m in the following discussion if we hope
to study, for example, the case of nonstationaxy
monomode field which can appear in some inter-
esting nonequilibrium systems. Thus, in all the
following, we use the G'"' ' functions instead of
the G'"' ones.

Now let us define the condition of consistency
for modulation. This condition is only a precise
presentation of assumptions implicitly introduced
in some recent works concerning modulation of
light beams. "'

At first let us consider a classical field des-
cribed by the stochastic process E(x). We will
say that the field described by XE(x) is obtained
from the first one by a modulation with a rate A, .
It is perfectly evident that the coherence functions
of the two fields are connected by

F( ~ [(x }] )(n+mZ (n, m)[(x }] (2.3)

where I'~("™is the coherence function of the modu-
lated field.

Now we will define the modulation for a quantum
field defined by a density matrix p. This field is
said to be modulable by a rate X if it is possible
to find a new field defined by p~, such that for
every (x,},n, and m we have

g&nim)[(x }j yn+mg(n, m)[(x }j (2.4)

Finally we will say that a quantum field is con-
sistent for modulation if it is modulable at any
rate X. That means that for any X it is possible
to find a density matrix p, such that Eq. (2.4) is
valid for every (x(}, )), and m.

It is clear that any classical field is consistent
for modulation. For quantum fields, this property,
which depends only on the density matrix p, is not
necessarily true, and therefore will appear as a
useful tool to compare the coherence properties
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of classical and quantum fields.
Before ending this section it is important to

notice that our condition of consistency is a con-
dition for a given entire field. We will not dis-
cuss the process of modulation, even if it is phys-
ically possible to transform the initial field into
the modulated field. Then the condition of consis-
tency is only defined as a particular property of
the field, or of its density matrix. This point is
particularly true for pure quantum fields, as for
example the k-photon field, because, as noted
previously, it is difficult to be reali. zed rigorously
in the laboratory. Thus its modulation is still
more difficult to conceive. Nevertheless, when
A. &1, it is perfectly possible, as will be shown,
to associate to its density matrix p the matrix
p~ for which E(l. (2.4) is satisfied, which means
that this field is modulable at a rate'X~1.

Z(x; ~) =Z((0)u(x), (3.1)

where Z(co) is an appropriate random variable,
and g a deterministic function. Thus the random-
ness of Z(x; &u) depends only on a random variable.
In this case the coherence functions defined by Eq.
(2.1) can be written

I (n, m)[(& )] (ZgnZm) (n, m)[(x )] (3.2)

where u'"' '[(x,)] is a spatiotemporal function de-
fined by

u'"'"'[(x;)]= *(x,) u*(x„)u(x„„)~ ~ u(x„,„).
(3 3)

It appears from E(l. (3.2) that the set of classical
coherence functions is completely defined by the
set of all the moments (Z*"Z") of the random vari-
able Z((o), and by the deterministic functions

(num&[fx )]
Now let us consider a quantum single-mode field.

The operators E'(x) can be expressed in terms of
annihilation operators a of the single mode by'

8"(x)=i(-,'-k(o )' 'u, (r)e '"&'a = v(x)a. (3.4)

III. CONSISTENCY FOR SINGLE-MODE FIELDS
WITH P REPRESENTATION

In this section we will apply the concepts previ-
ously introduced to the case of arbitrary single-
mode fields. The extension to multimode fields
which appears in the following only introduces
some complications in the mathematical expres-
sions.

A classical single-mode optical field is described
by the complex stochastic process

Z(r, t; (d) =Z(~)u„(r)e '"(',

written as

p= P Q cM Q d Q. (3.6)

There are some conditions on P(((.} in order to
obtain a density matrix in E(l. (3.6). Particularly,
P(o.') must be real (but not necessarily positive},
and normalized

(3.7)

Moreover, if the field is stationary, P(c() is only
a function of

~

n
~

', which is sometimes assumed
in the following. This assumption is not very
restrictive at optical frequencies. Indeed, as no-
ticed by Glauber, ""at extremely high frequency
we cannot be said to have any a

priori

knowledge
of the time -dependent parameters". Moreover
we have noticed in another context" that even if
the field is nonstationary, the only distribution
which can be obtained in many experiments is
connected with the stationary equivalent field
whose P representation is deduced from P by in-
tegration of the phase of n. Nevertheless, we will
consider in the following the general nonstationary
situation.

Finally we suppose that the function P(n) is
sufficiently regular, and in particular that its
singularities are integrable. We exclude from
our discussion concerning P(e() singularities
stronger than those of 5 functions, as for example
derivatives of 5 functions.

If p has a P representation, the calculation of
quantum mean values becomes very simple. In-
deed, as coherent states are eigenvectors of the
annihilation operator

an=en,
we obtain directly

Tr[pgtnuts]
Jt P(~)~ Qtlc(tll d2~

(3.8)

(3.8)

This expression is very similar to the classical
moment of a stationary mode

The coherence functions defined by E(l. (2.2) can
be written

O'" "'H.,)]= T [p ™"]"""'K.,)l, (3.6)

and it is clear that the functions v'"' '[(x,)] are
proportional to the functions u'"'"'[(x,)].

Thus it appears that in the case of a single-mode
field the comparison between classical and quan-
tum theories of coherence is finally only a com-
parison between classical and quantum moments
(Z*"Z") and Tr[pa™a"].

For this purpose let us first suppose that the
density matrix has a P representation in terms
of coherent states defined by
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(Z nnZm) p(+)+ nn+m d2+ (3.10) The corresponding density matrix can be expressed
as

Tr[p1at"a"]= X~ Tr[pa~"a"]. (3.11)

If we assume that p and p„have a P representa-
tion, this condition becomes

J
Pi(P)P""u d'P=X"'" fP(P)P""P d'P

(3.12)

for every', m, and X. This equation can be written

[P,(u) X" P( -u)] u*" ud'u=0. (3.13)

Let us introduce the function P'(u) defined by

(3.14)

By a simple change of variables we obtain the
new form of Eq. (3.13)

P' n -P n n*"n d'a=0, (3.15)

which must be valid for any n and m. Thus we
deduce that P'(u) =P(u), which gives

(3.16)

With this background we can discuss in detail
the problem of strict equivalence in the case of a
single-mode field.

If P(u})0, it can be considered as a probability
distribution because its integral is 1. Evidently
P(u) is not strictly a probability distribution de-
fining in Eq, (3.6) a mixture of projectors

i
u)(u i,

because the coherent states are not orthogonal.
But concerning the moments defined by Eq. (3.9),
P(u) can be considered as a probability distribu-
tion. Moreover we can say that a stationary single
mode with positive P(u) is strictly equivalent to a
classical field, by using the definition given in
the previous section. Indeed it is clear that if
P(z) =P(u), all the classical and quantum moments
are equal, and classical and quantum coherence
functions can be identical because g(" ")[(x,]] and
v(n™[/x;j)are proportional.

In conclusion, the problem of strict equivalence
can be reduced to the positivity of the P repre-
sentation.

Now let us consider the problem of consistency
for modulation of our si.ngle mode, as defined in
the previous section. The function G„'"' )[(x,j] in
Eq. (2.4) is obtained only by changing the density
matrix p„.Indeed, the functions v'"' '[(x,)] in Eq.
(3.5) are independent of A. because they are only
spatiotemporal functions and independent of the
modulation of the light intensity. Consequently,
the condition of consistency for modulation given
by Eq. (2.4).can be written

p, =
~

(I/X')P(u/I)
i
u)(u

i
d'u. (3.17)

For the following discussion it is interesting to
write this equation in another form. For this pur-
pose we calculate th matrix elements (m i p2in) of
p)„in the n-photon basis. Starting from the stan-
dard relation

(miu)=e )"'/2
(m! )'" '

we obtain directly from Eq. (3.1V)

(3.18)

(m
i p, in) = —,P —e-,)„, , „,d u,

By taking Xo.'= n, this expression becomes

(!(.u')*" (Xu')
(n! )1/2 (m) )1/2

which shows that p„canbe written in the conve-
-nient form

p, = P(u)izu)(iud d'u, (3.20)

(3.21)

Thus the only condition for p~ in order for it to
be a density matrix is to be positive definite,
which means that for any vector if) we have

(3.22)

By using Eq. (3.20) this condition can be written

where iAu) is the coherent state corresponding to
the eigenvalue Xa.

In conclusion, the optical single mode defined by
P(u} is consistent for modulation if for every posi-
tive X, the matrix p1 defined by Eq. (3.20) is a
density matrix.

We will now show that this condition of consis-
tency for modulation is not necessarily true for
all quantum fieMs, which means that there are
fields which cannot be arbitrary modulated. This
fact is directly connected with the properties of
the matrix p„defined by Eq. (3.20), which is not
necessarily a density matrix. Let us specify some
properties of this matrix.

It is clear that p, is Hermitian because P(u) is
a real function. Moreover, we have Trp„=1, be-
cause
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P a Xn 2d2o. ~0. (3.23)

y2n
1 (y I

2&
2 2

q ( )= P(i@i') e" ' ' d'n. (3.25)

It is clear that if P(~ n
~

') —0, then q„~0 and the
field is consistent for modulation. Now we mill
discuss the inverse property.

IV. CONSISTENCY AND STRICT EQUIVALENCE FOR
A STATIONARY SINGLE MODE WITH P REPRESENTATION

Let us consider a stationary single-mode optical
field which is assumed to be consistent for modu-
lation. We suppose that its density matrix has a
P representation, which'means that P(~ n

~

') is
such that for every A. the matrix p„defined by Eq.
(3.20) is a density matrix. This assumption means
also that the q~(n) defined by Eq. (3.25) represent
the probability 6' of a random variable N. This
random variable represents the number of photons
inthe mode whenthe field is defined by the density
matrix p~, because

q, (n) =6'(N =n) =(n
~
p, ~n). (4 1)

I.et us first calculate q~(n) from Eq. (3.25). We
begin by integration over the phase 8, and we ob-
tain very simply

pm"
q~(n) = P(m)e ~", dm,

0

where p =X', m=
~

n ~', and p(m)=»P(m)

(4.2)

If P(o. )& 0, it is clear that this equation is valid.
This fact can evidently be obtained without calcu-
lations because if P(n) 0—, the field is strictly
equivalent to a classical one, and we have shown
that all classical fields are consistent for modula-
tion.

In the next sections we will show the inverse
property: If the field is consistent for modulation,
then P(t») ~ 0 and the field is strictly equivalent to
a classical one.

Before leaving this section we can indicate the
form of the problem when the single mode is as-
sumed to be stationary. In this case, as noticed
previously, P(n) is only a function of

~

n
~

', and
can be written P(~ o.'~'). Evidently the density
matrix p is diagonal in the n-photon basis. The
same result is true for p~ defined by Eq. (3.20).
Indeed, since

(m~Xn)=e ~ ' ' ~2P.~)"/(mt)'~2 (3 24)

it is clear that after integration over 8, where
t»=re', we obtain(m~ p~~n) =0 if m&n.

Thus in this case p~ is a density matrix if and
only if q„=(n~p„~n)~0 for every n This .quantity
can be expressed in terms of P(!n

~

') by

The assumption of consistency for modulation
means that for every p, qz(n) is the probability of

a random variable Ã~, which is evidently a Poisson
compound random variable.

Now let us discuss the properties of the family
of random variables N&.

First we suppose that p(m) is a 5 distribution,
which implies that N~ has a pure. Poisson proba-
bility distribution written as

q~(n) = e "o (pm, )"/n! . (4.3)

Let us introduce the random variable X~ defined as

Xq= (1/p)Nq

Its mean value and variance ar' e

z[x,]= m„Var[x,] = m, /p,

(4 4)

(4.5)

P» (A, m, ) =(P(x~c A). (4 7)

Since the convergence in the quadratic mean de-
fined by Eq. (4.6) implies the convergence in dis-
tribution, "we can write

limP» [A, m,]=1, if m, cA,Xy

=0, if mo)A. (4.8)

Now let us consider the random variable X& de-
fined by Eq. (4.4) where the distribution of Nz is
q~(n) from Eq. (4.2}. It is clear that the probability
P» (A) is 'obtained by the same kind of equation as
q~(n}, and we obtain

P» (A) = P(m)P (A;m) dm, (4.9)

which is the extension to the distribution functions
of Eq. (4.2). By taking the limit we easily obtain

Ii~, (A) = P(m) dm. (4.10)

The limit of P» (A) is necessarily non-negative, as
limit of non-negative functions, and the result is
that for every A we have

p (m) dm & 0.
A

(4.11)

This fact means that p(m) cannot have negative
values on ensembles of nonzero measures. As
P(m) =vP(m), the conclusion is that P(~ o.'~')&0.

which implies that Xz converges in the quadratic
mean sense to m, when p-~, or

limq. m. X&= m„ (4.6)

where m0 is a non-random positive number. This
result is a very classical one and is often called
the weak law of large numbers. "

Now let us introduce the domain A defined by
a &X~b and the probability
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thus the condition of consistency for modulation
implies that the P representation is positive,
which means that the quantum field is strictly
equivalent to a classical one.

There is a simple physical interpretation of the
previous proof W.hen p is increasing, which
means that the mean light intensity of the field is
also increasing, the random variable N~ defined
by Eq. (4.2) is also increasing.

Nevertheless, the variable X~ defined by Eq.
(4.4) remains finite and becomes a continuous
random variable whose probability is precisely
P(m}. This implies that this function is non-nega-
tive.

It is clear that the limit of Xz is the light inten-
sity, which has a physical meaning in the case of
a large number of photons. The same results ap-
pears. in the study of the photoelectron shot noise
in the case of detection of optical beams. " This
result means that for pure quantum fields it is not
passible to introduce a light intensity.

To conclude this discussion, we can say that our
condition of consistency for modulation is a taol
for the characterization of quantum fields that
are strictly equivalent to classical ones.

Before leaving this section it is interesting to
examine explicitly an example of a stationary pure
quantum field with a P representation, which is
not consistent for modulation. This example is a
particular case of a more general class of pure
quantum fields. " I,et us suppose that

P((n )2) =(c/, )(2c ~n (
—1&e- ~" (4.12)

which evidently is not always positive. The qz(n)
of Eq. (4.2) are given by

qz(n) = c(2cm —1)e ~e ~" dm. (4.13)„pm)"
0 8 ~

This integral can be very easily calculated and we
obtain

.q, (e) =
~l

P(n) [&e [~n& ['d'n,

and we must have

q~(&) —o

(5.1)

(5.2)

for any X and z.
The scalar product of two coherent states is

given by a Gaussian function, "and we have

(5 3)

Thus q~(e) can be written .

(e) — P(n)e Ie kal d2n1 (5.4)

It is easy to see that

q~(e) d'e = 1, (5.5)

and Eqs. (5.2) and (5.5) mean that q~(z) is a prob-
ability density of a random variable Z„.This ran-
dom variable is complex, and we see on Eq. (5.4}
that it is a compound Gaussian random variable. "
It can be compared to N~ used in the previous sec-
tion which was a compound Poisson variable. But
there is a strong difference between these two

random variables. We have seen that N~ has a
physical meaning, and represents the number of
photons in the mode. Conversely, Z~ has no direct
physical meaning and is only a theoretical means
to develop our discussion which is very similar to
the previous one.

I,et us first suppose that the field is in a coher-
ent state n0. The P representation is evidently
5(n —n, ), and q~(z) becomes

q (&) (I/~)e-ls-gaol~ (5.6)

E[Z ]= Xn„Var[Z ]= 1. (5.'f)

In this case, Z&„ is a pure complex Gaussian vari-
able whose mean and variance are

qq(n)=,(2cn+ c —p).
cp"

(c+p
(4.14) As previously, let us introduce the random vari-

able S'„defined by
These functions are positive for every n only if
P & c, which shows very simply that the condition
of consistency for modulation is not satisfied.

V. EXTENSION TO A NONSTATIONARY SINGLE MODE

W, = (1/X)Z, .
Its mean and variance are evidently

E[W„)= n „Var[W ]= 1/A. ,

which shows that

(5.8)

(5.9)

As noticed previously, the single mode is con-
sistent for modulation if and only if the Eq. (3.23)
is satisfied for any vector ~f) and value of A..
Now we will show that this condition implies that
P(n) is positive, which means that the field is
strictly equivalent to a classical one.

Let us take for vector
~
f}a coherent state ~e).

The first term of Eq. (3.23) can be written

lim q.m. W&, = &0.
&t,~ ce

(5.10)

Now let us take an arbitrary domain D of the
complex plane and consider the probability

(5.11)P~(D, n o) = 6'( Wi cD).

As 5"), converges in distribution to the non-random
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complex number no, we obtain

limP~(D, no)=1 if u, (=D
)t» oo

vector in a 2K-dimensional space.
The coherence functions defined by E(l. (2.2) can

be written
=0 if o(ogD (5.12) G(""")(x)= Tr[pA(x)] (6.3)

If now we suppose that the field is defined by a
P representation P(n), we deduce directly that the
probability that 5'~c D is

where x is the vector (x„x„.. . ,x„.„),and A(x) is
obtained from Eq. (6.1}by

P,(il)= fP(P)P, (P; n)d'P

and from E(I. (5.12)

limP, (P)= f P(P)d'P

(5.13)

(5.14)

A(x)= gv* 'v*v '' v
ky k„k„+y ktf+m

k

&&a~ at a . a
kn kn+y kn+m

= Z v'""'(k x)a' ~ ~ a
» kn+m'
k

(6.4)

This limit is evidently positive, and as D is ar-
bitrary, we must have P(o() ~ 0.

Thus the condition (5.2) gives a non-negative P
representation, and we obtain the same conclusion
as in the last section, without assuming any sta-
tionarity for the field.

VI. EXTENSION TO MULTIMODE FIELDS

In this section we will extend the results previ-
ously established to the case of a multimode field.
This extension does not make use of new ideas,
but the mathematical expressions are unfortunately
less tractable than in the single-mode case.

I.et us first write the electric field appearing in
the coherence functions. This field is obtained by
superposition of single modes given by E(I. (3.4),
so that

K
E' '(x) = g~z(aS& )' 'u~(r)e '")'a~

1

The introduction of this expression into E(1. (6.3)
leads to

G (n, P) )(x) g v( n, P) & (k x)T r[pB (k)] (6.5)

where B(k) is a product of normally ordered op-
erators a~ and a, For the calculation of the trace
it is particularly interesting to use the P repre-
sentation of the density matrix given by E(I. (6.2),
and we obtain, as in E(I. (3.9)

(B(k)) = »[pB(k)]= (P(o')o'y* ' ' ' ()(,*o(„o( d'a

(6.6)

Now let us apply the condition of consistency for
modulation defined by E(I. (2.4). In this e(luation,
G~~"'(x) is obtained from E(I. (6.5) by changing
only p in p~. Thus the result can be written, as
in E(I. (3.13),

I [P (n) —A."'"P(o.)]n,* o('c( n d'n = 0.
J )t 1 kn+m

(6.7)

p= PQ Q Q, dQq (6.2)

To simplify our mathematical calculations, we
suppose that the number of modes E is finite, and
E(I. (6.1) is a sum and not a series. The function
v, (x) is the same as in Eci. (2.4), and a~ is evi-
dently the annihilation operator of photons in the
mode k. %e suppose that the field is consistent
for modulation, which is expressed by E(I. (2.4},
and we will study the implications of this assump-
tion on the density matrix of the field. Thus the
key of our problem is to calculate the higher-order
coherence functions G("'"&[(x;])appearing in E(l.
(2.4).

For this purpose we suppose, as in Sec. III,
that the density matrix has a P representation
which can be written

This result must be valid for any values of n, ~n,
and k. By using the same methods as in Sec. III,
we easily obtain

p~= P n Xn Xn d'n. (6.8)

P n An 'd'a~0. (6 9)

Now we can use the same kind of arguments as
in Sec. V. We use as vector

~f) a vectorial co-
herent state ~Qz, and we introduce q, (z) by

As previously, we notice that this matrix is
Hermitian and its trace is equal to 1. Thus the
only condition to be a density matrix for every X

is that p~ is positive definite. I'his can be written,
as in E(ls. (3.22) and (3.23),

in which o'- means the sequence &„&„'''&K,or a (6.10)
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From Eq. (6.9) we deduce that we must have
q~(z) & 0, and as q~(z) is normalized it can be con-
sidered as the probability density of a complex
E-dimensional random variable Z„.By extension
of Eq. (5.3) the scalar product of two vectorial
coherent states can be written

secondly, we can use the regularization of the P
representation introduced by Cahill. "

Let us first develop the connection between the
consistency for modulation and the R representa-
tion of the density matrix. In the n-photon basis,
the density matrix can be written

l&zl~n&l'=exp(- lz —~nl'),

where
l
w

l

' means

Thus, q„(z)can be expressed

t&,&K&=—f P&a&e'~ "'*d'n,

(6.11)

(6.12)

(7.1)

where p„is the probability of obtaining n photons
in the mode. Since the coherent states are com-
plete we have

(7.2)

and the density matrix can be written
which is the probability density of a compound
Gaussian vectorial random variable. From this
point we can use exactly the same procedure as
in the previous section to show that if q~(z) ~ 0 for
every X, then P(n) ~0.

Thus the equivalence between the quantum fields
which are consistent for modulation and which can
be described classically is complete in the multi-
mode case and without the condition of stationarity.
The only assumption used mas the existence of a P
representation of the density matrix. Now we will
suppress this assumption.

VII. QUANTUM. FIELDS WITHOUT P REPRESENTATION

To simplify the discussion of this section, we
suppose nom that the field is single mode and sta-
tionary. Extensions to multimode and nonstation-
ary fieMs are possible with more complex analyt-
ical expressions.

We previously discussed the connection between
classical and quantum fields with P representation
by using the condition of consistency for modula-
tion. We saw that this condition is necessary and
sufficient for a quantum field with a P represen-
tation to be strictly equivalent to a classical field.
Moreover me gave examples of fieMs with P rep-
resentation which do not satisfy this condition and
are pure quantum fields.

In this section me will consider the case of quan-
tum fields without P representation. Many papers
have discussed the generality of this representa-
tion; there are only a few examples of quantum
fields without P representation. Nevertheless,
that is the case of all the fields with a bounded
number of photons, and that is the reason mhy we
are obliged to consider this situation.

There are two mays to develop the density ma-
trix in terms of coherent states without using a
P representation: firstly we can use the R rep-
resentation" which is always mell defined, and

By using the standard expressions for the scalar
products (n ln& and (nip&, we obtain

with

Jl(ns) em[-l(lnl'+ l6 l')]
W

x
l

n&&i3 l
d'n d'p, (7.3)

R(cr. "ti )= Qp„ (7.4)

Every density matrix has a R representation
which is completely defined by Eq. (7.4). If more-
over there is a P representation, the function R
can be written

Tr[p„a'"a"]= i&.
'"T r[pa'"a "], (7.6)

where p is given by Eq. (7.3). Following the re-

f~( "6)= J" P(l~l')exp& *y+'1"v —
I

I')d'~

(7.5)

Conversely, the inversion of this equation [i.e. ,
the obtainment of the P representation from
R(n*p)] is not very simple, and we know that it is
even impossible in those cases which, correspond
to a density matrix without a regular P representa-
tion.

It is clear that there are some conditions on
A(n*p) in order for it to be possible to'obtain a R
representation of a density matrix. In particular,
Eq. (7.4) shows that the series expansion of 8 in
terms of (n*p) must have positive and normalized
coefficients.

Let us now consider the problem of consistency
for modulation. In Sec. GI the basic equation was
(3.11). Since we have assumed that the field is
stationary, we can suppose m =n, which gives
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suits of previous sections, we expand p~ in the
form

I R(n*p& e~[--'(In I'+
I p I'&]

First we will show that Eq. (4.2), obtained when
the density matrix has a P representation, is a
particular case of Eq. (7.12). Thus let us suppose
that p„is a Poisson compound probability

xf,(n p)17(.n)(g I
d'n dQ,

and by using Eq. (7.6) we easily find

f&(n, p) = exp[(I -&')(np *--'
I
n I'- l I p I')]

(7.7)

q~(n) = ~, R(n ")!& exp[- ( I
n

I
'+

I p I
'}]

7( 2n Ik (l

x exp[(1 7(,2)n—p *], d'n d'p,

(7.10)

and the question is whether or not the integral is
positive for every X.

As the density matrix is completely defined by
the probabilities p„appearing in Eq. (V.l), we will
express q~(n) in terms of p„.For this purpose we
use the expansion of R(n*p) given by Eq. (7.4),
and q, (n) can be written

~,(~( = —.J ~~(- (II ~
I
*+

I((
I

'((1

(p 1 n)
(7(p!7 n)

' (7.8)

If we introduce this expression into Eq. (7.7),
we find a matrix p~ which is Hermitian, with trace
equal to 1, diagonal in the n-photon basis. Know-
ing whether or not thi5 matrix is a density matrix
is equivalent to knowing whether

q, (n) =(nl p, ln&= o. (7.9)

By using the expressions for (n
I
&n) and (Q ln),

we find

p„= p(m)e —,dm,
0 !

where p(m} is not necessarily positive but has an
integral equal to 1.

By introducing this expression into Eq. (V.12),
we obtain

(V.13)

( )
.„(pm)"g [(1-p)m]'

8!

=
J

P(m)e s", dm, (V.14)

which is a binomial distribution. Evidently this
implies that p &1, and thus the k-photon field is
not consistent for modulation.

Now we will see that this is always the case if
the number of photons in the initialfield is bounded.
If p„=0 for n& k, the series in Eq. ('7.12) is a sum.
Moreover, the number of photons in the modulated
fieM is also bounded because q~(n)=0 if n& k. I.et
us calculate qa(k —1) from Eq. (7.12). We find

q, (k- I) =p "[p„p,k(1 -p)l, (7.16)

which is exactly Eq. (4.2).
Secondly let us now suppose that the initial field

has exactly k photons, i.e. , that p„=5~. By intro-
ducing this into Eq. (7.12), we obtain for the mod-
ulated field

!
q,(n)=, ', (I p)~ "-p", O~n~k, & (V.15)

~ p (I y2)l'y2n which is positive if

p & I+8, ,/kp„, (7.17)
x (np w}1+(((n g )k d2n d2p

('7.11)

q(((n) ~Pg+ I!((!
'

(1 P ) P
(I+ n)!

(V.12)

This expression gives the probability of n photons
in the mode for the field obtained by modulation of
an initial field characterized by the probabilities
p„.Evidently we will say that the initial field is
consistent for modulation if for every p the func-
tion qs(n) is positive.

If we take n =re' and p = pe'~, we see that inte-
gration in 8 or Q gives 7+n —k=0. By performing
the integrations in sand p and taking p =X', we
easily find

and shows that the field is not consistent for modu-
lation.

Thus to characterize the fields consistent for
modulation we are obliged to study fields with an
unbounded number of pkotons, and (p„]appearing
in Eq. (7.12) is necessarily an unbounded sequence
of positive numbers. Two different cases can ap-
pear.

(i) if the sequence of probabilities p„canbe ex-
panded as in Eq. (7.13) with a regular function
p(m), the condition of consistency modulation is
equivalent to p(m) & 0, which is the result of Sec.
IV.

(ii) If the expansion (7.13) is not valid, even with
an infinite sequence of probabilities p„,we can
use the second approach indicated previously.
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Instead of using the R representation for a quan-
tum field without a regular P representation, we
can use its regularization which was extensively
studied by Cahill. ' In this work it was shown that
any density matrix of a stationary field can be ex-
panded as

+ —««P, « 'd'«, (7.18)

Tr[p„a"a"]= A.
'"Tr[pa "a"] (7.19)

where P, and P, are regular functions. The second
term vanishes when the field hasaregularP repre-
sentation.

Let us now apply to Eq. (7.18} the condition of
consistency for modulation

q~(n)= ' e ~ p(m)dm, (7.26)

which is the most general extension of a Poisson
compound distribution because p(m) has not only
possible negative values, but is also defined for
negative values of m. Some examples of such dis-
tributions were already introduced in the study of
point processes. " Evidently the Poisson kernel
appearing in Eq. (V. 26} cannot be interpreted as a
conditional probability, even if q~(n) is a probabil-
ity. But this fact was already true for Eq. (V.13)
when p(m) has negative values.

Now the problem of the positiveness of the den-
sity matrix p~ is equivalent to the condition for
q~(m) to be probabilities for every p. For that pur-
pose we must assume that 0&q(0) ~1. This con-
dition can be written

where p~ has a regularized P representation de-
fined by Pxi(l ~

I ) and +2.(l ~
I ) ~ By the same cal

culations used previously, we obtain the solution
of Eq. (7.19), which is

00 00

0& e s™p(m)dm+ e8™[p,(m)e '"]dm~1.
"o 0

(7.27)

PJ~ ~')= —„,xp 2~.
~ () „—'.

) )'.(';.'*).

(7.20)

By using a result due to Ehrenpreis, "it is
possible to show that p, (m) and p, (m)e ~ are both
absolutely integrable functions. This result is due
to the fact that the functions p, (m) can be written
in the form

(7.21) p, (m) dm =f, (m) d )u, (m), i = 1,2 (7.28)

From these expressions we obtain the probability
of n quanta in the mode defined by (n

l p„ln). This
probability can be written

q))(n) =q, ,(n)+ q„,(n),

where

(7.22)

q„~(n)= e ' p, (m) dm,P m}"

0
(7.23)

with p =A,' and p, (m)=mP, (m). This part of the
probability has evidently the same structure as
q))(n) in Eq. (4.2). The second part is obtained
from Eq. (7.21}, and it is

q,, ~(n) = e ~" [e' p, (-m)])fm,
mOO

(7.24)

which can also be written

q„~(n)= Jt (- 1)"e~" [e '"p, (m)] dm.

(7.25)

It is interesting to notice that q~(n) can be written
in the form

where the functions f, (m) are of bounded variation
and the functions f, (m) are monotonic, continuous,
and positive. Moreover, f,(m) goes to zero as
m- faster than any exponential of the form
e ', and f,(m) - 0 for m -~ faster than every
inverse power of m.

In Eq. (7.27), the first integral is bounded for
every p, but we must have p, (m}= 0 in order for
the second integral to be bounded for every p.
Indeed, let us consider the second integral in Eq.
(7.27) and introduce the function, of the complex
variable z

l(z)= J f(m)e dm, .

0
(7.29)

where f (m) =p, (m)e ~. This function is evidently
a holomorphic functions. If Eq. (7.27) is valid
for every p & 0, it follows that f(z) is bounded in
the complex plane. Therefore the Liouville theo-
rem states that f(z) is a constant. Thus it follows
that I(z) =I( ~)= 0, which show-s that f (m) = ) and

that p, (m) is vanishing.
Thus the condition of consistency for modulation

requires that p, (m) = 0, which means that the field
has a regular P representation. In this case we
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have evidently, as shown previously, P, (m)&0.
In conclusion, in all the cases considered in this

paper the condition of consistency for modulation
is a characteristic property of the quantum fields
which are strictly equivalent to the classical ones.

ACKNOW LEDGMENTS

The authors are grateful to Dr. F. Rocca and
Dr. P. Leyland for many helpful discussions.

*Laboratoire associe a 1'Universite de Paris-Sud.
L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).

~B. Picinbono and E. Boileau, J. Opt. Soc. Am. 58, 784
(1968).

B. J. Glauber, in Quantum Optics and Electronics,
edited by de Witt et al . (Gordon and Breach, New York,
1965).

4J. Klauder and E. C. G. Sudarshan, Eundamentals of
Quantum Optics (Benjamin, New York, 1968).
E. Wong, Stochastic Processes in Information and Dy-
namical Systems (McGraw-Hill, New York, 1971),
p. 3.

A. Papoulis, Probability, Random Variables and
Stochastic Processes (McGraw-Hi11, New York, 1965),
p. 357.
B. Picinbono, Phys. Rev. A 4, 2398 (1971).
C. Bendjaballah and F. Perrot, J. Appl. Phys. 44, 5130
(1973).

B. J. Glauber, Phys. Bev. 131, 2766 (1963), Eq. (2 ~ 19).
OSee Ref. 9, Sec. VI.

~~B. Picinbono and M. Rousseau, Phys. Rev. A 1, 635
(1970).
See Bef. 9, Eqs. (3.3) and (3.6).
-See Bef. 6, p. 263.-

~4See Ref. 6, p. 260.
' B. Picinbono, C. Benjaballah, and J. Pouget, J. Math.

Phys. 11, 2166 (1970).
P. Leyland, Nuovo Cimento 31, 32 (1976).

'~See Bef. 9, Eq. (3.33).
B. Picinbono, IEEE Trans. Inf. Theory IT-16, 77
(1970).

' See Bef. 9, Sec. VI.
K. E. Cahil]. , Phys. Rev. 180, 1244 (1969).

2'D. S. Newman, J. Appl. Prob. 7, 338 (1970).
L. Ehrenpreis, Trans. Am. Math. Soc. 101, 52 (1961).


